
Parallelization of the MARS Value Function Approximation in a

Decision-Making Framework for Wastewater Treatment

Julia C. C. Tsai
Krannert School of Management

Purdue University
1310 Krannert Building

West Lafayette, IN 47907-1310

Victoria C. P. Chen (correspondence author)
Department of Industrial and Manufacturing Systems Engineering

Campus Box 19017
University of Texas at Arlington

Arlington, TX 76019
Phone: (817) 272-2342
Fax: (817) 272-3406

Email: vchen@uta.edu

Eva K. Lee and Ellis L. Johnson
School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, GA 30332

COSMOS Technical Report 03-02

Abstract

In this paper, a parallelized version of multivariate adaptive regression splines (MARS,
Friedman 1991) is developed and utilized within a decision-making framework (DMF) based on
an OA/MARS continuous-state stochastic dynamic programming (SDP) method (Chen et al.
1999). The DMF is used to evaluate current and emerging technologies for the multi-level liquid
line of a wastewater treatment system, involving up to eleven levels of treatment and monitoring
ten pollutants moving through the levels of treatment. At each level, one technology unit is
selected out of set of options which includes the empty unit. The parallel-MARS algorithm
enables the computational efficiency to solve this ten-dimensional SDP problem using a new
solution method which employs orthogonal array-based Latin hypercube designs and a much
higher number of eligible knots.

Key Words: dynamic programming, orthogonal arrays, Latin hypercubes, regression splines,
parallel computing.

1 Introduction

The goal of a city’s wastewater infrastructure is to control the disposal of urban effluents, so as
to achieve clean water. Our objective in this application to wastewater treatment is to evaluate

1



current and emerging technologies via a decision-making framework (DMF) based on continuous-
state stochastic dynamic programming (SDP, see Bellman 1957, Puterman 1994, Bertsekas 2000,
for general background). In general, our DMF can provide a forum in which future options may be
explored without subjecting humankind to experimental attempts at environmental remediation.

Solution methods for SDP can be extremely computationally intensive and have only become
practical due to recent advances in computational power. The most promising high-dimensional
continuous-state SDP solution method is OA/MARS (Chen et al. 1999), which utilizes a statistical
modeling approach by employing orthogonal array (OA, Chen 2001) experimental designs and
multivariate adaptive regression splines (MARS, Friedman 1991).

Chen et al. (1999) and Chen (1999) solved continuous-state inventory forecasting SDP problems
with up to nine dimensions in the state space. Application to a ten-dimensional water reservoir
SDP problem appears in Baglietto et al. (2001), and preliminary results for a ten-dimensional
wastewater treatment system appear in Chen et al. (2000) and Chen et al. (2001). To-date, these
are the largest continuous-state SDP application problems in the literature; however, there is great
potential to solve much higher-dimensional problems. In this paper, we explore two new variants
of the OA/MARS statistical modeling approach:

1. Application of a parallelized version of MARS to reduce computational time and comparisons
to the serial version of MARS.

2. Utilization of OA-based Latin hypercube designs (OA-LHD, Tang 1993), permitting a larger
eligible set of knots for the MARS approximation.

It is expected that the wastewater treatment SDP problem will require more accurate univariate
modeling and fewer interactions than the inventory forecasting SDP problems, which involved a
significant portion of three-way interactions. Thus, we anticipated the need for more flexibility in
MARS knot selection than was permitted with pure OAs. However, the serial version of MARS
was already requiring excessive computational effort with the OA eligible knot set, hence, a paral-
lelization of the MARS forward stepwise search for basis functions was developed.

Parallelization of a B-splines variant of the MARS algorithm (BMARS) was presented by Bakin
et al. (2000) in the context of mining very large data sets (e.g., one million data points). Their
approach utilized data parallelism to speed up the calculation of a summation over the data points,
which takes place when orthonormalizing the basis functions. Parallelization is necessary because
their orthonormalization is conducted for every eligible basis function in the forward stepwise search.
By contrast, the original MARS conducts the orthonormalization only on the basis functions result-
ing from the search. The parallel-MARS algorithm presented in this paper is based on the original
MARS algorithm and is more generally applicable than BMARS.

The wastewater treatment system in this paper was developed by Chen and Beck (1997), and
the database of technologies was classified by Chen (1993). Appropriate parameter settings for the
purposes of optimization within the DMF were developed by the authors. Details on the wastewater
treatment system are given in the next section, and the SDP statistical modeling process is described
in Section 3. Parallelization of MARS and background on the message-passing interface (MPI) is
described in Section 4. Finally, the DMF results are presented in Section 5 and concluding remarks
appear in Section 6.

2 Wastewater Treatment System

The wastewater infrastructure and database of technologies utilized in this research is based on the
system presented by Chen and Beck (1997), which focuses on the treatment of domestic wastewater

2



involving both liquid and solid treatment processes with several levels. In this paper, we address
only the liquid line, which is shown in Figure 1. The levels represent the different stages of treatment
and are numbered in the order in which they are encountered by the wastewater. At each level, a
choice must be made as to the type of technology (unit process) to employ. Included among these
choices is an “empty unit” which, if selected, indicates that no treatment is performed at that level.
Although the diagram in Figure 1 does not show dependencies, there are a few cases in which a
unit at a later stage can only be utilized if a certain unit was employed at an earlier stage for a
required pretreatment.

