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Abstract. We present a brief overview of four stages of nurse planning.For the last stage, which assigns nurses

to patients, a stochastic integer programming model is developed. A Benders’ decomposition approach is proposed

to solve this problem, and a greedy algorithm is employed to solve the recourse subproblem. Patient-to-nurse ratio

constraints are introduced to balance the workload of nurses as well as improve the overall performance of the algo-

rithm. Computational results are provided based upon data from Baylor Regional Medical Center in Grapevine, Texas.

Finally, areas of future research are discussed.
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1 Introduction

One of the greatest problems in health care today is a shortage of nurses. The demand for nurses is growing, while

fewer young nurses are available to provide care. A survey bythe American Hospital Association found that 75% of

vacant hospital staffing positions are for registered nurses [19]. The number of nurses per capita declined by 2% from

1996 to 2000, while the attrition rate of hospital nursing staff grew from 11.7% in 1998 to 26.2% in 2000 [14]. From

1993 to 2001, enrollment in registered nurse degree programs declined by 50,000 nurses [19]. With fewer new nurses

entering the profession, the average age of the working registered nurse is increasing [7]. From 1983 to 1998, the

number of nurses under 30 years of age decreased by 41% [19]. The elderly population is growing in numbers, and

they need substantially more health care services [30]. Moreover, the number of citizens over 65 years old is expected

to be 70 million in 2030, more than twice that of 1999 [1]. Consequently, the shortage will become more severe. By

2020, the United States will face a 20% shortage in the numberof nurses needed for the nation’s health care system

[7].

The nursing shortage affects patient care. The National Survey on Consumers’ Experiences with Patient Safety and
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Quality Information Consumers showed that the most important factors causing medical error are workload, stress,

and fatigue of health professionals (74%); not enough time spent with patients (70%); and not enough nurses in health

care systems (69%) [28]. A study by the Agency for HealthcareResearch and Quality reported that nurses spend

insufficient time with patients in hospitals with low staffing levels [26]. Powers [23] observed that excessive workload

enhances poor quality of patient care. Given that nursing resources are so scarce, intelligent planning methods are

needed to reduce the burden of the shortage. One method to reduce excessive workload on nurses is balancing patient

assignments.

Stochastic programming has successfully optimized many industry decisions including budgets for nursing [16],

but no one has used it to assign nurses to patients. Optimization research on nurse assignment only includes a few

deterministic integer programming models. In this paper, we develop a stochastic programming model for nurse

assignment with a recourse penalty function to minimize excess workload for nurses. In the stochastic model, the

amount of required care of a patient is random, so it considers several scenarios for a patient’s required care. It

provides the initial assignment of nurses to patients for a nursing shift in a hospital unit.

In the remainder of Section 1, we describe four stages of nurse planning—nurse budgeting, nurse scheduling,

nurse rescheduling, andnurse assignment. In Section 2, we present a two-stage stochastic programming model for

nurse assignment that minimizes excess workload, and Section 3 presents algorithmic approaches to solve it. Because

of the special structure of the recourse function, we solve the second-stage subproblem with a greedy algorithm.

Anecdotal accounts from nurses suggest that nurse assignment is usually performed within 30 minutes before each

shift. Consequently, the focus of this research is to find a good solution with the time limitation. A patient-to-nurse

ratio is introduced to balance the number of patients assigned to each nurse. In Section 4, we compare the performance

from our model with those from other methods based upon data from a medical surgery unit at Baylor Medical Center

in Grapevine, Texas. Finally, we discuss conclusions and topics of future research in Section 5.

1.1 Overview of Nurse Planning

Nurses work in a variety of environments including hospitals, clinics, private doctor’s offices, nursing homes, and

individual homes. Although our research is on nurses at one hospital, it may be applied to other hospitals and envi-

ronments with multiple nurses and patients. Hospitals in the United States employ two types of nurses—registered

nurses (RNs)and licensed vocational nurses (LVNs). We describe the four stages of nurse planning in the Sections

1.1.1 through 1.1.4.

1.1.1 Nurse Budgeting

Financial planners create budgets and determine how many nurses they will hire as permanent staff and how many they

will hire from an agency. Warner [32] implemented a Markovian analysis to forecast nursing personnel for general

wards of a hospital. Kao and Tung [17] predicted patient demands over a year by an autoregressive integrated moving
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average forecasting method. Dieck [13] compared the Box-Jenkins modeling and the Winters’ heuristic approach for

forecasting patients admission to public health facilities. Trivedi [29] developed a mixed integer goal programming

model, while Kao and Queyranne [16] applied a stochastic programming approach to optimize a budget for nurses.

1.1.2 Nurse Scheduling

In the second stage, a nurse manager forecasts the number of patients that will enter a hospital unit over four to six

weeks. Based upon the forecasted number of patients, the manager uses a census matrix to determine the number and

level of nurses needed. When the number of nurses of each type is known, a schedule is created that partitions a day

into shifts that are typically 8 or 12-hours in length. Typically, the manager posts a schedule two weeks before the

beginning of the time horizon. Most academic literature on nurse planning is on scheduling [34, 20, 33, 8, 9, 3, 2, 4, 15,

18, 12, 22]. Because these algorithms only consider the nurse budgeting and scheduling stages, they ignore changes

in staff and patient forecasts and assume the schedule will be followed as planned. Anecdotal evidence suggests that

changes to the schedule are frequent, so intelligent planning models to reschedule nurses will dramatically improve

nurse planning.

1.1.3 Nurse Rescheduling

The rescheduling process occurs 90 minutes before each shift. A nurse supervisor reviews the scheduled nurses based

upon the activities of the previous shift, activities of other units, and either a census matrix or a patient classification

system. If there is a shortage of nurses for the upcoming shift, the supervisor tries to recruit additional nurses who

work as needed–PRN nurses, nurses who work part time–part-time nurses, and nurses who are not scheduled for

the upcoming shift–off-duty nurses. If an insufficient set of nurses agrees to work the shift, thesupervisor, upon

approval from a nurse manager, hires temporary agency nurses to satisfy the remaining shortage. If there are too many

scheduled nurses for the shift than needed, then the supervisor has surplus PRN nurses and part-time nurses take the

day off without pay.

