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Abstract 
In this paper, we present a decision-making framework (DMF) for reducing ozone pollution in 
metropolitan Atlanta.  High concentrations of ozone at the ground-level continues to be a serious 
problem in several U.S. cities, and Atlanta is one of the most serious.  In contrast to the “trial and 
error” approach utilized by state government decision makers, our DMF searches for dynamic 
and focused control strategies that require a lower total reduction of emissions than current 
control strategies.  Our DMF utilizes a rigorous stochastic dynamic programming (SDP) 
formulation and includes an Atmospheric Chemistry Module to represent how ozone 
concentrations change over time.   This paper focuses on the procedures within the Atmospheric 
Chemistry Module.  Using the U.S. EPA’s Urban Airshed Model for Atlanta, we employed 
mining and metamodeling tools to develop a computationally-efficient representation of the 
relevant ozone air chemistry.  These effectively model the transitions over time within the SDP 
optimization. 
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1.  Introduction 
The increasing concentrations of ground-level ozone in the urban (and often rural) atmosphere 
continue to be one of the major environmental issues today.  Ozone is considered a harmful 
pollutant because of its detrimental effects on humans and the natural ecosystem.  Ozone is one 
of the U.S. EPA’s six criteria pollutants and is regulated by a National Ambient Air Quality 
Standard.  Under the former U.S. EPA standard which defines an ozone episode as an 
hourly-averaged concentration exceeding 0.12 parts per million (ppm), 77 nonattainment areas in 
the U.S. were defined, including Atlanta, which is categorized as a serious non-attainment area.  
(The new U.S. EPA standard, which defines an episode as an eight-hour average exceeding 0.08 
ppm, is more stringent). 

Ground-level ozone is not emitted directly into the air but is created by a complex series 
of reactions involving nitrogen oxides (NOx = NO + NO2) and volatile organic compounds 
(VOCs) in the presence of sunlight (Sillman et al. 1995).  The primary sources of NOx are 
power plants, automobiles and industry.  VOCs have both anthropogenic sources (cars, industry) 
and natural sources (vegetation).  Therefore, in order to control ground-level ozone it is 
necessary to control emissions of NOx and VOCs.  Ozone does exist in the clean atmosphere, 
with surface concentrations of about 20 parts per billion parts of air (20 ppb).  The natural source 
is due to mixing with the upper atmosphere, where ozone is chemically produced to form an 
ozone layer that protects the earth’s surface from harmful UV-B radiation.  However, ground-
level ozone concentrations are often above 0.20 ppm, especially in urban areas, due to 
accumulations of NOx and VOCs.  Sunlight and heat are the catalysts for the chemical reaction 
that creates ozone; thus, ozone concentrations build during the course of a day and fall as the sun 
goes down. 

As the first of its kind of research, our objective is to develop a computationally-tractable 
and rigorous decision-making framework (DMF) that searches for dynamic and focused control 
strategies for reducing ozone pollution.  Government decision-makers typically utilize “trial and 
error” to test control strategies, and typical control strategies involve an overall reduction in 
emissions and may require exorbitant (and impossible) reductions to maintain the U.S. EPA 
limits.  Instead, it may be more practical to consider focused reductions that dynamically depend 
on the conditions of the day.  Our DMF conducts an intelligent and comprehensive search 
through the possibilities using methods in statistics and optimization. 

For the Atlanta application, we are studying the ozone episode from July 29 – August 1, 
1987, which remains to be one of the worst on record.  To date, no practical control strategy 
using typical approaches has been identified to handle this episode, and our ultimate objective is 
to use our DMF to see if a practical control strategy is at all achievable.  A prototype for the 
Atlanta ozone pollution DMF is in progress, and in this paper we describe the difficult task of 
efficiently representing ozone pollution air chemistry within a rigorous optimization formulation, 
using mining and metamodeling tools. 