2.1 State and Decision Variables

The state variables represent the state of the system as it moves through the levels of treat-
ment. For the liquid line of our wastewater treatment system, we monitored ten state variables:
(1) chemical oxygen demand substances (CODS), (2) suspended solids (SS), (3) organic-nitrogen
(orgN), (4) ammonia-nitrogen (ammN), (5) nitrite-nitrogen (nitN), (6) total phosphorus (totP),
(7) heavy metals (HM), (8) synthetic organic chemicals (SOCs), (9) pathogens, and (10) viruses.
The ten-dimensional state vector, denoted by xt, contains the quantities of the above ten state
variables remaining in the liquid upon entering the t-th level of the system in Figure 1. These state
variables monitor the cleanliness of the liquid at the different levels of the liquid line. Note that all
the state variables are continuous.

The decision variables are the variables we control. In the case of wastewater treatment, the
decision is which technology unit to select in each level of the liquid line. Mathematically, we
denote this decision variable by ut, where the value of ut essentially indexes the selected technology
unit. For a set of Ut possible technologies in level t, the decision variable ut takes on a value in
Γt = {0, 1, 2, . . . , Ut}, where ut = 0 selects the “empty unit.”

2.2 Transition Function

The transition function for level t determines how the state variables change upon exiting level t.
The performance of a particular technology unit is based on the removal of pollutants represented
by the ten state variables. Each technology unit in level t determines a different transition from
xt to xt+1 based on performance parameters specified in the database by Chen (1993). We denote
the transition function by ft(xt, ut, ǫt,ut

), where ǫt,ut
is the stochasticity placed on the performance

parameters. The largest number of parameters for a single technology unit was 25. Since nothing
is known about the appropriate probability distributions to represent the stochasticity, only the
ranges of the performance parameters are specified, with narrower ranges assigned to well-known
technologies and wider ranges assigned to newer, emerging technologies.

2.3 Objectives and Constraints

The basic constraints are stringent clean water targets that are specified for the effluent exiting
the final level of the liquid line. In addition, to avoid the extreme situation of liquid too polluted
to be processed by any technologies available in a specific level (caused by selecting the “empty
unit” too often in earlier levels), constraints are added on the cleanliness of the influent entering
each level. These range limits on the state variables, shown in Table 1, define the state space for
each level of the liquid line. Subsequent lower limits are calculated based on the highest possible
pollutant removal in each level. The upper limits are based on the smallest possible pollutant
removal, assuming the “empty unit” was not selected.

3



The primary objective function is economic cost, capital and operating, which is minimized.
The costs are calculated for each selected technology unit and are subject to stochasticity modeled
in the same manner as the performance parameters of each unit. Attainment of the constraints is
achieved via a penalty function added to the primary cost objective. The same penalty function was
utilized to achieve cleanliness targets and to maintain state space limits. Due to the subsequently
extreme penalty on state space limits, these were exceeded very rarely.

Mathematically, the target penalty functions are formulated as quintic functions of the same
form as those used in Chen et al. (1999), which involve three “knots,” k−, k, and k+. The lowermost
knot k− is the target value at which the function hits zero (i.e., zero penalty for being below target).
The other two knots are defined as k = k− + ∆ and k+ = k + ∆, where ∆ is determined such that
the upper knot, k+, coincides with the maximum of the effluent. The exact form of the penalty
function is not important, as long as it serves the purpose of penalizing for violating targets, and
this form was chosen to facilitate modeling by MARS. Table 2 provides the state variable ranges
of the effluent exiting the liquid line, target values, ∆ values, and penalty coefficients.

3 Statistical Modeling Within The DMF

As stated earlier, our DMF is based on a SDP formulation. In this section, we present the SDP
formulation and the statistical modeling process necessary to acquire a numerical SDP solution for
the continuous-state case. The objective of the wastewater treatment SDP is to minimize “costs”
over the T = 11 levels of the liquid line, i.e., to solve

min
u1,...uT

E

{

T
∑

t=1

ct(xt, ut, ǫt,ut
)

}

s.t. xt+1 = ft(xt, ut, ǫt,ut
), for t = 1, . . . , T − 1 and

xt ∈ St, for t = 1, . . . , T
ut ∈ Γt, for t = 1, . . . , T

(1)

where xt is the state vector (cleanliness of the liquid), ut is the index of the selected technology
unit, ǫt,ut

is the stochastic component on the performance parameters of unit ut, xt+1 is determined
by the transition function ft(·), St contains the range limits on the state variables, Γt contains the
indices of the available technology units, and the cost function ct(·) contains both the economic
and penalty costs.

The future value function provides the optimal cost to operate the system from level t through
T as a function of the state vector xt. This is written in summation form as

Ft(xt) = min
ut,...uT

E

{

T
∑

τ=t

cτ (xτ , uτ , ǫτ,uτ
)

}

s.t. xτ+1 = f(xτ , uτ , ǫτ,uτ
), for τ = t, . . . , T − 1 and

xτ ∈ Sτ , for τ = t, . . . , T
uτ ∈ Γτ , for τ = t, . . . , T

and written recursively as

Ft(xt) = min
ut

E{c(xt, ut, ǫt,ut
) + Ft+1(xt+1)}

s.t. xt+1 = ft(xt, ut, ǫt,ut
)

xt ∈ St

ut ∈ Γt .

(2)

4



Given a finite number of levels T , the basic SDP problem is to find F1, . . . , FT . Then ut can
be found for any given xt by standard numerical minimization of (2). The recursive formulation
permits the SDP backward solution algorithm, first by assuming FT+1 ≡ 0, then solving in order
for FT through F1 (see description in Chen 1999).