Patient classification systems are the most sophisticated technology for nurse rescheduling. These systems group

patients into one of several categories. They estimate how many times certain tasks will be performed in caring for

a patient in each category. Using these estimates and the expected time required to perform each task, the systems

determine the amount of time to care for a typical patient. Aspatients are admitted into the unit, the system classifies

these patients, and nurse supervisors use the estimated patient care to determine how many nurses are needed for the

shift in nurse rescheduling. As a patient’s condition changes, he may be given a new patient classification. Although

patient classifications systems provide benchmarks for nurse planning, they have several drawbacks as described in

Section 2.2. Siferd and Benton [25] developed a stochastic model based upon the patients in a unit to determine how

many nurses are required for the shift. Bard and Purnomo [5] presented an integer programming model for daily nurse

rescheduling and implemented a branch-and-price algorithm to solve the problem.
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1.1.4 Nurse Assignment

In the final stage of nurse planning,nurse assignment, a charge nurse assigns each patient to a nurse at the beginning

of a shift. Typically, the nurse assignment has to be performed within 30 minutes before a shift. Although the charge

nurse may update an assignment, in many hospital units, suchas medical-surgical units, revised assignments only

include assigning a nurse to a new admission; rarely is a patient reassigned a new nurse during the middle of a shift.

Consequently, the initial assignment can determine the amount of workload given to each nurse during the shift. A

nurse’sworkload is the amount of time required to care for her patients over a time period, andexcess workloadis

the difference between the workload and the time available for care. In reality, excess workload results in other nurses

assisting overworked nurses. One important considerationin nurse assignment is workload balance.

Developing balanced workloads for nurses is difficult because of the variation of patients’ conditions [21]. In prac-

tice, most nurse assignments are based upon either an intuitive judgment or the caseload method, in which each nurse

is assigned the same number of patients [24]. Modern patientclassification systems partition the set of patients into

groups, and each group is assigned to a nurse (Overfelt 2004). Walts and Kapadia [31] presented a patient classifica-

tion system and optimization model to determine the level ofstaffing to meet the required workload level, but they did

not use a detailed nurse assignment model. Mullinax and Lawley [21] developed an integer linear programming model

that assigns patients to nurses in a neonatal intensive careunit. The nurseries are divided into a number of physical

zones. They used a zone-based heuristic that assigns nursesto zones and computes patient assignments within each

zone. Unlike the stochastic programming model in this paper, these approaches and patient classification systems

ignore uncertainty, which is a major drawback considering the enormous variance in patient care. We are unaware of

any previous research on stochastic nurse assignment.

1.2 Contribution

The contribution of this paper includes a stochastic programming model for the nurse assignment problem. The model

addresses several important issues that are ignored in academic literature and patient classification systems.

• Patient Uncertainty.Traditional nurse assignment models ignore uncertainty. Because of the enormous variance

in patient care, the stochastic programming model that considers uncertainty provides more robust solutions.

• Fluctuations in Patient Care.Traditional models ignore fluctuations in patient care during the shift. Some

patients, such as expectant mothers, require minimal care for part of a shift but require significant care at other

times during the shift. The stochastic programming model considers when patients require care.

• Differences in Nurses.Traditional models ignore the different skills of the nurses. Many of them use a targeted

amount of time to perform certain tasks instead of an averagetime to complete the task. Some targets may be

realistic for some nurses but unrealistic for others. The stochastic programming model considers the skills of

each nurse individually.
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In addition to the formulation of a new nurse assignment, this paper contributes a Benders’ decomposition approach to

solve it. We develop an optimal greedy algorithm to solve therecourse subproblem. We demonstrate the effectiveness

of the model and algorithms with a computational study basedupon data from a medical surgery unit at Baylor

Regional Medical Center in Grapevine, Texas, that comparesour methods with current approaches.

2 Model Description

In Section 1, we described four stages of nurse planning, andin this section we present a stochastic programming

model for the final stage, nurse assignment.

2.1 Model Assumptions

Prior to the beginning of a shift, a charge nurse assigns eachpatient to an RN or an LVN. Although patients can

usually be nursed by either type of nurse, state regulationscan preclude them from performing certain patient care.

Furthermore, some states, such as Texas, require that everypatient be assessed by an RN within any 24-hour time

period. Consequently, a charge nurse will assign RNs to patients who were assigned LVNs in the previous shift. We

assume:

Assumption A1. A charge nurse determines which nurses can be assigned to which patients before optimizing nurse

assignment.

Because patients enter and leave the hospital unit throughout a shift, nurse assignments are updated dynamically.

However, revised nurse assignments often only include assigning a nurse to a new admission. Rarely is a patient

reassigned a new nurse during the middle of a shift due to concerns for continuity of care. Hence, we make the

following assumption:

Assumption A2. Nurse assignments are not changed, except when there are newly admitted patients.

Nurses distinguish between two types of patient care.Direct careis the amount of time nurses spend with patients,

while indirect careis time spent on other tasks for patients, such as documentation of a patient’s condition. In our

stochastic programming model, we divide a nurse shift into several smallertime periods. The amount of direct and

indirect care the patients require in each time period are given as parameters to the model. Nurses often provide

indirect care throughout the shift, but direct care is oftendetermined by a patient’s condition, which is usually more

urgent. Consequently, we make the following assumption:

Assumption A3. Direct care needs to be performed within the given time period, while indirect care can be performed

in any time period from the given period until the end of the shift.
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In addition to assumption A3, we assume nurses optimally allocate their indirect care to minimize excess workload. In

some assignments, a nurse’s patients will require more carethan the nurse can provide. In such cases, a charge nurse,

a nurse aide, or another nurse may assist the overworked nurse. However, an assignment requiring such assistance

is undesirable. Implicitly, we presume that nurses receiveassistance when absolutely necessary. The penalty of

an assignment will be determined by a nondecreasing piecewise-linear function as shown in Figure 1. Because the

function penalizes assignments with overworked nurses, anassignment will not include overworked nurses if such a

solution exists. We describe the details of this function inSection 2.2.

During a shift patients may enter the hospital unit by admission from an emergency room, direct admission from

a doctor, transferring from another unit, or birth. Patients may leave by discharge, transferring to another unit, or

death. After a patient is discharged and his room has been cleaned and sterilized, a charge nurse may assign a newly

admitted patient to the original patient’s room. The chargenurse will often assign the nurse who cared for the recently

discharged patient to the newly admitted patient. She can anticipate some of the patients that will be admitted because

they are currently in another hospital unit. However, anunanticipated patientmay enter a hospital unit during a shift

without any warning prior to the shift. Unanticipated patients must be assigned a nurse, so we include them in the

set of patients. We can represent an unknown number of patients by increasing the number of patients and randomly

allowing their required care to be zero. Similarly, we can model random times for admissions and discharges. In this

paper, we assume:

Assumption A4. The set of patients to be assigned includes potential unanticipated patients, so the number of patients

is fixed.

2.2 Stochastic Model for Nurse Assignment

Let P andN be the sets of patients and nurses for a shift, respectively.We assume that a charge nurse determines

which nurses can be assigned to which patients before optimizing patient assignment. For each patientp ∈ P , let

N(p) be the set of nurses which can be assigned to patientp. For each nursen ∈ N , let P (n) be the set of patients

that can be assigned to nursen; that is,P (n) = {p ∈ P |n ∈ N(p)}. For each patientp ∈ P , and nursen ∈ N(p), let

assignment variable

Xpn =





1 if patientp ∈ P is assigned to nursen ∈ N(p),

0 otherwise.

