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Abstract

Dynamic programming is a multi-stage optimization method that is applicable to many
problems in engineering. A statistical perspective of value function approximation in high-
dimensional, continuous-state stochastic dynamic programming (SDP) was first presented us-
ing orthogonal array (OA) experimental designs and multivariate adaptive regression splines
(MARS). Given the popularity of artificial neural networks (ANNs) for high-dimensional mod-
eling in engineering, this paper presents an implementation of ANNs as an alternative to MARS.
Comparisons consider the differences in methodological objectives, computational complex-
ity, model accuracy, and numerical SDP solutions. Two applications are presented: a nine-
dimensional inventory forecasting problem and an eight-dimensional water reservoir problem.
Both OAs and OA-based Latin hypercube experimental designs are explored, and OA space-
filling quality is considered.

Key Words: design of experiments, statistical modeling, Markov decision process, orthogonal
array, Latin hypercube, inventory forecasting, water reservoir management.

1 Introduction

The objective of dynamic programming (DP) is to minimize a “cost” subject to certain constraints
over several stages, where the relevant “cost” is defined for a specific problem. For an inventory
problem, the “cost” is the actual cost involved in holding inventory, having to backorder items, etc.,
and the constraints involve capacities for holding and ordering items. An equivalent objective is
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to maximize a “benefit,” such as the robustness of a wastewater treatment system against extreme
conditions. The state variables track the state of the system as it moves through the stages, and a
decision is made in each stage to achieve the objective.

Recursive properties of the DP formulation permit a solution via the fundamental recurrence
equation (Bellman 1957). In stochastic dynamic programming (SDP), uncertainty is modeled in
the form of random realizations of stochastic system variables, and the estimated expected “cost”
(“benefit”) is minimized (maximized). In particular, Markov decision processes may be modeled by
a SDP formulation through which the state variables resulting from each decision comprise a Markov
process. DP has been applied to many problems in engineering, such as water resources, revenue
management, pest control, and wastewater treatment. For general background on DP, see Bellman
(1957), Puterman (1994), and Bertsekas (2000). For some applications, see Gal (1979), Shoemaker
(1982), White (1985, 1988), Foufoula-Georgiou and Kitanidis (1988), Culver and Shoemaker (1997),
Chen, Giinther, and Johnson (2002), and Tsai et al. (2004). In high dimensions, traditional DP
solution methods can become computationally intractable and attempts have been made to reduce
the computational burden (Johnson et al. 1993, Eschenbach et al. 1995, Bertsekas and Tsitsiklis
1996).

For continuous-state SDP, the statistical perspective of Chen et al. (1999) and Chen (1999) en-
abled the first truly practical numerical solution approach for high dimensions. Their method uti-
lized orthogonal array (OA, Chen 2001) experimental designs and multivariate adaptive regression
splines (MARS, Friedman 1991). Although MARS has been applied in several areas (e.g., Carey
and Yee 1992, Griffin et al. 1997, Kuhnert et al. 2000, Shepherd and Walsh 2002), artificial neural
network (ANN) models are much more prevalent in all areas of engineering (e.g., Smets and Bo-
gaerts 1992, Labossiere and Turkkan 1993, Abdelaziz et al. 1997, Chen and Rollins 2000, Li et
al. 2000, Liu 2001, Pigram and Macdonald 2001, Kottapalli 2002). Given their popularity, an
ANN-based SDP solution method would be more accessible to engineers. In this paper, we present:

e The statistical modeling approach to solving continuous-state SDP.
e Implementation of ANN models in continuous-state SDP as an alternative to MARS.

e Implementation of OA-based Latin hypercube (OA-LH) designs (Tang 1993) as an alterna-
tive to pure OAs.

e Consideration of the “space-filling” quality of generated experimental designs. The designs
are intended to distribute discretization points so that they “fill” the state space; however,
generated designs of the same type do not necessarily have equivalent space-filling quality.

e Comparisons between ANN and MARS value function approximations, including method-
ological perspectives, computational considerations, and numerical SDP solution quality on
two applications.

The novelty of our study is to simultaneously consider how the SDP solution is affected by different
approximation methods and designs of different types and different space-filling qualities.

In the statistical perspective of continuous-state SDP, the two basic requirements are an exper-
imental design to discretize the continous state space and a modeling method to approximate the
value function An appropriate design should have good space-filling quality, and an appropriate
modeling method should be flexible in high dimensions, provide a smooth approximation, and be
reasonably efficient. A review of several experimental designs and modeling methods is provided by
Chen, Tsui et al. (2003) in the context of computer experiments. Of the possible modeling choices
given in this review paper, only MARS, neural networks, and kriging satisfy the first two criteria.



Some preliminary exploration of the kriging model yielded positive results on a ten-dimensional
wastewater treatment application (Chen and Welch 2001), but solving for the maximum likelihood
estimates of the kriging parameters continues to be a computational challenge. For this application,
kriging required 40 times more computational effort than MARS. In addition, kriging software is
even harder to obtain than MARS software, which is counter to our motivation to employ ANNs.

Comparisons between MARS and ANNs for empirical modeling have been conducted by De
Veaux et al. (1993) and Pham and Peat (1999), and in both studies MARS performed better overall.
Although it is obvious that ANN models can be employed to approximate functions, the existing
literature does not provide sufficient studies to predict how they will compare to MARS in the SDP
setting. In continuous-state SDP, value functions are typically well-behaved (e.g., convex) and the
SDP data involve little noise. Previous comparisons involved statistical data with considerable
noise. It is expected that ANN models will perform better in low noise situations. However,
ANN models can add extraneous curvature, a disadvantage when a smooth convex approximation
is desired. MARS, on the other hand, constructs a parsimonious approximation, but its limited
structure, although quite flexible, could affect its approximation ability, which would be most
noticeable in low noise situations. Finally, computational speed is an important aspect of SDP, and
the ANN model fitting process has a reputation of being slow.