The exact solution for the future value functions FT through F1 becomes impossible in the
presence of continuous state variables (except in simple problems where an analytical solution
might be derived). This is where the statistical modeling process introduced by Chen et al. (1999)
is employed to estimate these functions. The key is discretization of the state space via a finite set of
points, which are then used to construct a representation of the continuous future value functions.
In the statistical perspective, the state space discretization is equivalent to an experimental design,
such as an OA, and the approximation of the future value function is achieved by fitting a statistical
model, such as MARS.

Since ǫt,ut
in the minimization of (2) is based on a continuous distribution, we must also use

discrete approximations to estimate the expected value. For our implementation, we sampled 51
points from a Uniform(0, 1) distribution, then combined that with a Plackett-Burman screening
design with 48 points for the edge values {0, 1} to ensure that the SDP accounted for the extreme
cases (Plackett and Burman 1946).

4 Parallel Multivariate Adaptive Regression Splines

4.1 Background on Parallel Computing

Parallel computing generally refers to solving intensive computational problems via parallel com-
puters. A parallel computer is a set of processors working cooperatively to solve a computational
problem. Parallelism has drawn great interest in large scale operations research application prob-
lems. Lee et al. (1995) and Linderoth et al. (1999) presented a parallel implementation of branch-
and-bound mixed 0/1-integer programming and a parallel linear programming based heuristic in
solving large scale set-partitioning problems. Graph partitioning problems were shown to be com-
putationally efficient via a parallelization approach (Bhargava et al. 1993) and the visualization
software developed by West et al. (1994) for scientific analysis of high resolution, high volume
datasets.

Message-passing is probably the most widely-used paradigm for expressing parallel algorithms
(Gropp and Lusk 1994, Foster 1995). The Message-Passing Interface (MPI) is a standard message-
passing library interface developed by the MPI Forum, a broadly-based group of parallel computer
vendors, parallel programmers, and application scientists. Zhuang and Zhu (1994) demonstrated
parallelization in a reservoir simulator using MPI. Beyond the basic send and receive capabilities,
some MPI features, such as communicators, topologies, communication modes and single-call collec-
tive operations (Snir et al. 1998, Gropp et al. 1999) were entertained to parallelize the serial-MARS
algorithm.

4.2 The MARS Algorithm

Multivariate adaptive regression splines (MARS), introduced by Friedman (1991), provide a flexible
modeling method for high-dimensional data. The model is built by taking the form of an expansion
in product spline basis functions, where the number of basis functions as well as the parameters
associated with each one are automatically determined by the data. MARS uses the multiple
regression model

E[yi] = g(xj1, xj2, ..., xjn), j = 1, ..., N (3)

5



where n is the number of covariates x = (x1, . . . , xn)T , N is the number of data points, and
the “regression function” g(·) is smooth but otherwise arbitrary. In the SDP statistical modeling
process of Section 3, the set of covariates corresponds to the set of continuous state variables, and
the data points correspond to state space discretization points. There is assumed to be very little
noise associated with the modeling of the future value functions in SDP; although, further studies
on this subject are warranted. The MARS procedure for estimating the function g(·) consists of
(i) a forward stepwise algorithm to select certain spline basis functions, (ii) a backward stepwise
algorithm to delete basis functions until the “best” set is found, and (iii) a smoothing method which
gives the final MARS approximation a certain degree of continuity.

To give MARS continuity and a continuous first and second derivative at the side knots, a
piecewise-linear MARS approximation with quintic functions was derived (Chen et al. 1999). MARS
is an adaptive procedure because the selection of basis functions is data-based and specific to the
problem at hand. We do not employ the backward stepwise algorithm with SDP due to preliminary
results indicating minimal benefit for a large additional computational burden.

The forward stepwise algorithm is the most computationally expensive component of MARS,
and in the next section we describe its parallelization. It is reprinted as Algorithm 1 and described
below to facilitate this discussion. The relevant notation is as follows: Mmax is the maximum
number of basis functions, which is used to terminate MARS; Bm(·) is the m-th basis function; Lm

is the number of splits that gave rise to Bm(·); v(l, m) indexes the covariate in the l-th split of the
m-th basis function; and k indexes the eligible knot locations (at data values).

In line S1, Algorithm 1 begins with the constant basis function, B1(x) = 1, and initializes the
counter M . Within the M -loop beginning on line S2, basis functions BM (·) and BM+1(·) are added.
Beginning on line S3, the m-loop searches through the (M − 1) basis functions that have already
been added for the best one to “split.” Univariate basis functions “split” the constant basis function
at a knot k for covariate xv in the form of truncated linear functions, b+(xv − k) = [+(xv − k)]+
and b−(xv − k) = [−(xv − k)]+, where [q]+ = max{0, q}. Interaction basis functions are created by
“splitting” (multiplying) an existing basis function Bm(·) with a truncated linear function involving
a new covariate. Both the existing basis function and the newly created interaction basis function
are used in the MARS approximation. Lines S3–S5 loop through the possible choices for basis
function (m), covariate (v), and knot (k) in selecting the next two basis functions (M and M + 1)
to add. The potential “splits” are calculated in line S6.

The lack-of-fit (lof) criterion in line S7 is based on squared error loss, and is used to compare the
possible basis functions. In line S8, the indices m, v, and k are stored for the “split” that currently
yields the smallest lof. The algorithm stops when Mmax basis functions have been accumulated,
where Mmax is a user-specified constant. The MARS approximation approaches interpolation as
the number of basis functions increases, but there is a tradeoff between Mmax and computational
time.