In the next section, we describe the DMF formulation.  Section 3 provides details on the 
Mining and Metamodeling Phases applied to the Atlanta ozone pollution problem.  Section 4 
presents our preliminary results for efficiently representing ozone pollution in our DMF, and 
Section 5 discusses refinement of this work.  Section 6 presents a verification of the ozone 
transition metamodels.  Finally, concluding remarks are given in Section 7. 
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2.  DMF Formulation 
The modules of our DMF are illustrated in Figure 1.  To accommodate continuous variables, 
time dependencies, and uncertainty, the DMF is based on a rigorous continuous-state stochastic 
dynamic programming (SDP) approach (Chen et al. 1999, Chen 1999, Tsai et al. 2004).  The 
objective of SDP is to minimize expected “cost” subject to certain constraints over several stages 
t = 1,…,T, i.e., to solve: 
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where xt is the state vector, ut is the decision vector, εt is the stochastic component, xt+1 is 
determined by the transition functions ft(•), Γt represents capacity constraints, and the cost 
function ct(•), contains both the economic and penalty costs.  The SDP stages are based on pre-
specified time periods.  The state variables represent the current state of the system.   
Continuous-state SDP assumes the state variables are continuous.  The decision variables are the 
variables one controls to minimize cost.  The transition functions define how the state variables 
change over time, specifically from one SDP stage to the next.   A computationally-tractable 
solution method for continuous-state SDP has been developed by Chen et al. (1999). 

For the ozone pollution SDP, our objective is to minimize the cost of avoiding ozone 
episodes, where the U.S. EPA standard specifies a constraint on ozone concentrations.  Because 
of ozone’s daily cycle, our time horizon is one day, with time periods involving groups of hours 
(e.g., 7:00 AM to 10:00 AM).  The state variables xt at a given time potentially include 
concentrations of ozone, NOx, and VOC at various spatial locations across the metropolitan 
Atlanta region.  Similarly, the decision variables ut potentially include emissions of NOx and 
VOC at various locations and times over the course of the day. 

SDP transition functions ft(•) are constructed by the Atmospheric Chemistry Module in 
Figure 1.  This is the most difficult task for the DMF.  Within this module is the representation of 
ozone pollution air chemistry.  An advanced three-dimensional, photochemical air quality grid 
model like the Urban Airshed Model (UAM, EPA 1990) may be used to calculate transitions; 
however, the UAM simulation is computationally intensive.  Thus, a more efficient approach is 
needed for incorporation into SDP optimization.  In the remainder of this paper, we describe a 
two-phase mining and metamodeling approach (Chen et al. 2003) for constructing these SDP 
transition functions. 

 
3.  Atmospheric Chemistry Module for Atlanta 
The UAM modeling domain for Atlanta encompasses a 160 ×160 kilometer square region 
containing the metropolitan area, shown in Figure 2.  UAM ozone computations are hourly and 
occur on a 40×40 grid over the modeling domain.  Emissions are represented in the Atlanta 
UAM by 102 point sources (e.g., power plant smoke stacks) and other sources within each 
40×40 grid region.  A 24-hour UAM simulation run takes more than one hour.  The first two 
days of the given Atlanta ozone episode are “ramp-up” days to initialize the UAM.  The actual 
ozone exceedances occurred on the third and fourth days.  We consider here only the third day, 
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i.e., July 31, 1987, because if we cannot control ozone on the third day, then the fourth day is a 
lost cause. 

To reduce ozone concentrations, NOx and VOC emissions must be reduced.  Atlanta, in 
particular, is “NOx-limited,” which means that targeting VOC emissions is not effective 
(Chameides et al. 1988).  For our Atlanta DMF, we chose to ignore VOC emissions, so our state 
variables included only ozone concentrations and NOx emissions.  However, if we included 
ozone and NOx at every point source (102) and every grid region (40×40) and each hour (24), 
the number of state variables would still be exceedingly large.  Thus, in order to achieve a 
computationally-tractable DMF, a critical component of the Atmospheric Chemistry Module is 
dimension reduction, conducted by three phases in order: Initialization, Mining, and 
Metamodeling.  In the Initialization Phase, we devise the following setup: 

 
a) Aggregate the UAM 40×40 grid into a 5×5 grid (25 grid squares).  We refer to these grid 

squares with the notation (i, j), for i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4, 5, where grid square 
(1, 1) is at the bottom left, and grid square (2, 1) is one square to the east, etc. 

b) Reduce the 24-hour time horizon to the critical time horizon of 4:00 AM to 7:00 PM.  
Define five time periods: (0) 4:00 AM – 7:00 AM, (1) 7:00 AM – 10:00 AM, (2) 10:00 
AM – 1:00 PM, (3) 1:00 PM – 4:00 PM, (4) 4:00 PM – 7:00 PM.  Time period 0 is an 
initialization period. 

c) Control maximum ozone concentrations only at the four Photochemical Assessment 
Monitoring Stations (PAMS).  Only these four stations are monitored by the U.S. EPA. 