Studies on different experimental designs for metamodeling have been conducted (Palmer 1998,
Simpson, Lin et al. 2001, Allen et al. 2003). However, none have considered OA-LH designs. Given
the success of OA designs in continuous-state SDP, we chose the OA-LH design as a variation that
might work well with ANN models. Points of an OA design are limited to a fairly sparse grid, while
the OA-LH design allows points to move off the grid. The grid restriction was convenient for the
MARS structure, but provides no advantage for ANN models.

Section 2 describes SDP in the context of the two applications that are later used to test our
methods. The SDP statistical modeling approach is given in Section 3. Section 4 provides back-
ground on OA and OA-LH designs. Section 5 describes ANNs, and Section 6 presents the compar-
isons between the ANNs and MARS, including the implementation of OA-LH designs. Conclusions
are presented in Section 7.

2 SDP Applications

In continuous-state DP, the system state variables are continuous. Chen et al. (1999) and Chen
(1999) solved inventory forecasting test problems with four, six, and nine state variables modeled
over three stages. Application to ten- and seven-dimensional water reservoir SDP problems ap-
pears in Baglietto et al. (2001) and Baglietto et al. (2005), and application to a twenty-dimensional
wastewater treatment system appears in Tsai et al. (2004). Here, we consider the nine-dimensional
inventory forecasting problem, which is known to have significant interaction effects between inven-
tory levels and forecasts due to the capacity constraints, and an eight-dimensional water reservoir
problem, which has simpler structure and is more typical of continuous-state SDP problems.

2.1 Inventory Forecasting Problem

For an inventory problem, the inventory levels are inherently discrete since items are counted, but
the range of inventory levels for an item is too large to be practical for a discrete DP solution.
Thus, one can relax the discreteness and use a continuous range of inventory levels. The inven-
tory forecasting problem uses forecasts of customer demand and a probability distribution on the
forecasting updates to model the demand more accurately than traditional inventory models (see
Hadley and Whitin 1963).



2.1.1 State and Decision Variables

The state variables for inventory forecasting consist of the inventory levels and demand forecasts
for each item. For our nine-dimensional problem, we have three items and two forecasts for each.

Suppose we are currently at the beginning of stage t. Let It(i) be the inventory level for item ¢ at
the beginning of the current stage. Let Dg?t) be the forecast made at the beginning of the current
()

(tt+1)
at the beginning of the current stage for the demand of item 7 occurring over the next stage (¢t +1).

Then the state vector at the beginning of stage t is:

stage for the demand of item 7 occurring over the stage. Similarly, let D be the forecast made

_ (1D @ ) p1) @ p® ) (2) ® T
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The decision variables control the order quantities. Let ugi) be the amount of item ¢ ordered
at the beginning of stage ¢t. Then the decision vector is u; = (ugl),ugz), ugs))T, where ugz) is the

amount of item ¢ ordered in stage t. For simplicity, it is assumed that orders arrive instantly.

2.1.2 Transition Function

The transition function for stage t specifies the new state vector to be i1 = fi(x, us, €;), where
x; is the state of the system (inventory levels and forecasts) at the beginning of stage ¢, u; is
the amount ordered in stage t, and €; is the stochasticity associated with updates in the demand
forecasts. The evolution of these forecasts over time is modeled using the multiplicative Martingale
Model of Forecast Evolution, for which the stochastic updates are applied multiplicatively and
assumed to have a mean of one, so that the sequence of future forecasts for stage t + k forms a
martingale (Heath and Jackson 1991). See Chen (1999) for details on the stochastic modeling.

2.1.3 Objectives and Constraints

The constraints for inventory forecasting are placed on the amount ordered, in the form of capacity
constraints, and on the state variables, in the form of state space bounds. For this test problem, the
capacity constraints are chosen to be restrictive, forcing interactions between the state variables,
but are otherwise arbitrary. The bounds placed on the state variables in each stage are necessary
to ensure accurate modeling over the state space.

The objective function is a cost function involving inventory holding costs and backorder costs.
The typical V-shaped cost function common in inventory modeling is:

nyr . .
colsu) = S (I )4 + ml-1]4), (1)
=1

where [¢]; = max{0, g}, h; is the holding cost parameter for item i, and m; is the backorder cost
parameter for item i. The smoothed version of equation (1), described in Chen (1999), is employed
here.

2.2 Water Reservoir Problem

Optimal operation of water reservoir networks has been studied extensively in the literature (e.g.,
Archibald et al. 1997, Foufoula-Georgiou and Kitanidis 1988, Gal 1979, Lamond and Sobel 1995,
Turgeon 1981; Yakowitz 1982 provides an excellent survey). The water reservoir network we con-
sider consists of 4 reservoirs (see Figure 1 for the configuration). In typical models, the inputs to



the nodes are water released from upstream reservoirs and stochastic inflows from external sources
(e.g., rivers and rain), while the outputs correspond to the amount of water to be released during
a given time stage (e.g., a month).

2.2.1 State and Decision Variables

In a realistic representation of inflow dynamics, the amount of (random) water flowing into the
reservoirs from external sources during a given stage t depends on the amounts of past stages. In
this paper, we follow the realistic modeling of Gal (1979) and use an autoregressive linear model of
order one. Thus, the ith component of the random vector €;, representing the stochastic external
flow into reservoir 7, has the form
9 — a2, 49+ P ®

where §; is a random correction that follows a standard normal distribution. The coefficients of the
linear combinations (a¢, by, ¢;) actually depend on ¢, so that it is possible to model proper external
inflow behaviors for different months. The actual values of the coefficients used for the model
were based on the one-reservoir real model described in Gal (1979) and extended to our 4-reservoir
network.