In our MARS, we include an option to limit the number of “splits” (Lm) for each basis function.
This permits additive modeling or exploration of a limited order of interactions. In addition, our
MARS program utilized the orthogonalized version of the forward stepwise algorithm, suggested in
the Rejoinder of citetmars. For simplicity, the parallel-MARS forward stepwise algorithm will be
presented based on the version reprinted as Algorithm 1.

4.3 Parallelization of MARS

Inside Algorithm 1, the m-loop, beginning on line S3, searches through all the (M − 1) previously-
added basis functions, and for each basis function m, searches over covariates v and knots k for
the best “split.” Each of the (M − 1) search procedures within the m-th loop is independent of

6



the others, and hence, the (M − 1) search procedures indexed by m can be conducted in parallel.
To achieve the greatest computational improvement, the outermost parallelizable loop is selected.
For Algorithm 1, it is the m-loop. The number of processors specified by a user, P , was used to
assign parallel jobs efficiently to the processors. Algorithm 2 shows the structure of the resulting
parallel-MARS algorithm. Where relevant, reference is made to line numbers in Algorithm 1.

MPI function MPI Type struct was used to send a collection of data items of various elementary
and derived types as a single data type. Thus, data were grouped as blocks with a data type
associated with each block and a count to represent the number of elements in each block. With
this block structure, message-passing, using the basic message-passing functions, such as MPI Send,
MPI Receive and MPI Bcast, is simplified. In Algorithm 2, preprocessing of the parallelization is
on line P2, where the master processor sends the necessary input for MARS modeling to all the
slave processors. In lines P5–P11, the main body of parallel-MARS distributes the (M − 1) search
procedures among the processors. In line P7, the loops over covariate v and knot k are conducted
in parallel for different basis functions Bmi

. The best lof value and corresponding indices are stored
separately on each processor in line P8, and then later in line P15, the overall best is identified.

The number of jobs assigned to each processor is set as equal as possible to minimize compu-
tational time. The master processor C0 runs jobs m0 = 1, 1 + P , 1 + 2P , . . . and stores the local
best in lof∗0, m0

∗, v0
∗, k0

∗; the slave processor C1 runs m1 = 2, 2 + P , 2 + 2P , . . . and stores its
local best, lof∗1, m1

∗, v1
∗, k1

∗; C2 runs m2 = 3, 3 + P , 3 + 2P , . . . ; etc. The calculation of the new
basis functions and the update of M in lines P16–P17 is the same as serial-MARS, except that the
updated information must be broadcasted to all the slave processors in preparation for the next
parallel loop.

In this study, all computational experiments were performed on a cluster of machines consisting
of seventeen 550MHz eight-processor Pentium III Xeon computers, resulting in up to 136 processors
available for parallel computing. All machines were linked via Gigabit Ethernet and used a RedHat
Linux 6.2 operating system. Parallelism was implemented with Version MPICH 1.2, developed at
Argonne National Laboratory to facilitate parallel programs running across cluster machines and
exchanging information between different processors using message-passing procedures.

5 Results for the Wastewater Treatment Application

For discretization of the state space, as described in Section 3, OA-LHDs (Tang 1993) were con-
structed from OAs of strength two (Owen 1992). These OA-LHDs combine the LHD-property
of having all N levels in each dimension represented (once) in the experimental design and the
OA-property of balance in bivariate projections (for strength two). In this section, we explore
the reduction in computation due to the parallel-MARS algorithm, as applied to the wastewater
treatment system, and we present the results of the DMF.

5.1 Computational Benefits of Parallel-MARS

For our computational experiments, we limited MARS to permit at most three “splits” per basis
function (Lm = 3), and we varied:

• N = number of discretization points,

• Mmax = maximum number of basis functions,

• K = number of eligible knots,

7



• P = number of processors in the parallel-MARS algorithm.

Speedup, true speedup, efficiency and true efficiency (Dongarra et al. 1989) were calculated to
evaluate the performance of parallel-MARS. The speedup of P processors (SP ) is defined as its run
time divided into the time to execute the parallel code on one processor. The true speedup of P
processors (True SP ) is the run time divided into the run time of the serial code. The efficiency
(Eff), defined as SP /P , is used to compare the overhead due to memory contention and waiting in
message-passing. Similarly, the true efficiency (True Eff) is True SP /P .

The main findings are presented via a subset of the runs illustrated in Figures 2 through 8. (Note:
The run times for the exact same parameter settings can differ slightly for different runs due to the
fact that the parallel cluster is a shared facility.) The reduction in run time as P increases is clear,
but the impact of parallelization is most pronounced for larger Mmax. In Figure 2, the run time
grows dramatically as Mmax increases, and the greater reduction in run time with more processors
for larger Mmax is apparent. The calculations for Sp, True Sp, Eff, and True Eff when N = 289
and K = 35 are shown in Table 3. Using Sp and True Sp in Figures 3 and 4, this effect is seen in
the steeper slopes of the lines for larger Mmax. In Figure 5, a generally linear increase in efficiency
is shown as a function of Mmax. For N = 289, the parallel overhead for P = 8 processors due to
memory contention and waiting (1−Eff) dropped from 82% for Mmax = 50 to 56% for Mmax = 200.
However, efficiency degrades as P increases due to a higher probability of simultaneous memory
contention and waiting with more processors. For example, in Table 3, the parallel overhead when
Mmax = 200 increases from 18% for P = 2 to 56% for P = 8. Mathematically, this relationship is
seen in the complexity of parallel-MARS. The computational effort for serial-MARS is (Friedman
1991, Chen et al. 1999)