 
NOx emissions are considered separately in the DMF for each of the grid squares and point 
sources during each of the time periods 1–4.  The SDP state vector must include any variables 
that are related to maximum ozone at the four stations.  Because ozone and emissions occurring 
as early as time period 0 (perhaps even earlier) could affect maximum ozone in the last time 
period, the number of possible state variables entering the last period is 
 

(4 time periods) × (4 stations + 25 regions + 102 point sources) = 524. 
 

In the Mining Phase, data collected from the UAM was used to identify those point 
sources and grid squares that had the most influence on maximum ozone concentrations at the 
four PAMS sites.  In the Metamodeling Phase, the SDP transition functions were constructed, 
and in the process further dimension reduction would be achieved.  These two phases are 
described below. 
 
3.1  Mining Phase 
We used a 149-point Latin hypercube experimental design to scale NOx emissions in different 
regions and at different point sources from zero up to the nominal level.  Different time periods 
were not explored.  These were input into the UAM and resulting ozone concentrations across 
the 40×40 UAM modeling grid were collected.  Using our aggregated 5×5 grid, the maximum 
ozone concentration was determined for each grid square containing a PAMS site.  Mining via 
regression analysis was conducted separately for each PAMS site. 

Of the 25 grid regions, 16 were statistically significant.  Of the original 102 point sources 
only 15 were statistically significant.   In Figure 3, all point sources (some points overlap) and 
the four PAMS sites (Conyers, S. Dekalb, Tucker, and Yorkville) are shown on the aggregated 
5×5 grid.  The shaded regions indicate those grid squares that were not significant.  Note that 
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these are all located along the edges of the modeling domain, where one would expect to find the 
least influence.  The labeled triangles mark the significant point sources (# 1-6, 9, 12, 15, 21, 23, 
30, 37, 63, 64).  In the Metamodeling Phase, we chose to maintain only these 15 point sources 
due to the tremendous reduction in dimension; however, all 25 grid squares were maintained. 
 
3.2  Metamodeling Phase 
The metamodeling process is illustrated in Figure 4.  The experimental design specifies 
reductions in the emissions at various regions and times.  Then the UAM is used to calculate the 
resulting ozone concentrations, from which maximum ozone for the four PAMS sites at various 
times is calculated.  Based on the input NOx emissions and the output from the UAM, statistical 
methods are applied to build the metamodels that represent the ozone SDP transition functions.  
Through this process, further dimension reduction would be achieved.   

First we specified the initial set of potential state and decision variables to be studied.  
For SDP stage t (t = 1, 2, 3, 4), the initial set of potential decision variables consisted of: 

 
• Total NOx emissions over each grid square and at each point source during time period t: 

(25+15) = 40 variables. 
 
A critical property of SDP is that the state variables specified at the beginning of stage t must 
contain all the required information to do all the calculations in stage t.  For example, suppose 
the maximum ozone at Conyers occurring during time period 4 (4:00 PM – 7:00 PM) depends on 
the maximum ozone observed at Conyers in time periods 2 and 3, and the NOx emissions 
occurring in the center grid square (3,3) during time periods 1 and 3.  Then the set of state 
variables at the beginning of SDP stage 4 must include information from time periods 1, 2, and 3.  
This is why we make the distinction between time periods and SDP stages.  Thus, for SDP stage 
t (t = 1, 2, 3, 4), the initial set of potential state variables consisted of: 
 

• Maximum hourly-averaged ozone at the four PAMS sites in time periods 0 though t–1.  
For SDP stage t = 4: 4*4 = 16 variables. 

• Total NOx emissions over each grid square and at each point source during time periods 
0 though t–1.  For SDP stage t = 4: 4*(25+15)= 160 variables. 

 
Thus, the initial number of state variables is as follows: 44 in SDP stage 1, 88 in SDP stage 2, 
132 in SDP stage 3, and 176 in SDP stage 4.  Since the largest continuous-state SDP problem in 
the literature involved 20 state variables (Tsai et al. 2004), dimension reduction is a must. 