Given equation (2), the state vector consists of the water level and stochastic external inflow
for each reservoir:

(4)
Wy "Wy "Wy "Wy 5 € "€ 756 75 €y

T
wt:( P @2 3) 1 (2) 3) (4)) :

where wgi) is the amount of water in reservoir ¢ (i = 1,2,3,4) at the beginning of stage ¢, and

(4)

€,  the stochastic external inflow into reservoir ¢ during stage t. The decision vector is u; =
(u%l) ), 3) (4))T (4)

2 . :
,ug Sy Uy , where u; ’ be the amount of water released from reservoir ¢ during stage ¢.

2.2.2 Transition Function

The transition function for stage t updates the water levels and external inflows. The amount of
water at stage ¢t + 1 reflects the flow balance between the water that enters (upstream releases and
stochastic external inflows) and the water that is released. In order to deal with unexpected peaks
from stochastic external inflows, each reservoir has a floodway, so that the amount of water never
exceeds the maximum value W, Thus, the new water level is

w§21 = min w,gi) + Z ugj) — ugi) + egi) , W(i) ,
jeu@
where U the set of indexes corresponding to the reservoirs which release water into reservoir i.

For the stochastic external inflows, we can update them using equation (2). Like the inventory
forecasting model, the two equations above can be grouped in the compact transition function

LTi41 = ft(mtautuet)-

2.2.3 Objectives and Constraints
The constraints for water reservoir management are placed on the water releases ugi) in the form:

0< u,gi) < min wgi) + Z ugj) , R®
jeu



where R the maximum pumpage capability for reservoir i. This implies nonnegativity of w! 11
The objective function is intended to maintain a reservoir’s water level close to a target value
ﬁ)t(z) and maximize benefit represented by a concave function g of the water releases and/or water

levels (e.g., power generation, irrigation, etc.). For maintaining targets, the intuitive cost would
be |w£i) — wt(i)|, which is a V-shaped function. To facilitate numerical minimization, we utilized a
smoothed version, denoted by l(wgz), wt(l)), that is analogous to the smoothed cost function for the
inventory forecasting problem. For the modeling benefits, we consider a nonlinear concave function

g of the following form (for z € [0, +00)):

(6‘1'1) , , Olgzgé;g
9(27/1/76): Bz + ,U,——( _%M)g_%(z—gﬂ)zl gugzggﬂ
ﬁZ—i— QM ZZ%,U

Such a function models a benefit which becomes relevant for “large” values of the water releases,
depending on suitable parameters p and §. In our example, we used R® for 1 and a small number
0.1 for 8. Then, the total cost function at stage ¢t can be written as

4
ct(xy, ug, €) = Zl wt th Zp(l l M(z)aﬁ) 5
=1

where the p() i = 1,2, 3,4 are weights chosen to balance the benefits against the costs.

3 SDP Statistical Modeling Solution Approach

3.1 Future Value Function

For a given stage, the future value function provides the optimal cost to operate the system from
stage t through T" as a function of the state vector x;. Following the notation in Section 2, this is
written recursively as

Fy(z,) = H,llthIl E{c(xy, ur, €) + Fipr (i)}

s.t. T4l = ft(mt) U, Et), (3)
(mt, ut) eTIy.

If we have the future value functions for all the stages, then given the initial state of the system, we
can track the optimal solution through the value functions. Thus, given a finite time horizon 7', the
basic SDP problem is to find Fi(-),..., Fr(-). The recursive formulation permits the DP backward
solution algorithm (Bellman 1957), first by assuming Frii(xpy1) = 0, so that Fr(xr) = cr(xr)
(where cp (@) is the cost of the final stage depending only on @), then solving in order for Fp(-)
through Fi(:). See the description in Chen (1999) or Chen et al. (2000) for further details.

3.2 Numerical Solution Algorithm

Given the state of the system at the beginning of the current stage, the corresponding optimal cost
yields one point on that stage’s value function. The complete future value function is obtained
by solving this optimization problem for all possible beginning states. For continuous states, this
is an infinite process. Thus, except in simple cases where an analytical solution is possible, a
numerical SDP solution requires a computationally-tractable approximation method for the future
value function.



From a statistical perspective, let the state vector be the vector of predictor variables. We seek to
estimate the unknown relationship between the state vector and the future value function. Response
observations for the future value function may be collected via the minimization in equation (3).
Thus, the basic procedure uses an experimental design to choose N points in the n-dimensional
state space so that one may accurately approximate the future value function; then constructs an
approximation.

Chen et al. (1999) introduced this statistical perspective using strength three OAs and MARS
(smoothed with quintic functions) applied to the inventory forecasting test problems. MARS was
chosen due to its ease of implementation in high dimensions, ability to identify important inter-
actions, and easy derivative calculations. The choice of the strength three OAs was motivated by
the desire to model interactions, but univariate modeling can suffer due to the small number of
distinct levels in each dimension (e.g., p = 13 was the highest number of levels explored). Chen
(1999) additionally explored strength two OAs with equivalent N to the strength three OAs, but
with lower order balance permitting higher p; however, their performance was disappointing.

4 Discretizations based on Orthogonal Arrays

In continuous-state SDP, the classical solution method discretizes the state space with a full grid,
then uses multi-linear interpolation to estimate the future value function. This full grid is equivalent
to a full factorial experimental design, for which the number of points grows exponentially as the
dimension increases. To avoid this, a fractional factorial design, i.e., taking a subset of the full grid,
may be employed. OAs are special forms of fractional factorial designs. A full factorial design for
n variables, each at p levels, contains all p™ level combinations. An OA of strength d (d < n) for n
variables, each at p levels, contains all possible level combinations in any subset of d dimensions,
with the same frequency, A. Therefore, when projected down onto any d dimensions, a full factorial
grid of p? points replicated X times is represented.