O(nN [M∗

max]
3)

while our new parallel-MARS algorithm reduces this to

O(nN [M∗

max]
2[P + (M∗

max/P )]). (4)

For parallel-MARS, the overhead is represented by the term nN [M∗

max]
2P , which clearly grows with

P .
A linear relationship discovered between run time and K for a fixed Mmax is illustrated in

Figure 6. This figure also indicates that the run times are very close for the serial code and the
parallel code with one processor. A slight upward trend between Sp and K in Figure 7 shows that
a much larger K leads to tremendous increase in run time, but the increased work load is smoothed
by being distributed to multi-processors. However, Sp and N do not demonstrate a significant
relationship in Figure 8. The dominant impact of parallelization with larger Mmax is logical given
that the parallelized loop in Algorithm 2 is the one that depends on Mmax. In addition, it should
be noted that the growth in the computational effort in (4) is most significantly impacted by Mmax.

5.2 DMF Solution

A strength three OA-LHD with N = 2197 discretization points was generated to compare the
various SDP solutions. As in Chen (1999), mean absolute deviation (MAD) for the last period
future value function of the SDP was calculated for the comparisons of model accuracy. The smallest
N that yielded reasonable results for the wastewater treatment application was 961. Smaller
N resulted in contradictory technology selections due to poor model accuracy. With N = 961,
the best model accuracy was obtained with Mmax = 200 and K = 35. The serial-MARS run
time for this solution was 1.66 hours, while the parallel-MARS run time with P = 8 was 31.51
minutes. Figure 9 illustrates how MAD changes with K, and confirms our initial suspicion that

8



the wastewater treatment SDP problem would require a larger K than the inventory forecasting
problems, which utilized a maximum of 11 eligible knots.

The wastewater treatment DMF results provide a quantitative evaluation of the potential
process technologies. In this paper, our application only considered economic cost, but other
objectives, such as minimizing odor emissions (Chen et al. 2001), are available for exploration.
Four measures are used to quantify performance of the technologies in each period. Count is the
number of times a unit process was selected over the 2197 entering states. MOD (mean overall
deviation), MLD (mean local deviation), and MLRD (mean local relative deviation) calculate
deviations between the actual cost of selecting a unit process for a particular entering state and
a “minimum cost,” then averages over the 2197 entering states. For MOD, the “minimum cost”
is the smallest cost achieved by any unit for any of the 2197 entering states (overall minimum).
For MLD, the “minimum cost” for each entering state is the smallest cost achieved for that state
(local minimum). Finally, for MLRD, the local deviations are scaled by the local minimum cost.
Table 4 lists these four measures for the SDP solution using N = 961, Mmax = 200, K = 35. The
technologies that provided adequately clean water with lower economic cost are those with higher
Count and lower MOD, MLD, and MLRD. In Level 2, Chemical Precipitation appears to be the
clear winner; however, looking at MOD, MLD, and MLRD, Vortex SSO is a strong second choice.
Our goal here is not simply optimization, but to identify promising technologies by eliminating
clearly inferior technologies. For example, in Level 5, Lagoons/Ponds is a clear loser under the
economic objective.

6 Concluding Remarks

It is clear that increasing the number of processors P will improve computational performance
although Speedup will not improve infinitely since the message-passing process required by parallel
computing adds computational effort. On the other hand, while larger N , larger K and larger
Mmax take longer to execute, Speedup does not change significantly with N and K, and, more
importantly, better Speedup can be attained with larger Mmax, especially when P is sufficient.
Further research will explore flexible selection of the MARS Mmax parameter.

The most accurate SDP solution (among those tested, based on MAD) utilized N = 961,
K = 35, and Mmax = 200. Parallel-MARS with 8 processors provided a 68.4% reduction in run
time for this SDP solution. Four measures are calculated by the DMF as quantitative criteria for
selecting among the technologies, and promising technologies are easily identified. Other objectives
that may be studied include odor emissions, land area, robustness (against extreme conditions),
and global desirability.

9



Acknowledgements

The authors’ work is supported by a Technology for Sustainable Environment (TSE) grant under the
U. S. Environmental Protection Agency’s Science to Achieve Results (STAR) program (Contract
#R-82820701-0). Dr. Chen’s work is also supported by NSF Grant #DMI 0100123.

Disclaimer

Although the research described in this article has been funded in part by the U. S. Environmental
Protection Agency, it has not been subject to any EPA review and therefore does not necessarily
reflect the views of the Agency, and no official endorsement should be inferred.

References

Baglietto, M., C. Cervellera, T. Parisini, M. Sanguineti, and R. Zoppoli (2001). “Approximating
Networks for the Solution of T-stage Stochastic Optimal Control Problems.” Proceedings of the
IFAC Workshop on Adaptation and Learning in Control and Signal Processing.

Bakin, S., M. Hegland, and M. R. Osborne (2000). “Parallel MARS algorithm based on B-splines.”
Computational Statistics, 15, pp. 463–484.

Bellman, R. E. (1957). Dynamic Programming. Princeton: Princeton University Press.

Bertsekas, D. P. and J. N. Tsitsiklis (2000). Dynamic Programming and Optimal Control. Belmont,
Massachusetts: Athena Scientific.

Bhargava, R., G. Fox, C. Ou, S. Ranka, and V. Singh (1993). “Scalable Libraries for Graph Parti-
tioning.” In Proceedings of the Scalable Parallel Libraries Conference, Mississippi, October 1993.

Chen, Jining (1993). “Environmentally Efficient Urban Drainage for the 21st Century: A Litera-
ture Review.” Technical Report, Department of Civil Engineering, Imperial College of Science,
Technology and Medicine, London, UK.