Let Ξ be a set of random scenarios, and for eachξ ∈ Ξ, let φξ be the probability that scenarioξ occurs.

A shift is divided into a set of time periodsT . As the workload of a nurse increases in a time periodτ ∈ T , her

patients receive less care, which is unsafe. We model the penalty for assigning workload to nurses as a monotonically

nondecreasing piecewise linear function withk pieces, as shown in Figure 1. For each time periodτ ∈ T and each

nursen ∈ N , let Aξ
τni be the amount of workload assigned to nursen betweenmτni andmτn(i+1) in scenarioξ ∈ Ξ.
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Figure 1:The penalty for assigning workload to nurses is a monotonically nondecreasing piecewise linear function.

Let ατni be the marginal penalty ofAτni for 1 ≤ i ≤ k. Because the penalty is monotonically nondecreasing,

0 = mτn1 < . . . < mτnk and0 ≤ ατn1 < . . . < ατnk. For notation, letmτn(k+1) be∞. This penalty function is

nondecreasing and piecewise linear, so the marginal penalty for assigning more patient care to an overworked nurse is

greater than that of a nurse with less workload. Consequently, the function naturally balances the workload and allows

nurses to provide better care. One special case of the penalty function hask = 2, ατn1 = 0, ατn2 = 1, andmτn2

equal to the duration of the time periodτ for eachτ ∈ T and eachn ∈ N . We refer to the value of variableAξ
τn2 as

theexcess workloadon nursen in time periodτ and scenarioξ.

For each patientp ∈ P , each scenarioξ ∈ Ξ, and eacht ∈ T , let dξ
tp be the amount of direct care required by

patientp in time periodt. Because patientp may be admitted or discharged during a shift, the patient care may vary

dramatically throughout the shift. For each patientp ∈ P , each scenarioξ ∈ Ξ, and each time periodt ∈ T , let eξ
tp be

the amount of indirect care required by patientp at the beginning of time periodt until the end of the shift. For each

pair of time periods(t, τ) ∈ T × T , wheret ≤ τ , and each nursen ∈ N , let indirect workload variableEξ
tτn be the

total indirect care that can be performed during or after time periodt and is performed in time periodτ by nursen.

The amount of direct and indirect care the patients require in each time period are given as parameters to the model.
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The stochastic programming model for patient assignment (SPA) is formulated as

min
∑

ξ∈Ξ

∑

n∈N

∑

τ∈T

k∑

i=1

φξατniA
ξ
τni (1)

∑

n∈N(p)

Xpn = 1 ∀p ∈ P, (2)

∑

p∈P (n)

eξ
tpnXpn =

|T |∑

τ=t

Eξ
tτn ∀t ∈ T, n ∈ N, ξ ∈ Ξ, (3)

∑

p∈P (n)

dξ
τpnXpn +

τ∑

t=1

Eξ
tτn =

k∑

i=1

Aξ
τni ∀τ ∈ T, n ∈ N, ξ ∈ Ξ, (4)

Xpn ∈ {0, 1} ∀p ∈ P (n), n ∈ N, (5)

Eξ
tτn ≥ 0 ∀t, τ ∈ T, t ≤ τ, n ∈ N, ξ ∈ Ξ, (6)

mτn(i+1) − mτni ≥ Aξ
τni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, n ∈ N, ξ ∈ Ξ. (7)

Objective (1) minimizes the workload penalty on nurses. Thefirst constraint set—thenurse assignment constraints

(2) ensure that every patient is assigned to a nurse. Theindirect care constraintsin set (3) determine the total indirect

care performed by nursen from the beginning of time periodt until the end of the shift. For each time periodτ ∈ T ,

the workload of nursen ∈ N consisting of direct care and indirect care is defined by aworkload constraintin set (4).

Constraint set (5) requires that the assignment variables be binary, and set (6) ensures the indirect care variables are

nonnegative. Constraints (7) give the upper and lower bounds on the marginal workload variables. Observe that for

eachτ ∈ T, n ∈ N , Aτnk has no upper bound sincemτn(k+1) = ∞.

The following proposition is obvious

Proposition 1. Let (X∗, A∗, E∗) be an optimal solution to SPA. Then for eachξ ∈ Ξ, τ ∈ T , n ∈ N , there exists a

positive integerl ≤ k such that

Aξ∗

τni =





mτn(i+1) − mτni 1 ≤ i < l,

∑i

j=1 Aξ∗
τnj − mτni i = l,

0 l < i ≤ k.

(8)

Given an assignmentX, the constraints in (3), (4), (6), and (7) can be decomposed by nurse and scenario resulting

in |N | × |Ξ| recourse subproblems. In the next section, we implement a Benders’ decomposition to solve SPA.

Although typical real-world problems cannot be solved to optimality within 30 minutes, the remainder of this paper

focuses on finding a good solution within the time limit.
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3 Algorithmic Approach

In this section, we present a Benders’ decomposition approach to solve SPA. Moreover, we develop an optimal greedy

algorithm for solving the recourse subproblems, and then wediscuss patient-to-nurse ratio constraints to improve

computational efficiency.

3.1 Benders Decomposition

Solving SPA with many scenarios and many time periods using branch and bound may be time consuming. However,

two-stage stochastic programming models, like SPA, have a block angular structure that is appropriate for mathemati-

cal decomposition. The standard L-shaped method, based upon Benders’ decomposition, is the most common solution

approach for two-stage stochastic programming problems [6, 11]. Applying Benders’ decomposition to SPA, the mas-

ter problem assigns nurses to patients, and each recourse problem penalizes the assigned workload. Not only does SPA

decompose by scenario like the standard L-shaped method, but it also decomposes by nurse into|N | × |Ξ| linear pro-

gramming subproblems. Therefore, the subproblems are evenmore manageable than the standard L-shaped method,

which only decomposes by scenario. LetX be a given assignment. For eacht ∈ T , let eξ
tn =

∑
p∈P (n) eξ

tpnXpn, and

let d
ξ

tn =
∑

p∈P (n) dξ
tpnXpn. Theprimal subproblem(PS

ξ
n) for each nursen ∈ N and each scenarioξ ∈ Ξ is given

by

min
∑

τ∈T

k∑

i=1

ατniA
ξ
τni (9)

|T |∑

τ=t

Eξ
tτn = eξ

tn ∀t ∈ T, (10)

k∑

i=1

Aξ
τni −

τ∑

t=1

Eξ
tτn = d

ξ

τn ∀τ ∈ T, (11)

(Aξ
n, Eξ

n) satisfy (6) and (7).