4.1 Measuring Space-filling Quality

There are a variety of ways to generate OAs (e.g., Rao 1946, Bose and Bush 1952, Raghavarao 1971,
Hedayat and Wallis 1978, Dey 1985, Hedayat et al. 1996). However, there is no way to guarantee
their space-filling quality. In practice, one can generate many OAs, calculate various space-filling
measures, then choose the best of the bunch. Chen (2001) has conducted the only study of how
this quality affects an approximation, and only OAs of strength three were studied.

Looking at the two configurations of points in Figure 2, the one on the left is seen to space the
points better. There are two basic ways to measure space-filling quality: minimax and maximin
(refer to Chen, Tsui et al. 2003). Let D be the n-dimensional closed and bounded set of the
continuous state space, and P be the set of n design points in D. Minimax criteria seek to minimize
the maximum distance between (nondesign) points in D and the nearest neighbor design point in
‘P. Using the same distance measure as above, define:

MAXDIST(D,P) = sup{ min d(z,y) }.
2D  yeP

Since the supremum over the infinite set of points in D is difficult to calculate, this measure is
usually calculated over a finite sample of points in D, using a full factorial grid or some type of
sampling scheme. However, this measure is generally impractical to calculate in high dimensions.
A design that represents D well will have lower MAXDIST(D, P) than a design that does not.



Maximin criteria seek to maximize the minimum distance between any pair of points in P. Let
d(x,y) be a distance measure (commonly Euclidean distance) over R. Then define:

MINDIST(P) = min{ min d(z, .
(P) = min{ miy_d(@.y) }
y#Fx
Higher MINDIST(P) should correspond to a more uniform scattering of design points. For the
OA designs in this paper, their space-filling quality was judged using measures of both types and
a measure introduced by Chen (2001).

4.2 Orthogonal Array-based Latin Hypercube Designs

Latin hypercube (LH) designs are equivalent to OA designs of strength one. In other words, if we
project the N points of a LH design onto any single dimension, the points will correspond to N
distinct levels in that dimension. However, only OAs of strength two and higher are technically
orthogonal, so the LH design does not maintain this property. A hybrid OA-LH design, for which an
LH design is (randomly) created from an OA structure, was introduced by Tang (1993) to address
the lack of orthogonality in LH designs. Although OA-LH designs only satisfy LH properties, the
underlying OA provides some balance. With regard to approximating a function, the LH design
provides more information along a single dimension (for univariate terms), while the OA design
provides better coverage in higher dimensions (for interactions).

In this paper, we utilize the strength three OAs described in Chen (2001), and the OA-LH
designs are based on these strength three OAs. Specifically, we employed strength three OAs with
p =11 levels (N = 1331) and p = 13 levels (N = 2197) in each dimension, and two realizations of
OA-LH designs were generated for each OA. For each size (N = 1331 and N = 2197), one “good,”
one “neutral,” and one “poor” OA was selected based on space-filling measures described above.
Thus, a total of 6 OAs and 12 OA-LH designs were tested. For the inventory forecasting problem,
nine-dimensional designs were generated, and for the water reservoir problem, eight-dimensional
designs were generated.

5 Artificial Neural Networks

5.1 Model Description

ANNs are mathematical modeling tools widely used in many different fields (for general background
and applications see Lippmann 1987, Haykin 1999, Bertsekas and Tsitsiklis 1996, Cherkassky and
Mulier 1998; for statistical perspectives see White 1989, Barron et al. 1992, Ripley 1993, or Cheng
and Titterington 1994; for approximation capabilities see Barron 1993). From a purely “analytical”
perspective, an ANN model is a nonlinear parameterized function that computes a mapping of n
input variables into (typically) one output variable, i.e. n predictors and one response. The basic
architecture of ANNs is an interconnection of neural nodes that are organized in layers. The input
layer consists of n nodes, one for each input variable, and the output layer consists of one node for
the output variable. In between there are hidden layers which induce flexibility into the modeling.
Activation functions define transformations between layers, the simplest one being a linear function.
Connections between nodes can “feed back” to previous layers, but for function approximation, the
typical ANN is feedforward only with one hidden layer and uses “sigmoidal” activation functions
(monotonic and bounded). A comprehensive description of various ANN forms may be found in
Haykin (1999).



In our inventory forecasting SDP application, we utilized a feedforward one-hidden-layer ANN
(FF1ANN) with a “hyperbolic tangent” activation function: Tanh(z) = (e* — e~2%)/(e* + 7).
Define n as the number of input variables, H as the number of hidden nodes, v;;, as weights linking
input nodes j to hidden nodes h, wy, as weights linking hidden nodes h to the output node, and 6,
and v as constant terms called “bias” nodes (like intercept terms). Then our ANN model form is:

H
§(z;w,v,0,7) = Tanh (Z wp 2y + 7) ;
h=1

where for each hidden node h
n
Zy = Tanh (Z VinZi + 9h> .
i=1
The parameters v;,, wy, 0, and v are estimated using a nonlinear least squares approach called

training. For simplicity, we will refer to the entire vector of parameters as w in the following
sections.

5.2 Model Fitting

Our training employed a batch processing method (as opposed to the more common on-line process-
ing) that minimized the squared error loss lack-of-fit (LOF) criterion:
N
LOF(9) = > [y; — d(zj, w)?,
j=1

where N is the number of data points on which the network is being trained, a.k.a., the training
data set. Nonlinear optimization techniques used to conduct the minimization are typically gradient
descent-based methods. We used the backpropagation method (see Rumelhart et al. 1986, Werbos
1994), which computes the gradient of the output with respect to the outer parameters, then
“backpropagates” the partial derivatives through the hidden layers, in order to compute the gradient
with respect to the entire set of parameters. This is completed in two phases: (i) a forward phase
in which an input x; is presented to the network in order to generate the various outputs (i.e., the
output of the network and those of the inner activation functions) corresponding to the current
value of the parameters, and (ii) a backward phase in which the gradient is actually computed on
the basis of the values obtained in the forward phase. After all N samples are presented to the
network and the corresponding gradients are computed, the descent algorithm step is completed
by upgrading the vector of parameters w using the steepest-descent method:

W41 = wyi, — o, VLOF (wy,),

where VLOF (wy,) is the gradient of the LOF function with respect to the vector wy. Implementa-
tion of this approach is very simple, since the computation of the gradient requires only products,
due to the mathematical structure of the network. Unfortunately, backpropagation presents many
well-known disadvantages, such as entrapment in local minima. As a consequence, the choice of the
stepsize oy, is crucial for acceptable convergence, and very different stepsizes may be appropriate
for different applications.