Chen, J. and M. B. Beck (1997). “Towards Designing Sustainable Urban Wastewater Infrastruc-
tures: a Screening Analysis.” Water Sciences Technology, 35, pp. 99–112.

Chen, V. C. P. (1999). “Application of Orthogonal Arrays and MARS to Inventory Forecasting
Stochastic Dynamic Programs.” Computational Statistics and Data Analysis, 30, pp. 317–341.

Chen, V. C. P. (2001). “Measuring the Goodness of Orthogonal Array Discretizations for Stochas-
tic Programming and Stochastic Dynamic Programming.” SIAM Journal of Optimization, 12,
pp. 322–344.

Chen, V. C. P., J. Chen, and M. B. Beck (2000). “Statistical Learning within a Decision-Making
Framework for More Sustainable Urban Environments.” In Proceedings of the Joint Research
Conference on Statistics in Quality, Industry, and Technology, Seattle, Washington, June 2000.

Chen, V. C. P., D. Ruppert, and C. A. Shoemaker (1999). “Applying Experimental Design and
Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming.”
Operations Research, 47, pp. 38–53.

10



Chen, V. C. P., J. C. C. Tsai, E. K. Lee, and E. L. Johnson (2001). “A Decision-Making Framework
for Evaluating Wastewater Treatment Technologies.” In Proceedings of the 5th Annual Green
Chemistry and Engineering Conference, Washington, D. C. June 2001.

Dongarra, J., I. Duff, P. Gaffney, and S. McKee (1989). Vector and Parallel Computing: Issues in
Applied Research and Development. New York, NY: John Wiley & Sons, Inc.

Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools for Parallel Soft-
ware Engineering. Reading, MA: Addison-Wesley Publishing Company.

Friedman, J. H. (1991). “Multivariate Adaptive Regression Splines (with discussion).” Annals of
Statistics, 19, pp. 1–141.

Gropp, W. and E. Lusk (1994). “Implementing MPI: the 1994 MPI Implementors’ Workshop.” In
Proceedings of the 1994 Scalable Parallel Libraries Conference, Mississippi, October 1994.

Gropp, W., E. Lusk, and A. Skjellum (1999). Using MPI—Portable Parallel Programming with the
Message-Passing Interface (2nd edition). Cambridge, MA: The MIT Press.

Lee, E., R. Bixby, W. Cook, and A. Cox (1995). Parallel Mixed Integer Programming. Center for
Research on Parallel Computation Research Monograph CRPC-TR95554.

Linderoth J., E. Lee, and M. Savelsbergh (1999). A Parallel, Linear Programming Based Heuristic
for Large Scale Set Partitioning Problems. Industrial & Systems Engineering Technical Report.
To appear, INFORMS Journal on Computing.

Owen, A. B. (1992). “Orthogonal Arrays for Computer Experiments, Integration, and Visualiza-
tion.” Statistica Sinica, 2, pp. 439–452.

Plackett, R. L. and J. P. Burman (1946). “The Design of Multifactorial Experiments.” Biometrika,
33, pp. 305–325.

Puterman, M. L. (1994). Markov Decision Processes. New York, NY: John Wiley & Sons, Inc.

Snir, M., S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra (1998). MPI—The Complete
Reference, The MPI Core (Vol. 1, 2nd Edition). Cambridge, MA: The MIT Press.

Tang, B. (1993). “Orthogonal Array-Based Latin Hypercubes.” Journal of the American Statistical
Association, 88, pp. 1392–1397.

West, J. E., M. M. Stehens, and L. H. Turcotte (1994). “Adaptation of Volume Visualization Tech-
niques to MIMD architectures using MPI.” Proceedings of the 1994 Scalable Parallel Libraries
Conference, Mississippi, October 1994.

Zhuang, X. and J. Zhu (1994). “Parallelizing a Reservoir Simulator using MPI.” In Proceedings of
the 1994 Scalable Parallel Libraries Conference, Mississippi, October 1994.

11



Table 1: Lower and upper range limits (in mg/l) on the ten state variables of the wastewater
treatment system for the levels of the liquid line. Levels 1 and 4 are excluded because the state
variables are not affected by the technologies in those levels.