In the primal subproblem, the workload variablesAξ
τni are obtained, and the indirect care variablesEξ

tτn determine

the time periods in which indirect care is performed. Observe that the solution(Ã, Ẽ) is feasible whenẼξ
ttn = eξ

tn

andÃξ
tnk = Ẽξ

ttn + d
ξ

tn for all t ∈ T , and all other variables are zero.

Each primal subproblemPS
ξ
n can be formulated as a network flow problem, as depicted in Figure 2. Consider a

directed networkG = (N ,A) with node setN and arc setA, in which |N | = (2 + k)|T | + 1 and|A| = |T |(|T | +

1)/2+2k|T |. The network includes four types of nodes—t nodes (the left nodes in Figure 2),t′ nodes (the middle-left

nodes),t′i nodes (the middle-right nodes), and a sink node (the right node labeleds). For each time periodt ∈ T , a t

node with supplyeξ
tn and at′ node with supplyd

ξ

tn are inN . An arc betweent andt′ nodes is inA whenevert ≤ t′,

and the flow on this arc represents the value of variableEξ
tt′n in the primal subproblemPS

ξ
n. For eacht ∈ T and each

i = 1, . . . , k, at′i node is added toN , and an arc from thet′ node to thet′i node is included inA. The flow on the arc
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from thet′ node to thet′i node is the value of the variableAξ
t′in, so it has a per unit cost ofαt′ni and an upper bound

of mt′n(i+1) − mt′ni. A sink node with a demand of
∑

t∈T d
ξ

tn + eξ
tn is used, and arcs from thet′i nodes to the sink

node are inA.

Let πξ
tn, Y ξ

τn, andρξ
τni be the dual variables associated with constraint sets (10) and (11) and the upper bounds in

set (7), respectively. Thedual subproblem(DS
ξ
n) is

max
∑

t∈T

[
k∑

i=1

(mti − mt(i+1))ρ
ξ
tni

]
+ etπ

ξ
t + dtY

ξ
tn (12)

Y ξ
τn − ρξ

τni ≤ ατi ∀τ ∈ T, 1 ≤ i ≤ k, (13)

πξ
tn ≤ Y ξ

τn ∀t, τ ∈ T, t ≤ τ, (14)

ρξ
τni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, (15)

πξ
tn, Y ξ

τn free ∀t, τ ∈ T. (16)

The solution(π̃ξ
n, Ỹ ξ

n , ρ̃ξ
n) = 0 is always feasible, so both the primal and dual subproblems have optimal solutions.

Let DS be the combination of all dual subproblemsDS
ξ
n over all nurses and scenarios. Let∆ be the set of extreme

points for the dual subproblemDS . The original SPA problem is reformulated as follows:

min η (17)

η ≥
∑

n∈N

∑

ξ∈Ξ

∑

t∈T

φξ




∑

p∈P (n)

(
π̃ξ

tnetpn + Ỹ ξ
tndtpn

)
Xpn +

k∑

i=1

(mtni − mtn(i+1))ρ̃
ξ
τni


 ∀(π̃, Ỹ , ρ̃) ∈ ∆, (18)

whereXpn satisfy (2) and (5).

Dual extreme rays are ignored because the dual subproblem isalways feasible.

The L-shaped method is described as Algorithm 1. On each iteration, we consider a subset of dual extreme points

∆ ⊆ ∆, and let constraint set (18’) be the subset of (18) over∆. We solve a restricted master problem (2), (5), (17),

and (18’) to find an assignmentX and an anticipated objective valueη. Using the assignmentX, we solve the dual

subproblem over all of the nurses and scenarios to obtain(π̃, Ỹ , ρ̃). If the anticipated objective valueη is less than the

objective value of the dual solution(π̃, Ỹ , ρ̃), then we add a Benders’ optimality cut to (18’). Otherwise, the algorithm

terminates and the assignmentX is optimal. In the next section, we solve the subproblems.

3.2 Greedy Algorithm

In this section, we present a greedy algorithm to evaluate the recourse functionPS
ξ
n. Properties of solutions by the

greedy algorithm are stated, and we prove that the greedy algorithm is optimal. Finally, we describe how to find a

complimentary optimal dual solution. To simplify notation, we ignore the superscriptξ and the subscriptn.

The greedy algorithm works under the following reasonable assumption:
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Algorithm 1 Nurse Assignment Benders Decomposition Algorithm (NABDA).

∆ ← ∅, STOP ← FALSE .

while STOP = FALSE do

Solve the restricted master problem (2), (5), (17), and (18’) to obtain an assignmentX and an anticipated objective

valueη. (On the first iteration, letη ← −∞, and letX be a feasible assignment.)

for all n ∈ N , ξ ∈ Ξ do

Solve the dual subproblem(Dξ
n) to obtain extreme point(π̃ξ

n, Ỹ ξ
n , ρ̃ξ

n).

end for

if η <
∑

p∈P

∑
n∈N(P )

∑
ξ∈Ξ

∑
t∈T φξ

[(
π̃ξ

tnetpn + Ỹ ξ
tndtpn

)
Xpn +

∑k

i=1(mtni − mtn(i+1))ρ̃
ξ
τni

]
then

∆ ← ∆ ∪
{

(π̃, Ỹ , ρ̃)
}

, where(π̃, Ỹ , ρ̃) is the combination of the vectors(π̃ξ
n, Ỹ ξ

n , ρ̃ξ
n).

else

STOP ← TRUE .

end if

end while

Assumption A5 The nondecreasing piecewise linear penalty is the same for each time period; that is,α1i = α2i =

· · · = α|T |i andm1i = m2i = · · · = m|T |i for all i = 1, . . . , k,

The intuitive explanation for Assumption A5 is that workload is equally penalized throughout a shift.

Consider the greedy algorithm (GAPS) for solving the primalsubproblemPS , displayed as Algorithm 2. GAPS

uses a solution(Ã, Ẽ) that satisfies constraints in (6), (7), and (11), and it increasesÃ, Ẽ, and the objective value as

little as possible until constraints in set (10) are satisfied. First, GAPS introduces a counterl(τ) such that a marginal

increase in workload for time periodτ will increase the objective value byαl(τ). All direct care is assigned to its

given time period, and̃A is increased appropriately. On every iteration, GAPS considers the time periods in which

some indirect care on or prior to these time periods is unassigned. Among these time periods, GAPS examines those

with the smallest counterl (equivalently the least marginal penaltyα), and it selects the latest such time periodτ .

Then GAPS finds the latest time periodt ≤ τ that has remaining unassigned indirect care. NextÃτl(τ) andẼtτ are

increased until either̃Aτl(τ) reaches its upper bound (7) or all indirect care from time period t is assigned. The counter

l(τ) is incremented ifÃτl(τ) is increased to its upper bound.