The best training algorithm for FF1ANNS, in terms of rate of convergence, is the Levenberg-
Marquardt method (first introduced in Hagan and Menhaj 1994), which is an approximation of



the classic second-order (i.e. it makes use of the Hessian matrix) Newton method. Since our LOF
criterion is quadratic, we can approximate its Hessian matrix via backpropagation as

Jle(w)]" Jle(w)]

where
e(w) = [yl - g((lh,’lﬂ), cey YN — g($N7w)]T

and J[e(w)] is the Jacobian matrix of e(w). Each row of the matrix contains the gradient of the
Jj-th single error term y; — g(x;, w) with respect to the set of parameters w.
The update rule for the parameter vector at each step is:

wis1 = wy, — [J[e(wr)]" Jle(wr)] + A7 JTle(wp)]" e(wr)”.

When A is large, the method is close to gradient descent with a small stepsize. When A = 0 we
have a standard Newton method with an approximated Hessian matrix (Gauss-Newton method),
which is more accurate near the minima. After each successful step (i.e., when the LOF decreases)
A is decreased, while it is increased when the step degrades the LOF.

5.3 Model Implementation

Other than the selection of a model fitting approach, the most important decision in implementing
an ANN model is the choice of architecture. For a FF1ANN, the number of nodes in the hidden
layer, H, determines the architecture. Unfortunately, the appropriate number of hidden nodes
is never clear-cut. Existing theoretical bounds on the accuracy of the approximation are non-
constructive or too loose to be useful in practice. Thus, it is not possible to define “a priori” the
optimal number of hidden nodes, since it depends on the number of samples available and on the
smoothness of the function we want to approximate. Too few nodes would result in a network
with poor approximation properties, while too many would “overfit” the training data (i.e. the
network merely “memorizes” the data at the expense of generalization capability). Therefore, a
tradeoff between these two possibilities is needed. There are many rules of thumb and methods for
model selection and validation in the literature, as well as methods to avoid or reduce overfitting
(see Haykin 1999), but the choice of a good architecture requires several modeling attempts and is
always very dependent on the particular application.

For our applications, we identified the appropriate number of hidden nodes by exploring many
architectures and checking the average cost using a test data set from the simulation described in
Section 6.2. The best results for the nine-dimensional inventory forecasting problem were obtained
for values of H = 40 for N = 1331 and H = 60 for N = 2197. Similarly, the best results for the
eight-dimensional water reservoir problem were obtained using H = 10 for both sample sizes. For
larger values of H the solutions worsened.

6 ANNs and MARS Comparisons

ANNs have become very popular in many areas of science and engineering, due to their proven
ability to fit any data set and to approximate any real function, together with the existence of
accessible software, such as Matlab’s (www.mathworks.com) Neural Network Toolbox, which was
used in our study. The primary disadvanatages are (1) the difficulty in selecting the number
of hidden nodes H and (2) potential overfitting of the training data. The second disadvantage
occurs because it is tempting to try to fit the data as closely as possible even when it is not

10



appropriate. Both disadvantages can be handled by proper use of a test data set, but this process
greatly increases the computational effort required. From a statistical perspective, ANNs have the
additional disadvantage of an approximation that does not provide interpretable information on
the relationships between the input (predictor) variables and output (response) variable.

MARS (Friedman 1991) is based on traditional statistical thinking with a forward stepwise
algorithm to select terms in a linear model followed by a backward procedure to prune the model.
The approximation bends to model curvature at “knot” locations, and one of the objectives of the
forward stepwise algorithm is to select appropriate knots. The search for new basis functions can be
restricted to interactions of a maximum order. For the inventory forecasting problems, MARS was
restricted to explore up to three-factor interations. Chen (1999) also considered MARS limited to
two-factor interactions, but the approximation degraded. However, for the water reservoir problem,
two-factor interactions were sufficient. In addition, the backward procedure was not utilized since
preliminary testing demonstrated a very large computational burden with little change on the
approximation. After selection of the basis functions is completed, smoothness to achieve a certain
degree of continuity may be applied. In our case, quintic functions were used to achieve second
derivative continuity (see Chen 1999). The primary disadvantage of MARS is that the user must
specify the maximum number of basis functions to be added, a parameter called Mpy,x. This is
very similar to the difficulty in selecting H for an ANN, and, like ANNS, a test data set can be used
to select Myax. MARS is both flexible and easily implemented while providing useful information
on significant relationships between the predictor variables and the response; however, commerical
MARS software has only recently become available from Salford Systems (www.salford-systems.com).
For our study, our own C code was employed.

From the perspective of SDP value function approximation, MARS and ANNSs are both excellent
for modeling in high dimensions when noise is small relative to the signal, as is the case with SDP.
Their main difference is the interpretability of the approximation, but this is not a critical issue
for accurate SDP solutions. An issue that may arise in other SDP applications is the selection of
the key parameter, M.« for MARS and H for ANNs. For the inventory forecasting and water
reservoir problems, the value functions have similar structure from stage to stage; thus, the same
Max or H for all stages is appropriate. When different My, or H is preferred for different stages,
then the SDP algorithm would greatly benefit from automatic selection of My, or H. This is an
issue for future research.