Entering ↓ CODS SS orgN ammN nitN

Level 2 200.0 220.0 15.00 25.00 0
210.0 231.0 15.75 26.25 0.01

Level 3 130.0 22.0 4.5 22.500 0
210.0 115.5 15.0 28.875 0.01

Level 5 104.0 19.8 3.60 13.5 0
199.5 115.5 14.25 23.1 42.1675

Level 6 2.080 0.396 0.54 0 0
69.825 7000.000 100.00 21.945 122.27

Level 7 0.208 3.96(10−3) 0.05 0 0
69.825 350.0 100.00 21.945 122.27

Level 8 0.0200 3.96(10−5) 5.4(10−3) 0 0
62.8425 52.5 70.0 21.945 122.27

Level 9 16.64(10−3) 3.5(10−5) 4.32(10−3) 0 0
59.71 52.5 66.5 17.6 170.4

Level 10 3.328(10−3) 3.5(10−5) 4.32(10−3) 0 0
47.77 52.5 66.5 15.0 170.4

Level 11 3.328(10−3) 3.5(10−5) 4.32(10−3) 0 0
47.77 52.5 66.5 15.0 170.4

Entering ↓ totP HM SOCs pathogens viruses

Level 2 8.0 0.0100 15.00 5.00(107) 100.0
8.4 0.0105 15.75 5.25(107) 105.0

Level 3 0.8 0.00050 1.500 5.00(106) 10.0
8.0 0.00945 14.175 3.15(107) 63.0

Level 5 0.8 0.00050 0.2250 0 0.2
8.0 0.00945 7.0875 3.15(106) 6.3

Level 6 0.08 5(10−6) 2.25(10−5) 0 2(10−5)
10.00 0.00567 4.2525 1.89(106) 3.78

Level 7 0 1(10−7) 1.125(10−6) 0 1(10−7)
10.0 0.00567 4.2525 1.89(106) 3.78

Level 8 0 0 0 0 0
8.0 0.0018 1.063125 2.835(105) 0.567

Level 9 0 0 0 0 0
8.0 0.0018 0.532 2.835(104) 0.0567

Level 10 0 0 0 0 0
8.0 0.0018 0.266 4252.5 0.0086

Level 11 0 0 0 0 0
8.0 0.0018 0.32 212.625 0.0026

12



Table 2: Minimum and maximum values (in mg/l) of the ten state variables for the effluent exiting
the liquid line. Targets are approximately 10% of the maximums. For the quintic penalty function,
differences ∆ between the knots are calculated as 0.5×(maximum − target). Penalty coefficients
are calculated as 2000/(maximum − target).

Effluent ↓ CODS SS orgN ammN nitN

Minimum 3.328(10−5) 3.5(10−7) 4.3(10−4) 0 0
Maximum 47.77 52.5 66.5 15.0 170.4

Target 5.00 5.5 7.00 1.5 16.0
∆ 21.25 23.5 29.75 6.7 76.0
Penalty 47.00 43.0 34.00 150.0 13.0

Effluent ↓ totP HM SOCs pathogens viruses

Minimum 0 0 0 0 0
Maximum 8.0 0.0018 0.32 212.625 0.0026

Target 0.80 0.00015 0.04 20.0 0.00030
∆ 3.55 0.00079 0.14 95.5 0.00113
Penalty 275.00 1.29(106) 7.2(103) 10.5 8.88(105)

Table 3: Parallel performance on N = 289, K = 35.

P 2 4 6 8 2 4 6 8

Mmax 50 50 50 50 100 100 100 100

SP 1.192 1.357 1.413 1.444 1.418 1.974 2.126 2.233
Eff 0.596 0.339 0.236 0.181 0.709 0.493 0.354 0.279
True SP 1.199 1.365 1.422 1.453 1.436 1.999 2.153 2.261
True Eff 0.599 0.341 0.237 0.182 0.718 0.500 0.359 0.283

Mmax 150 150 150 150 200 200 200 200

SP 1.544 2.313 2.528 2.756 1.641 2.628 2.968 3.527
Eff 0.772 0.578 0.421 0.344 0.821 0.657 0.495 0.441
True SP 1.546 2.317 2.531 2.760 1.660 2.658 3.001 3.567
True Eff 0.773 0.579 0.422 0.345 0.830 0.665 0.500 0.446

13



Table 4: DMF selected technologies for economic cost optimal. New technologies (perhaps only
existing as prototypes) are in boldface, and somewhat new technologies (perhaps not yet well
understood) are shown in italics.

Level Unit Process Count MOD MLD MLRD

1 Flow Equalisation Tank
2 Empty Unit 0 6.3× 108 6.3× 108 6.8× 106

Vortex SSO 0 166 106.62 1.1530
Sedimentation Tank 0 898 838.57 9.0661
Chemical Precipitation 2197 59 0 0

3 Empty Unit 0 2.2× 108 2.2× 108 2.7× 106

Physical Irradiation 13 1912 59.43 0.7159
Ozonation 2184 1853 0.07 0.0008

4 Empty Unit
5 Empty Unit 0 1.9× 107 1.9× 107 2.9× 105

Activated Sludge(C) 0 5201 2632.05 39.1654
Activated Sludge(C,N) 0 9901 7332.28 107.9695
Activated Sludge(C,P) 182 3208 638.62 9.8947
Activated Sludge(C,P,N) 0 8831 6262.39 92.2593
High Biomass Act. Sludge 0 4811 2241.72 33.4615
Activated Sludge(N) 0 9023 6453.76 95.1164
Multi-reactor/Deep Shaft 0 5269 2700.47 40.3886
A-B System 151 3209 640.02 10.0114
Trickling Filter 0 16997 14428.48 211.8184
Rotating Biological Cont. 3 3443 873.64 13.4603
UASB System 1861 2636 67.39 0.9050
Reed Bed System 0 62331 59762.29 875.3710
Lagoons and Ponds 0 77665 75095.97 1099.9700

6 Empty Unit 107 1.1× 107 1.1× 107 2.4× 105

Secondary Settler 68 3025 712.77 16.4238
Microfiltration 509 2506 193.24 4.7106
Reverse Osmosis 901 2457 144.53 3.5391
Chemical Precipitation 612 2492 179.72 4.2878

7 Empty Unit 1 1.2× 107 1.2× 107 3.2× 105

Physical Filtration 96 2014 517.81 14.5462
Microfiltration 1573 1575 79.04 1.9752
Reverse Osmosis 12 2210 713.99 20.0764
Chemical Precipitation 515 1840 344.24 10.3827

8 Empty Unit 8 1.7× 106 1.7× 106 4.6× 104

Physical Irradiation 642 3111 31.10 0.9486
Ozonation 1547 3145 64.89 1.5537

9 Empty Unit 11 1.7× 105 1.7× 105 5951.2388
Air Stripping 79 3880 1019.37 40.5287
Ammonia Stripping 2107 2872 11.93 0.6961