For the metamodeling process, the NOx emissions over the 25 grid squares, 15 point 
sources, and 5 time periods constituted a set of 200 design variables.  A 500-point Latin 
hypercube experimental design was utilized to determine the NOx emissions for these 200 
variables.  The maximum ozone at the four PAMS sites in time periods 1, 2, 3, 4 constituted a set 
of 16 response variables.  Separate regression metamodels were then constructed for each of the 
response variables.  Specifically, the metamodel for maximum ozone in time period t could be a 
function of maximum ozone in earlier time periods and NOx emissions from time period t and 
earlier.  A regression coefficient of determination (R2) above 90% was achieved for all but two 
metamodels.   These two, the Tucker and S. Dekalb sites in time period 2, will require further 
refinement in later work.  The S. Dekalb metamodel is discussed further in Section 5. 
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4.  Reduction of the State and Decision Variables 
In each SDP stage we only need to maintain those state and decision variables required by the 
transition function metamodels for that stage and later stages.  This greatly reduces the 
dimension of the SDP system.  From the initial sets of potential state and decision variables 
listed in the previous section, Tables 1 and 2 list the required sets of variables.  Define the 
following notation used in the tables: 
 
p:  3-hour time period; p=0, 1, 2, 3, 4. 
S:  PAMS site; S = C (Conyers), SD (South Dekalb), T (Tucker), Y (Yorkville) 

S
pO :  Maximum ozone at PAMS site S in time period p 

(i, j): square region in the 5×5 grid with coordinate (i, j), where i = 1, 2, 3, 4, 5 and j = 
1, 2, 3, 4, 5, as defined in Section 3. 

),( ji
pE :  Emission quantity within square (i, j) in time period p 

pt(k): point sources in the modeling domain; k ∈ {1, 2, 3, 4, 5, 6, 9, 12, 15, 21, 23, 30, 
37, 63, 64}. 

)(pt k
pE :  Emission quantity at point source pt(k) in time period p. 

 
For each SDP stage, the variables from different time periods p are listed in different 

rows, and the different types of variables (e.g., grid squares vs.  point sources) are listed in 
different columns.  The column labeled “Carried Over” lists variables that were not required in 
the current SDP stage, but were needed in later stages.  For example from Table 1, )2,3(

0E  is not 
needed to do calculations in SDP stages 1 or 2, but is needed in stage 3.  Thus, we must save 

)2,3(
0E  until it is used in SDP stage 3. 

Looking at Table 1, instead of up to 176 state variables, the maximum number of state 
variables required is 25 in SDP stage 2.  Similarly, looking at Table 2, instead of up to 40 
decision variables, the maximum is 17 in SDP stage 1.  Additional information can be garnered 
from the set of sufficient decision variables in Table 2.  The included grid squares indicate the 
key regions whose NOx emissions influence ozone pollution.  Finally, the fact that the largest set 
of decision variables is in SDP stage 1 emphasizes time period 7:00 AM – 10:00 AM as the most 
important time period for NOx emissions reductions.  This corresponds to the morning rush hour 
and agrees with the consensus among air quality decision-makers. 
 
5.  Refinement of the Transition Function Metamodels 
As mentioned at the end of Section 3, two transition function metamodels were unsatisfactory.  
The S. Dekalb metamodel for time period 2 achieved an R2 of only 5.62%.  To refine this 
metamodel, multivariate adaptive regression splines (MARS, Friedman 1991) were fit to the 
UAM data.  In particular, we employed an implementation of MARS that utilizes automatic 
selection of the number of basis functions and gives priority to lower-order terms (Tsai and Chen 
2005).  This version of MARS achieved an R2 of 98.58% with 9 univariate and 10 two-way 
interaction basis functions.  Figure 5 illustrates the structure of the MARS metamodel as function 
of NOx emissions in grid square (3, 3) during time periods 1 and 2.  Note from Figure 3, that the 
S. Dekalb PAMS site is located in this center grid square; thus, these NOx emissions would be 
most relevant. 
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Unlike those regression metamodels that achieved high R2 values, the S. Dekalb MARS 
metamodel involves curvature that is potentially detrimental to the SDP optimization.  The 
optimization within SDP seeks to reduce NOx emissions in order to reduce ozone concentrations.  
In Figure 5, if we follow the trend along the NOx emissions in time period 1, we see that at the 
high end of NOx emissions, ozone actually decreases.  It is a known in atmospheric chemistry 
that if NOx concentrations are very high such that mixing with VOCs does not occur, then ozone 
cannot form and consequently decreases (Chameides et al. 1988).  While it is valuable to model 
the atmospheric chemistry accurately, it is more important to calibrate the SDP optimization to 
find a solution that is reasonable.  In this case, it would be unreasonable to suggest a control 
strategy that increases NOx to decrease ozone.  Thus, in future work, we propose to remove this 
counterproductive structure from any metamodels.  Procedures for doing this are currently in 
development. 
 