6.1 Memory and Computational Requirements

The memory and computational requirements for a FF1ANN with one output variable depend on
the number of input (predictor) variables n, the number of hidden nodes H, and the size of the
training data set N. For MARS, the key quantities are n, N, the number of eligible knots K, and
the maximum number of basis functions M,.x. In this section, we will explore how the requirements
might grow with increasing n (the dimension of an SDP problem). Chen et al. (1999) set N = O(n?),
which assumes N is based on a strength three OA, K = O(n), which assumes knots can only placed
at the p distinct levels of the strength three OA, and O(n) < Muyax < O(n?). In this paper, the
addition of the OA-LH designs permits the placement of a higher number of knots. However, given
an adequate K, it should not be expected to increase with n since the larger K primarily impacts
the quality of univariate modeling. Based on computational experience with a variety of value
function forms, K < 50 is more than adequate, and a more reasonable upper limit on M.y iS
O(N?/3) = O(n?). For ANNs, H depends on n, N, and the complexity of the underlying function.
A reasonable range on H (in terms of growth) matches that of O(n) < H < O(N?/3) = O(n?).
One should keep in mind that the above estimates are intended to be adequate for approximating
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SDP value functions, which are convex and, consequently, generally well behaved. The inventory
forecasting value function, however, does involve a steep curve due to high backorder costs.

For memory requirements, a FF1ANN requires storage of V' = [(n + 1)H + H + 1] parameters.
Assuming each of these is a double-precision real number, the total number of bytes required to
store a FF1ANN grows as

O(n?) < Sppiann =8V < O(n).

The maximum total number of bytes required to store one smoothed MARS approximation with
up to three-factor interactions grows as (Chen et al. 1999)

O(n) < Suars = 8(6M .. 4+ 2n + 3Kn + 1) < O(n?).

Thus, it appears that the memory requirement for FF1ANNs grows faster than that for MARS.
However, the largest FF1ANN tested in the paper required 5288 bytes and the largest MARS
required 36,800 bytes, so for n = 9, FF1ANNSs are still considerably smaller.

Another aspect of memory requirements is memory required while constructing the approxi-
mation. We utilized Levenberg-Marquardt (LM) backpropagation to train the FF1ANN, and a
disadvantage of the LM method lies in its memory requirements. Each step requires the storage of
a (N x V) matrix and the (V' x V) Hessian approximation, so the memory needed grows as

O(n®) < S2ppiany = O(NnH) + O(n2H?) < O(n%).

However, if the memory at disposal is sufficient, LM backpropagation is generally preferred over
other training methods because of its faster convergence. MARS construction stores up to a (N X
Max) matrix, resulting in a growth of

O(n") < S2uars = O(NMpax) < O(n).

The computational requirements for one iteration of our SDP statistical modeling solution
approach consist of (i) solving the optimization in equation (3) for one stage t at every experimental
design point and (ii) constructing the spline approximation of the future value function. The
optimization evaluates a value function approximation and its first derivative several times in each
stage, except the last. For FF1ANNSs, (i) is performed via optimization that requires the evaluation
of the output of an ANN and of its first derivative. The time required for these evaluations is
O(nH), so we can write the total time required to solve the SDP equation for all N points as
O(WnNH), where W is the work required to solve the minimization.

For what concerns (ii), we consider Levenberg-Marquardt backpropagation, which is the one
we actually used for our FF1ANNs. The time for the computation of LM backpropagation is
dominated by the Hessian approximation and inversion. The (V' x V') Hessian approximation is
the product of two (N x V') matrices that are obtained by backpropagation. Here, for each row
of the matrix (which corresponds to a single experimental design point «;), the computation is
basically reduced to [H + 1 + (n + 1)H] products, so the time required to obtain the gradient
for all N experimental design points is O(NnH). The matrix product requires NV? real valued
products, so this operation (which is O(Nn?H?)) occupies the relevant part of the time required
to compute the approximation. For the inversion of a (V' x V) matrix, an efficient algorithm can
provide a computational time that is O(V?) = O(n?H?). Therefore, the time needed to compute
one step of LM backpropagation is dominated by the matrix product: O(Nn?H?). Define Wy,
to be the number of steps required to attain the backpropagation goal. (Typically, Wi, never
needs to exceed 300.) Then the time required to train the network by LM backpropagation grows
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as O(WLMNnQHQ). Thus, the total run time for one iteration of the FF1ANN-based SDP solution
grows as

O(n") < Crriany = O(WNnH) + [O(WLyn®NH?)] < O(n?).
The total run time for one iteration of the MARS-based SDP solution grows as (Chen et al. 1999)

O(n") < Cymars = O(WN Myay) + O(nNM32, ) < O(n'?),

where the time to construct the MARS approximation (second term) dominates.

Actual average run times for one SDP iteration are shown in Table 1. For the inventory
forecasting problem, the MARS and ANN runs were conducted on different machines in different
countries. Despite this, it can been seen that the run times for the same N are comparable. In order
to conduct a fairer computational comparison on the same programming platform, considerable
effort was expended to develop a Matlab code that could access our MARS C code. Unfortunately,
the ability to call C code from Matlab is still flawed, and the MARS runs suffered significant slow
down. For the water reservoir problem, all runs were conducted in the same place; however, the
slow down experienced by calling the MARS C code from Matlab is obvious. Unfortunately, at
this time, a completely fair comparison that uses the same programming platform is not readily
implementable. Overall, our experience demonstrates that the ANN model is clearly easier to
implement.

6.2 SDP Solutions

Both the nine-dimensional inventory forecasting problem and the eight-dimensional water reservoir
problem were solved over three stages (1" = 3). Although several FF1ANN architectures were tested,
only one FF1ANN architecture for each design was employed to generate the plots in Figures 3
through 8. For the inventory forecasting problem, H = 40 for N = 1331 and H = 60 for N = 2197,
and for the water reservoir problem, H = 10 for both N. Several MARS approximations were
constructed for each design by varying M.« and K. For the inventory forecasting problem, results
with different My, are shown, and for the water reservoir problem, My,x = 100. For the OAs
we set K =9 for p =11 and K = 11 for p = 13 (the maximum allowable in both cases). For the
OA-LH designs K was chosen as high as 50. Simulations using the “reoptimizing policy” described
in Chen (1999) were conducted to determine the optimal decisions and to test the SDP solutions.