Theorem 2. GAPS finds an optimal solution(Ã, Ẽ).

The proof Theorem 2 is given in the appendix. We now describe adual solution(π̃, Ỹ , ρ̃) to DS that is complimentary
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Algorithm 2 Greedy Algorithm for the Primal Subproblem (GAPS).
for all τ ∈ T do

Let the counterl(τ) be such thatmτl(τ) ≤ dτ < mτl(τ)+1.

Ãτi ←





mτ(i+1) − mτi 1 ≤ i < l(τ),

dτ − mτi i = l(τ),

0 l(τ) < i ≤ k.

Ẽtτ ← 0, ∀t ≤ τ

end for

while
∑|T |

τ̃=t
Ẽtτ̃ < et,∀t ∈ T do

τ ← max
{

arg minτ̂∈T

{
l(τ̂)

∣∣∣∃t̂ ≤ τ̂ ,
∑|T |

τ=t̂
Ẽt̂τ < et̂

}}
.

t ← max
{

t̂ ∈ T
∣∣∣t̂ ≤ τ,

∑|T |

τ̂=t̂
Et̂τ̂ < et̂

}
.

δ ← min
{

et −
∑|T |

τ̃=t
Ẽtτ̃ ,mτ(l(τ)+1) − Ãτl(τ)

}
.

Ãτl(τ) ← δ + Ãτl(τ)

Ẽtτ ← δ + Ẽtτ

if Ãτl(τ) = mτ(l(τ)+1) then

l(τ) ← l(τ) + 1.

end if

end while

13



to a solution from GAPS(Ã, Ẽ). The complementary slackness conditions ofPS andDS are

(−Aτi − mτi + mτ(i+1))ρτi = 0 ∀i = 1, . . . , k,∀τ ∈ T, (19)

(ατi − Yτ + ρτi)Aτi = 0 ∀i = 1, . . . , k,∀τ ∈ T, (20)

(πt − Yτ )Etτ = 0 ∀t, τ ∈ T, t ≤ τ. (21)

For each time periodτ , consider the following two sets of time periods:

T (τ) = {τ̃ ∈ T |∃t1, . . . , tq−1, τ1, ..., τq, τ1 = τ, τq = τ̃ , t1 ≤ τ2, t2 ≤ τ3, tq−1 ≤ τq,

Ẽt1τ1
, Ẽt2τ2

, ..., Ẽtq−1τq−1
> 0} ∪ {τ}, (22)

T −1(τ) = {t|Etτ̃ > 0,∀τ̃ ∈ T (τ)}. (23)

Let time period̃τ ∈ T (τ). Consider the dual solution(π̃, Ỹ , ρ̃) given by

Ỹτ =





minτ̃≥min T −1(τ){αl(τ̃)} if T −1(τ) 6= ∅

αl(τ) otherwise
∀τ ∈ T, (24)

π̃t = min
τ≥t

Ỹτ ∀t ∈ T, (25)

ρ̃τi = max{Ỹτ − αi, 0} ∀i = 1, . . . , k,∀τ ∈ T. (26)

Theorem 3. Let (Ã, Ẽ) be an optimal solution from GAPS. The dual solution given by (24)—(26) is a complimentary

optimal dual solution.

The proof of Theorem 3 is similarly in the appendix.

3.3 Patient-to-Nurse Ratio Constraint

Many states limit the number of patients that can be assignedto a nurse for certain units in a hospital. For instance,

California mandates nurse-to-patient ratio regulations that allow no more than six patients assigned to any one nurse

for medical/surgical unit [10]. Typically, the total number of nurses for a shift are obtained from the nurse rescheduling

stage. Based upon the number of nurses and the number of patients, we introduce the followingpatient-to-nurse ratio

constraints
∑

p∈P (n)

Xpn ≤

⌈
|P |

|N |

⌉
∀n ∈ N, (27)

wheredxe represents the ceiling of a valuex. Constraint set (27) serves the two important purposes:

• It reduces the feasible region of SPA and improves the performance of the algorithm.

• It prevents an assignment with an uneven number of patients,which would not be popular with the nurses even

if it were balanced in terms of required care.

Although constraint set (27) can lead to suboptimal solutions, we were unable to construct such a solution in practice.
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Instance Shift Pat RN LVN

1 Day 19 2 1

2 Day 15 4 0

3 Evening 15 2 1

4 Night 11 1 1

Table 1:Instances generated from Baylor data over ten months

4 Computational Study

In this section, we provide a computational study on nurse assignment. Problem instances were generated based

upon data from Baylor Regional Medical Center in Grapevine,Texas as described in Section 4.1. These instances,

however, cannot be solved exactly within 30 minutes. Consequently, the focus of the computational study is to find

good solutions within the time limit. Moreover, we considered several alternative assignment methods. Finally, we

compared the solutions from these methods with those from executing the Benders’ approach for 30 minutes.

4.1 Problem Instances

Each nurse at Baylor wears a badge that locates the nurse in the hospital unit. The purpose of the locator is so a charge

nurse can inform a nurse immediately when one of her patientscalls the nurses’ station. The locator system stores

data on the location of the nurses for one month. In addition to these data, Baylor provided encrypted patient data for

a medical surgery unit to study for this research from March 2004 - December 2004.

We generated four random instances based upon these data. The first two instances were day shifts from 8:00

AM to 4:00 PM, while instances 3 and 4 were evening and night shifts from 4:00 PM to 12:00 AM and 12:00 AM to

8:00 AM, respectively. Sundaramoorthi et al. [27] noted that patients’ diagnoses and locations are the most significant

factors affecting the amount of time nurses spend with patients. For each instance, we sampled a random set of patients

from an empirical distribution of patients with similar diagnoses and patient rooms. We used a census matrix from a

medical/surgical unit to determine the number and type of nurses for the shift. Although we assumed nurses in our

computational experiments were identical, SPA allows for nurses with different skills. Table 1 displays characteristics

of the four instances. The column labelled “instance” is therandom instance, “shift” is the time of the shift, “pat” is

the number of patients, and “RN” and “LVN” are the number of registered and licensed vocational nurses on duty,

respectively.

We partitioned the shift into eight one-hour time periods for T , and we generated 100, 200, 500, and 3000 random

scenarios forΞ. For each time periodτ ∈ T , each patientp ∈ P , and each scenarioξ ∈ Ξ, the direct caredξ
τp, was

sampled from a gamma distribution. Each gamma distributionwas fitted by the moment estimator method [35] from
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the amount of time during time periodτ that nurses were in the rooms of patients with diagnoses and rooms similar

to those of patientp. Because indirect care can be performed in several locations, it cannot be estimated from the data

from Baylor. However, in some patient classification systems for similar medicial/surgical units, total indirect careis

32% of direct care. Consequently, we estimated indirect care eξ
τp = 0.32 × dξ

τp, ∀τ ∈ T , ∀p ∈ P , and∀ξ ∈ Ξ. In

addition, we implicitly assumed that that direct care engenders indirect care.