6.  Verification of the Metamodels 
To verify the metamodels obtained in Section 3, two groups of comparisons were made.  In the 
first comparison, the metamodels were used to predict maximum ozone concentrations during 
time periods 1 to 4 for eleven overall emission reduction strategies.  In the second comparison, 
metamodels were used to predict maximum ozone for 50 randomly generated hypothetical 
scenarios.  The daily maximum ozone concentrations from the UAM simulation were taken as 
the “true value.”  The error in each daily maximum ozone concentration predicted by the 
metamodels was measured by the absolute deviation percentage, which is defined as: 
 

%100
 valuetrue

 valuetruemetamodelsby  maximumdaily 
×

−
.   

 
The results for the first comparison are given in Table 3.  The absolute deviation percentages for 
the 50 hypothetical scenarios ranged from 0.2% to 4.6% with a mean of 2.5%. 

Table 3 shows that when emission reduction is high, metamodel prediction tends to be 
lower than the UAM simulation; and vice-versa when emission reduction is low.  Metamodel 
prediction error is higher in extreme scenarios.  The lower absolute deviation percentages for the 
50 hypothetical scenarios could be due to the fact the chances are small for one scenario to be 
close to an extreme case.  Because the primary objective is identification of control strategies and 
not the accuracy of the metamodels, validation of the metamodels will be appropriately inferred 
by the effectiveness of control strategies in the UAM. 
 
7.  Concluding Remarks 
A procedure for the Atmospheric Chemistry Module for an ozone pollution DMF has been 
established and implemented successfully on an ozone episode in metropolitan Atlanta.  
Important computational aspects, such as dimension reduction and efficient modeling were 
addressed.  Currently, we are employing the constructed transition function metamodels from 
Section 3 with SDP to solve for potential control strategies.  These control strategies will then be 
tested directly with the Atlanta UAM to verify their effectiveness.  Future work must address 
refinement of the transition function metamodels to produce SDP optimization solutions that will 
lead to reasonable control strategies. 
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Table 2: Decision variables. 
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Table 3: Percentage absolute deviations for eleven overall emission reduction strategies. 
 

Emission 
Reduction % UAM Metamodels 

Absolute Deviation 
% 

100% 1.05E-01 9.44E-02 10.00% 
90% 1.12E-01 1.02E-01 9.08% 
80% 1.19E-01 1.10E-01 8.13% 
70% 1.26E-01 1.17E-01 6.77% 
60% 1.32E-01 1.25E-01 5.10% 
50% 1.37E-01 1.33E-01 3.16% 
40% 1.43E-01 1.40E-01 1.78% 
30% 1.48E-01 1.48E-01 0.07% 
20% 1.52E-01 1.56E-01 2.36% 
10% 1.55E-01 1.63E-01 5.07% 
0% 1.58E-01 1.71E-01 8.11% 
Mean Absolute Deviation % 5.42% 
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Figure 1: A modular decision-making framework for ozone pollution.



 
 
 
 
 
 
 

 
 

Figure 2: Location of UAM domain for Atlanta, Georgia (SIP 2001). 
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Figure 3: From the Mining Phase: Aggregated 5 × 5 grid and all point sources over the

40× 40 UAM grid.
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Figure 4: Flow chart describing the Metamodeling Phase.
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Figure 5: Transition function metamodel for maximum ozone concentrations at the S. Dekalb

monitoring station during the 10:00 AM 1:00 PM time period, shown as a function of NOx

emissions during the 7:00 AM 10:00 AM and 10:00 AM 1:00 PM time periods in the square

region that contains the S. Dekalb monitoring station.