6.2.1 Inventory Forecasting Problem

For each of 100 randomly chosen initial state vectors, a simulation of 1000 demand forecast €
sequences was conducted for the SDP solutions. The simulation output provided the 100 mean
costs (corresponding to the 100 initial state vectors), each over 1000 sequences. For each initial
state vector, the smallest mean cost achieved by a set of 90 SDP solutions was used as the “true”
mean cost for computing the “errors” in the mean costs. Boxplots in Figures 3 through 6 display
the distributions (over the 100 initial state vectors) of these errors. The average over the 100 “true”
mean costs was approximately 62.

Figures 3 and 4 display all 18 of the OA-based SDP solutions. They are organized left to right by
the “goodness” of the OA design. The OA/MARS solutions with p = 11 (N = 1331) are all fairly
close, except for the “worst” one, which is “MARS OA3P pl11 300,” i.e., the one that used the poor
OA and Mpax = 300. The other MARS OA3P solution (with Mpax = 200) is used to represent
the “best” OA/MARS solution, although it is essentially equivalent to the other good OA/MARS
solutions. For the OA/FF1ANN solutions with p = 11 (N = 1331), the “worst” one is “ANN
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OA3N pll H40,” i.e., the one that used the neutral OA3 (there is actually another outlier above
15). The “best” one is “ANN OA3P pll H40,” using the poor OA. The OA/FF1ANN solution
with the good OA is not terrible, but is worst than most of the OA/MARS solutions because of
its higher median. Ideally, we would want good OAs to result in better solutions than poor OAs;
however, sometimes it does not happen this way because the poor qualities are located in regions
of the state space that are not critical to finding a good solution.

For the MARS solutions with p = 13 (N = 2197), the “best” solution is “MARS OA3G pl3
400,” which used the good OA and Mpy,x = 400; while the “worst” is “MARS OA3P pl13 400,”
which used the poor OA and M,.x = 400. For the FF1ANN solutions with p = 13 (N = 2197),
the “best” solution is with the good OA, while the “worst” is with the neutral OA. It should be
noted in Figures 3 and 4, as was illustrated in Chen (1999, 2001), that good OAs result in better
SDP solutions on average.

Figures 5 and 6 display the best and worst solutions for each of the four types of SDP solutions,
with the best solutions on the left and worst on the right. The OA/FF1IANN and OA/MARS
solutions are repeated from Figures 3 and 4. Note the solution for “ANN LHIN N1331 H40,”
which used the first OA-LH realization from the neutral OA. This is the “worst” solution among
the FF1TANNSs using OA-LH designs, but it is actually a good solution. The interesting observation
here is that the FF1ANNs performed better with the OA-LH designs. The best solution overall
is “MARS LH2G N2197 400 K11,” which used the second OA-LH realization from the good OA,
Mpax = 400, and K = 11. However, there is one disconcerting solution, and that is “MARS LH2G
N1331 300 K35.” It is troubling because it uses a LH design generated from the good OA, but it
is visibly one of the “worst” solutions. To some extent the goodness measures are no longer valid
for the OA-LH designs, because the randomization used in generating them may have resulted in
a poorly spaced realization.

6.2.2 Water Reservoir Problem

For each of 50 randomly chosen initial state vectors, a simulation of 100 demand forecast € se-
quences was conducted for the SDP solutions. The simulation output provided the 50 mean costs
(corresponding to the 50 initial state vectors), each over 100 sequences. The “errors” in mean costs
were computed in the same manner as the inventory forecasting problem. Boxplots in Figures 7
and 8 display the distributions (over the 50 initial state vectors) of these errors. The average over
the 50 “true” mean costs was approximately —47.

Figure 7 displays all the OA-based SDP solutions. They are organized left to right by OA
design size and by the space-filling quality of the OA design. Among the SDP solutions with
p =11 (N = 1331) the “worst” one is clearly “ANN OA3P pll H=10." The “best” one is not as
easy to identify, but “ANN OA3N pl1l H=10" is seen to have the lowest median. Among the SDP
solutions with p = 13 (N = 2197) the “worst” one, having a significantly longer box, is “MARS
OA3P p13 100.” All the other solutions for this size design are somewhat comparable, but “MARS
OA3N pl13 100” is seen to have the lowest median. For both sizes, the worst solutions employed
the poor OA, indicating that poor solutions can be avoided by not using a poor OA. This agrees
with the findings in the previous section.

Figure 8 displays the best and worst solutions from Figure 7 along with the best and worst
OA-LH/FF1ANN and OA-LH/MARS solutions. The figure is organized with the with the best
solutions on the left and worst on the right. Some improvement is seen using the OA-LH designs.
Unlike the inventory forecasting problem, the water reservoir problem should not require many
interaction terms in the value function approximation; thus, the increased univariate information
from LH designs should be an advantage. Like the findings in the previous section, the worst OA-
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LH/FF1ANN solutions are not bad, supporting the expectation that ANN models perform well
with OA-LH designs.