4.2 Alternative Assignments

In this section, we describe several alternative approaches to finding an assignment. With many scenarios, stochastic

integer programming problems are often computationally intractable, but the Mean Value Problem (MVP) often pro-

vides a good solution [6]. For each of the four instances fromSection 4.1, we replaced the direct and indirect care

random variables with their mean, and we solved the deterministic integer programming problem. In all four instances,

solving MVP required less than one minute of CPU time, so finding a good solution is computationally tractable.

In addition to MVP, we also used a heuristic that balanced workload based upon the expected total required care of

the patients. When the number of nurses divides the number of patients evenly, the heuristic assigns the patients with

the greatest and least required care time to the same nurse. Otherwise, the heuristic assigns the patients with greatest

required care to the nurses who are assigned to fewer patients. Finally, we randomly divided the patients evenly among

the nurses without considering workload.

In practice, charge nurses often intuitively assign patients to nurses. More sophisticated hospitals use patient

classification systems that only consider the expected total care and ignore the fluctuations and uncertainty of care.

Consequently, assignments in practice are often similar tothose of the heuristic or random assignment.

4.3 Computational Results

In this section, we compare the performance of assignments from five different assignment methods. We present

the appropriate numbers of scenarios for solving SPA. We study the implementation of the patient-to-nurse ratio

constraints. Finally, the efficiency of using the GAPS versus the simplex method to solve the recourse subproblems is

discussed.

We evaluated the performance of five different nurse assignment methods–the random assignment method, the

heuristic, the mean value problem solution (MVP), and solving SPA with and without using the Benders’ approach,

denoted as SPA-IP and SPA-BA, respectively. If a method required more than 30 minutes to solve, we considered the

best solution found within the time limit.

Table 2 compares the expected excess workload for assignments given five different assignment approaches. MVP,

SPA-IP, and SPA-BA were implemented in ANSI C and processed by a Dual 3.06-GHz Intel Xeon Workstation us-

ing CPLEX 8.0 software. All assignments from SPA-IP and SPA-BA were obtained by optimizing the four patient
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instances with 500 scenarios. To find an initial solution forSPA-BA, we used the MVP for less than one minute and

then used SPA-BA for the remaining time. In other studies we found that averages estimated under 3000 scenarios

were within one minute of the true mean. Consequently, afterhaving obtained solutions from each approach, GAPS

calculated the excess workload of each assignment in each problem instance with 3000 scenarios. Table 2 displays the

expected workload in minutes, the average excess workload,and the average excess workload as a percentage of the

expected workload minutes.

In all four instances, SPA-BA found the best solution withinthe time limit. Assignments from SPA-BA reduced the

average excess workload for nurses between 2 minutes and 18 minutes over the random assignment, up to 15 minutes

over the heuristic assignment, and up to 13 minutes over MVP.Considering there are 1095 8-hour shifts per year,

SPA-BA could save up to 273 hours of excess workload each yearin each unit of a hospital. Thus, a nurse-assignment

decision-support system that used SPA-BA would reduce the burden of the nursing shortage.

We examined the number of scenarios that gives the best SPA results. We obtained assignments by optimizing

based upon the four patient instances with 100, 200, and 500 scenarios and evaluated those assignments with 3000

scenarios with GAPS. Table 3 compares the average excess workload and the percentage of average excess workload

to the expected workload minutes of optimizing SPA-IP and SPA-BA with different numbers of scenarios. Optimizing

using SPA-BA with 500 scenarios found solutions within one minute of solution quality of the best known solution in

each of the problem instances. Therefore, we used SPA-BA andSPA-IP with 500 scenarios in the remainder of this

study.

The computational effects of applying patient-to-nurse ratio constraints are in Table 4. Assignments were obtained

by solving MVP, SPA-IP, and SPA-BA with and without the patient-to-nurse ratio constraints. Solving SPA-IP and

SPA-BA were also based upon optimizing instances with 500 scenarios and evaluating those assignments with 3000

scenarios. Table 4 shows the average excess workload of assignments from the three methods with and without the

ratio constraints. Adding the patient-to-nurse ratio constraints to MVP and SPA-IP reduces average excess workload.

For both MVP and SPA-IP, there is only one problem instance inwhich the ratio constraints weakened the solu-

tion quality. Thus, the patient-to-nurse ratio constraints improve overall performance of MVP and SPA-IP. SPA-BA

provided good solutions without patient-to-nurse ratio implying that solving SPA with only Benders decomposition

algorithm provides well-balanced patient loads for nurses.

We compared the efficiencies of GAPS and the simplex method. Assignments were obtained by optimizing SPA-

BA with the four patient instances using both GAPS and CPLEX 8.0 to solve the linear subproblems. Table 5 displays

the average excess workload and the number of cuts added to the restricted master problem by solving subproblems

with GAPS and simplex. We can add more cuts using GAPS than using simplex in all instances, suggesting that GAPS

is faster than the simplex method. In three of the four patient instances, adding more Benders optimality cuts to the

restricted master problem improved the quality of solutions. GAPS is computationally efficient because it is faster than

a current commercial linear programming solver. Applying GAPS to problems also offers potentially better solutions.
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Instance Algorithm Expected Total Workload Average Excess Workload Percent

1 Random 1136 51.0 4.49

1 Heuristic 1136 50.0 4.40

1 MVP 1136 48.4 4.26

1 SPA-IP 1136 39.9 3.51

1 SPA-BA 1136 35.4 3.11

2 Random 1083 36.9 3.41

2 Heuristic 1083 31.2 2.88

2 MVP 1083 37.5 3.46

2 SPA-IP 1083 24.8 2.29

2 SPA-BA 1083 24.1 2.23

3 Random 927 59.0 6.36

3 Heuristic 927 47.9 5.17

3 MVP 927 51.4 5.54

3 SPA-IP 927 43.0 4.64

3 SPA-BA 927 40.9 4.41

4 Random 368 8.1 2.21

4 Heuristic 368 6.1 1.65

4 MVP 368 5.9 1.61

4 SPA-IP 368 6.4 1.73

4 SPA-BA 368 5.8 1.58

Table 2:The computational results comparing solutions from 5 methods on instances 1, 2, 3, and 4
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Expected 100 scenarios optimized 200 scenarios optimized 500 scenarios optimized