10 Empty Unit 33 25896 22979.52 819.8374
Chlorine Disinfection 1940 2936 20.04 0.8977
Chlorating Disinfection 224 3162 245.71 9.1489

11 Empty Unit 877 2772 604.09 31.2061
GAC Adsorption 1320 2620 452.44 328.8093
Infiltration Basin 0 42805 40637.77 9803.2567

14



Algorithm 1 Serial-MARS: Forward Stepwise Algorithm (Friedman 1991, p. 17)

S1: B1(x)← 1; M ← 2
S2: Loop until M > Mmax : lof∗ ←∞
S3: for m = 1 to M − 1 do

S4: for v 6∈ {v(l, m) | 1 ≤ l ≤ Lm} do

S5: for k ∈ {xvj | Bm(xj) > 0} do

S6: g ←
∑M−1

i=1 aiBi(xi) + aMBm(x)[+(xv − k)]+ + aM+1Bm(x)[−(xv − k)]+
S7: lof ← mina1,...,aM+1

LOF (g)
S8: if lof < lof∗, then lof∗ ← lof; m∗ ← m; v∗ ← v; k∗ ← k end if
S9: end for

S10: end for

S11: end for

S12: BM (x)← Bm∗(x)[+(xv∗ − k∗)]+
S13: BM+1(x)← Bm∗(x)[−(xv∗ − k∗)]+
S14: M ←M + 2
S15: end loop
S16: end algorithm

Algorithm 2 Parallel-MARS: Forward Stepwise Algorithm

P1: Read in data and initialize (line S1)
P2: Master processor C0 distributes data to slave processors Ci, i = 1, ..., P − 1
P3: while M > Mmax do

P4: if M > P then

P5: for each processor Ci (i = 0, 1, . . . , P − 1) do in parallel: lof∗ ← ∞ (line S2); j ← 0;
mi ← 1 + i + jP do

P6: while mi < M do

P7: for basis function mi, loop through covariate v and knot k (lines S4–S7)
P8: store lof∗i , mi

∗, vi
∗, ki

∗ (line S8)
P9: j ← j + 1; mi ← 1 + i + jP
P10: end while

P11: end for parallel

P12: else if M <= P then

P13: run forward stepwise algorithm serially
P14: end if

P15: lof∗ ← min {lof∗i , i = 0, ..., P − 1}, then m∗ ← mi
∗; v∗ ← vi

∗; k∗ ← ki
∗

P16: Calculate BM (x) and BM+1(x) (lines S12–S13)
P17: M ←M + 2 (line S14)
P18: Master Processor C0 broadcasts the updated M and basis functions to all slave processors
P19: end while

P20: end algorithm

15



Figure 1: Levels and unit processes for the liquid line of the wastewater treatment system.

16



0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250

Mmax

R
u
n
 T

im
e 

(S
ec

)
Serial
P=1
P=2
P=4
P=6
P=8

Figure 2: Run time (seconds) vs. Mmax for several choices of P (number of processors). The number
of discretization points is N = 961 and the number of eligible knots is K = 35.

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10

Number of Processors

S
p
ee

d
u
p

Mmax=200

Mmax=150

Mmax=100

Mmax=50

Figure 3: Speedup (SP ) vs. the number of processors (P ) for several choices of Mmax. The number
of discretization points is N = 289 and the number of eligible knots is K = 35.

17



1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10

Number of Processors

T
ru

e 
S

p
ee

d
u

p Mmax=100

Mmax=200

Mmax=150

Mmax=50

Figure 4: True Speedup (True SP ) vs. the number of processors (P ) for several choices of Mmax.
The number of discretization points is N = 841 and the number of eligible knots is K = 35.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250

Mmax

E
ff

ic
ie

n
cy

N=289
N=529
N=841
N=961

Figure 5: Efficiency (Eff) vs. Mmax for several choices of N (number of discretization points). The
number of eligible knots is K = 35 and the number of processors is P = 8.

18



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

50 100 150 200 250 300

Number of Eligible Knots

R
u
n
 T

im
e 

(S
ec

)
Serial
P=4
P=6
P=8
P=10
P=12

Figure 6: Run time (seconds) vs. the number of eligible knots (K) for several choices of P (number
of processors). The number of discretization points is N = 289 and Mmax = 200.

2

3

4

5

6

7

8

50 100 150 200 250 300

Number of Eligible Knots

S
p
ee

d
u
p

P=4
P=6
P=8
P=10
P=12

Figure 7: Speedup (SP ) vs. the number of eligible knots (K) for several choices of P (number of
processors). The number of discretization points is N = 289 and Mmax = 200.

19



1

1.5

2

2.5

3

3.5

4

200 300 400 500 600 700 800 900 1000

Number of Discretization Points

S
p
ee

d
u
p

P=2
P=4
P=6
P=8

Figure 8: Speedup (SP ) vs. the number of discretization points (N) for several choices of P (number
of processors). The number of eligible knots is K = 35 and Mmax = 200.

130

140

150

160

170

180

190

200

210

220

0 5 10 15 20 25 30 35 40 45 50 55

Number of Eligible Knots

M
ea

n
 A

b
so

lu
te

 D
ev

ia
ti

o
n

Mmax=50
Mmax=100
Mmax=150
Mmax=200
Mmax=250

Figure 9: Mean absolute deviation (MAD) on the validation data set of 2197 points vs. the number
of eligible knots (K) for several choices of Mmax. The number of discretization points is N = 981.

20