7 Concluding Remarks

The statistical modeling approach for numerically solving continuous-state SDP was used to si-
multaneously study OA-LH designs and an ANN-based implementation as alternatives to the
OA/MARS method of Chen et al. (1999) and Chen (1999). In addition, the space-filling qual-
ity of the OA designs was considered. For the SDP solutions using OA designs, good OAs reduced
the possibility of a poor SDP solution. For the inventory forecasting problem, involving significant
interaction terms, MARS performed similarly using both OA and OA-LH designs, while FF1ANN
solutions noticeably improved with OA-LH designs. For the water reservoir problem, Overall,
good solutions could be achieved using MARS models with either good OA or OA-LH designs
and FF1ANN models with good OA-LH designs. With regard to both computational SDP re-
quirements and quality of SDP solutions, we judged FF1ANNs and MARS to be very competitive
with each other overall. A small advantage to MARS is the information on the relationships be-
tween the future value function and the state variables that may be gleaned from the fitted MARS
model. Current research is developing a method to automatically select M.« for MARS, so as to
permit flexiblity in the approximation across different SDP stages. Unfortunately, a method for
automatically selecting H for ANNs does not seem possible.
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Table 1: Actual average run times (in minutes) for one SDP iteration using FF1ANN and MARS
models. The FF1IANN runs used Wiy = 125. For the inventory forecasting problem, Matlab was
used to conduct the FF1ANN runs on two Pentium IT (P2) machines, and a C code executed the
MARS runs on a different P2 machine. For the water reservoir problem, all runs were conducted in
Matlab on an Intel Xeon (IX) workstation; however, calling the MARS C code in Matlab resulted
in significant slow down.

Inventory Forecasting Water Reservoir
Model | N 450MHz P2 550MHz P2 933MHz P2 3.06GHz IX
ANN 1331 | 65m (H = 40) 90m (H = 40) 13m (H = 10)
MARS | 1331 61m (Mmax = 300) 43m (Mpmax = 100)
ANN 2197 | 185m (H = 60) 87m (H = 60) 18m (H = 10)
MARS | 2197 112m (Mpax = 400) 67m (Mpmax = 100)

1 \2/ \3/

Figure 1: Reservior network

Figure 2: Two configurations of design points.
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Figure 3: Inventory Forecasting: Boxplots illustrate the distribution of absolute error for all 9 SDP
solutions using strength 3 OAs with p = 11 (N = 1331). Below each boxplot, the first line indicates
the use of ANNs or MARS. The second line indicates the type of OA, specifically: OA3G = “good”
strength 3 OA, OA3N = “neutral” strength 3 OA, and OA3P = “poor” strength 3 OA. The third
line specifies p = 11, and the fourth line provides Mpy.x for MARS and the number of hidden nodes
(H) for ANNS.
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Figure 4: Inventory Forecasting: Boxplots illustrate the distribution of absolute error for all 9 SDP
solutions using strength 3 OAs with p = 13 (N = 2197). Labeling below the boxplots uses the
same notataion as that in Figure 3.



=

3 .

™

—

N L]

— °

— . ¢

—
La_ hd * .
O . °
= o | . T T
W . I T : |
2 ’ . : | I |
3[\_ ° °
© ) : ) : | ! | |
80- ° : : [ ] | ° | -:- |

To R . . i | H | |
< T : T f T | | !

D | T | | !

T I
o™ | | | |
| | | |

N |

“ I

o . T T T T T 1 I T 1 i

ANN ANN MARS MARS MARS ANN ANN MARS MARS MARS

OA3P LH1G OA3P LH2G LH2N OA3N LHIN OA3P LH2G LH2P
pll N1331 pll N1331 N1331 pll1 N1331 pll N1331 N1331
H40 H40 200 200 200 H40 H40 300 300 300

K9 K9 K35 K17

Figure 5: Inventory Forecasting: Boxplots illustrate the distribution of absolute error for 10 SDP so-
lutions using N = 1331. Included from Figure 3 are the best (ANN/OA3P; MARS/OA3P/Mpyax =
200) and worst (ANN/OA3N; MARS/OA3P/Mpax = 300) solutions. Below each boxplot, the first
line indicates the use of ANNs or MARS. The second line indicates the type of experimental de-
sign, specifically: OA3 notation as in Figure 3, LH1G = first Latin hypercube randomization based
on a “good” strength 3 OA, LH2G = second Latin hypercube randomization based on a “good”
strength 3 OA, and similarly for LHIN, LH2N, LH1P, and LH2P. The third line indicates the size
of the design, specifying p = 11 for the OAs and N = 1331 for the OA-LH designs. The fourth
line provides Myyax for MARS and the number of hidden nodes (H) for ANNs. Finally, a fifth line
appears for the OA-LH/MARS solutions indicating the number of eligible knots (K) utilized in
the MARS algorithm. The three best OA-LH-based solutions are shown beside the best OA-based
solutions (in the left half), and similarly for the worst solutions (in the right half).
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Figure 6: Inventory Forecasting: Boxplots illustrate the distribution of absolute error for 10
SDP solutions using N = 2197 experimental design points. Included from Figure 4 are the best
(ANN/OA3G, MARS/OA3G/Mpax = 400) and worst (ANN/OA3N, MARS/OA3P/Mpax = 400

solutions. Labeling below the boxplots uses the same notation as that in Figure 5.
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Figure 7: Water Reservoir: Boxplots illustrate the distribution of absolute error for all 12 SDP
solutions using strength 3 OAs with p = 11 (N = 1331) and p = 12 (N = 2197). Labeling below
the boxplots uses the same notation as that in Figure 3.



10

L

Ll!j L

@ w] s .
=) . .
o]

<

o T _._
S l T T T J |

ANN ANN MARS MARS ANN MARS ANN ANN MARS MARS ANN MARS
OA3N LH1G LH1G OA3N LHIN LH1G OA3P LH1P LH1P OA3P LH1G LHIN
pll N1331N1331 pl1l3 N2197N2197 pll N1331N1331 pl3 N2197N2197
H10 H10 100 100 H10 100 H10 H10 100 100 H1O0 100

K50 K50 K50 K50

Figure 8: Water Reservoir: Boxplots illustrate the distribution of absolute error for 12 SDP so-
lutions. Included from Figure 7 are the best (ANN/OA3N/pll, MARS/OA3N/pl13) and worst
(ANN/OA3P/pll, MARS/OA3P/pl3) solutions. Labeling below the boxplots uses the same no-
tation as that in Figure 5.