Instance Algorithm Patient Average Excess % Average Excess % Average Excess %

Workload Workload Workload Workload

1 SPA-IP 1136 35.6 3.13 35.5 3.12 39.9 3.51

1 SPA-BA 1136 34.2 3.01 34.4 3.03 35.4 3.11

2 SPA-IP 1083 24.5 2.26 25.4 2.35 24.8 2.29

2 SPA-BA 1083 25.7 2.37 25.8 2.39 24.1 2.23

3 SPA-IP 927 42.8 4.61 41.4 4.46 43.0 4.64

3 SPA-BA 927 41.8 4.51 40.8 4.40 40.9 4.41

4 SPA-IP 368 5.8 1.58 5.9 1.61 6.4 1.73

4 SPA-BA 368 5.8 1.57 5.9 1.61 5.8 1.58

Table 3:The computational results comparing average excess workload from solving SPA-IP and SPA-BA with differ-

ent numbers of scenarios

Instance Algorithm Average Excess Workload Average Excess Workload

with Ratio Constraints without Ratio Constraints

1 MVP 48.4 49.4

1 SPA-IP 39.9 59.5

1 SPA-BA 35.4 34.0

2 MVP 37.5 42.8

2 SPA-IP 24.8 28.7

2 SPA-BA 24.1 24.2

3 MVP 51.4 46.9

3 SPA-IP 43.0 89.0

3 SPA-BA 40.9 42.3

4 MVP 5.9 13.9

4 SPA-IP 6.4 5.8

4 SPA-BA 5.8 5.8

Table 4:The computational results comparing average excess workload from 3 methods with and without patient-to-

nurse ratio constraints
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Instance Algorithm Average Excess Workload no. of cuts Average Excess Workload no. of cuts

with GAPS with simplex

1 SPA-BA 35.4 428 34.4 385

2 SPA-BA 24.1 739 24.8 668

3 SPA-BA 40.9 658 41.0 585

4 SPA-BA 5.8 14 5.8 12

Table 5:The computational results comparing average excess workload from solving subproblems with GAPS and the

simplex method

5 Conclusions and Future Research

In this paper, we developed a two-stage stochastic integer programming model for nurse assignment (SPA) with a

recourse penalty function to minimize excess workload for nurses. We employed the L-shaped method to solve

our problem and demonstrated how it could save up to 273 hoursof excess workload on nurses per year in each

medical/surgical unit. However, decisions made in earlierstages of nurse planning can have a dramatic effect on nurse

assignment. Solutions for early stages that anticipate their consequences on nurse assignment would likely further

reduce the burden of the nursing shortage. One interesting topic of future research is to integrate some of the earlier

stages of nurse planning, such as nurse rescheduling, with the stochastic programming model for nurse assignment.
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Appendix

In the appendix, we give some properties of GAPS solutions and prove Theorems 2 and 3. Let problem

PS (e1, d1, . . . , d|T |) be a special instance ofPS in whichet = 0 for all t = 2, . . . , |T |.

Lemma 4. Let (Ã, Ẽ) be a solution found by GAPS onPS (e1, d1, . . . , d|T |). Then(Ã, Ẽ) is an optimal solution to

PS (e1, d1, . . . , d|T |).

Proof. Suppose to the contrary that(Ã, Ẽ) is not an optimal solution. Let̃l(τ), ∀τ ∈ T be the counters defined in

GAPS. Let(A∗, E∗) be an optimal solution toPS
ξ
n(e1, d1, . . . , d|T |) that minimizes the distance||E∗ − Ẽ||. Let

l∗(τ), ∀τ ∈ T , be the counters defined in Proposition 1. IfA∗
τi = mi+1 − mi andA∗

τ(i+1) = 0, thenl∗(τ) = i + 1.

Because(A∗, E∗) 6= (Ã, Ẽ) and
∑|T |

τ=1 E∗
1τ =

∑|T |
τ=1 Ẽ1τ = e1, there exist time periods̃τ , τ∗ ∈ T such that

dτ̃ ≤
∑l̃(τ̃)

i=1 Ãτ̃ i = dτ̃ + Ẽ1τ̃ <
∑l∗(τ̃)

i=1 A∗
τ̃ i = dτ̃ + E∗

1τ̃ anddτ∗ ≤
∑l∗(τ∗)

i=1 A∗
τ∗i = dτ∗ + E∗

1τ∗ <
∑l̃(τ∗)

i=1 Ãτ∗i =

dτ∗ + Ẽ1τ∗ . Now consider the following cases:

Case 1: Supposedτ∗ + Ẽ1τ∗ ≤ ml̃(τ̃)+1. Thendτ∗ + E∗
1τ∗ < dτ∗ + Ẽ1τ∗ ≤ ml̃(τ̃)+1 anddτ̃ + E∗

1τ̃ > dτ̃ +

Ẽ1τ̃ ≥ ml̃(τ̃). By Assumption A5, increasingE∗
1τ∗ and decreasingE∗

1τ̃ does not increase the objective value

of (A∗, E∗). Consequently, it is not an optimal solution toPS (e1, d1, . . . , d|T |) that minimizes the distance

||E∗ − Ẽ||.

Case 2: Supposedτ∗ + Ẽ1τ∗ > ml̃(τ̃)+1. Consider the last iteration of GAPS in which̃E1τ∗ was increased. By the

definition of GAPS,̃l(τ∗) ≤ l̃(τ̃), sodτ∗ + Ẽ1τ∗ would have increased to at mostml̃(τ̃)+1, in contradiction to

the assumption thatdτ∗ + Ẽ1τ∗ > ml̃(τ̃)+1.

Thus,(Ã, Ẽ) is an optimal solution toPS (e1, d1, . . . , d|T |).

Now consider two primal problemsPS (e1, d1, d
1

2, . . . , d
1

|T |) andPS (e1, d1, d
2

2, . . . , d
2

|T |). Let primal problems

PS (d
1

2, . . . , d
1

|T |) andPS (d
2

2, . . . , d
2

|T |) be special instances in whiche1 = d1 = 0 and
∑|T |

t=2 d
1

t =
∑|T |

t=2 d
2

t and let
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z
PS(d

1

2
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1

|T |)
andz

PS(d
2

2
,...,d

2

|T |)
be their optimal objective values, respectively. Without loss of generality, suppose

z
PS(d

1

2
,...,d

1

|T |)
< z

PS(d
2

2
,...,d

2

|T |)
.

Lemma 5. z
PS(e1,d1,d

1

2
,...,d

1

|T |)
≤ z

PS(e1,d1,d
2

2
,...,d

2

|T |)
.

Proof. Let (A2, E2) be an optimal solution toPS (e1, d1, d
2

2, . . . , d
2

|T |). Construct the following solution(A1, E1).

Let the set of time periodsT 1 ⊂ T be such that∀t1 ∈ T 1, d
1

t1 > d
2

t1 +E2
1t1

. For each time periodt ∈ T \T 1, increase

the value ofE1
1t such thatd

1

t + E1
1t = d

2

t + E2
1t. Sincee1 +

∑
t∈T d

1

t = e1 +
∑

t∈T d
2

t =
∑

t∈T\T 1 d
2

t + E2
1t +

∑
t∈T 1 d

2

t + E2
1t <

∑
t∈T\T 1 d

1

t + E1
1t +

∑
t∈T 1 d

1

t , then
∑

t∈T E1
1t > e1. Let t1 ∈ arg max{d

1

t + E1
1t|E

1
1t > 0}, let

l1 = max{i = 1, . . . , k|d
1

t + E1
1t > mi}, and reduceE1

1t until eitherE1
1t = 0, d

1

t + E1
1t = mi, or

∑
t∈T E1

1t = e1.

Repeat the selection oft1 and reduction ofE1
1t until

∑
t∈T E1

1t = e1. Consider the subset of time periodsT 2 ⊂ T

for which a time periodt2 ∈ T 2, d
2

t2 > d
1

t2 . Reducing the most penalizedd
2

t2 in time periodst2 ∈ T 2 and increasing

d
2

t1 in time periodst1 ∈ T 1 does not increase the objective penalty becausez
PS(d

1

2
,...,d

1

|T |)
< z

PS(d
2

2
,...,d

2

|T |)
. By

definition T 2 ⊆ T \ T 1, so reducingd
1

t2 + E1
1t2

in the most penalized time periodst2 ∈ T \ T 1 to account for
∑

t1∈T 2 d
1

t1 − d
2

t1 + E2
1t1

will not increase the objective penalty. Thus the objectivefunction value of(A1, E1) is less

than that of(A2, E2), soz
PS(e1,d1,d

1

2
,...,d

1

|T |)
≤ z

PS(e1,d1,d
2

2
,...,d

2

|T |)
.

Consider the revised greedy algorithm (RGAPS) forPS as given by Algorithm 3.

Algorithm 3 Revised Greedy Algorithm (RGAPS)

t ← |T |.

while t ≥ 1 do

SolvePS (et, dt, . . . , d|T |) using GAPS.

dt̂ ← dt̂ + Ett̂, ∀t̂ = t, . . . , |T |.

t ← t − 1.

end while

Lemma 6. Let (Ã, Ẽ) be a solution found by RGAPS. Then(Ã, Ẽ) is an optimal solution forPS .

Proof. By induction and Lemmas 4 and 5,(Ã, Ẽ) is an optimal solution forPS .

Lemma 7. Let (Ã, Ẽ) be a solution found by GAPS. Let time periodτ ∈ T be such that there exists time periods

t1, t2 ∈ T , wheret1 < t2 ≤ τ and Ẽt1τ > 0 and Ẽt2τ > 0. Then GAPS increases̃Et2τ to its final value before it

increasesẼt1τ .

Proof. Consider the first iteration in which̃Et1τ was increased. By the definition of GAPS,Ẽt2τ would have been

selected unless
∑|T |

τ̃=t2
Ẽt2τ̃ = et2 . Consequently,̃Et2τ must have been increased its final value before the iteration.

24



Theorem 2. GAPS finds an optimal solution(Ã, Ẽ).

Proof. By Lemma 6, it remains to be proven that RGAPS and GAPS return equivalent solutions. Consider the fol-

lowing induction proof on the number of time periods|T |. (Base Case) For |T | = 1, RGAPS has one iteration, which

uses GAPS, so they are equivalent algorithms. (Induction Hypothesis) Suppose RGAPS and GAPS are equivalent

algorithms for a problem instancePS in which |T | = T. Let (AT, ET) the optimal solution given by both algorithms

with counterslT(t), ∀t ∈ T . Consider an instance ofPS in which |T | = T + 1 andd
T+1

t+1 = d
T

t andeT+1
t+1 = eT

t ,

∀t = 1, . . . ,T. Let (AT+1, ET+1) be the solution given by GAPS. Letτ̂ ∈ T be such thatET+1
1τ̂ > 0, and consider

the iteration in whichET+1
1τ̂ was first increased. Prior to the iteration,ET+1

t̂τ̂
had been increased to its final value and

∑|T |

τ=t̂
ET+1

t̂τ
= eT+1

t̂
for all time periodŝt = 2, . . . , τ̂ by Lemma 7 and the definition of GAPS. Since∀t̂ = 2, . . . , τ̂ ,

∑|T |

τ=t̂
ET+1

t̂τ
= eT+1

t̂
, ET+1

t̂τ
must have been its final value, so the value ofET+1

1τ̂ has no effect on the valueET+1
t̂τ

.

The iteration then increasesET+1
1τ̂ and updatesl(τ̂) if necessary but makes no changes tol(τ) for τ 6= τ̂ . Hence the

order of the selection of a time periodτ in GAPS is not changed forτ 6= τ̂ . Thus the value ofET+1
1τ̂ has no effect on

the valueET+1
t̂τ

, ∀t̂ = 2, . . . , |T |, and by the induction hypothesis,ET+1
t̂τ

must be the same in the solution found using

RGAPS. Moreover, prior to the iteration that first increasedET+1
1τ̂ , the counterl(τ̂) must be equal to the equivalent

counter in RGAPS after the iteration in whicht = T. Since the magnitude of an increase inET+1
1τ̂ uses the same

rule in both GAPS and RGAPS, the selection and changes in the counters are the same. Thus GAPS and RGAPS are

equivalent algorithms.

Lemma 8. Let(Ã, Ẽ) be an optimal solution found by GAPS with objective valuez. Let(Ỹ , π̃, ρ̃) be the dual solution

given by (24)-(26). With a sufficiently smallε > 0 increase indτ for someτ ∈ T , there exists a primal feasible

solution with an objective function valuez + εỸτ .

Proof. Consider the following two cases:

Case 1: SupposeT −1(τ) = ∅. If dτ is increased byε ≤ ml(τ)+1 −ml(τ) − Ãτl(τ), then a feasible solution in which

Ãτl(τ) is increased byε can be constructed. Since the penalty onÃτl(τ) is αl(τ), the increase in the objective

value isεαl(τ) = εỸτ .

Case 2: SupposeT −1(τ) 6= ∅. Let τ̂ ∈ arg minτ̃≥min T −1(τ){αl(τ̃)}, and lett̂ = min T −1(τ). By the definition of

T −1(τ), ∃τ̃ ∈ T (τ) such thatẼt̂τ̃ > 0. By definition ofT (τ), ∃t1, . . . , tq−1, τ1 = τ, . . . , τq = τ̃ such that

t1 ≤ τ2, t2 ≤ τ3, . . . , tq−1 ≤ τq andẼt1τ1
, Ẽt2τ2

, . . . , Ẽtq−1τq−1
> 0. Now suppose

ε ≤ min(Ẽt1τ1
, Ẽt2τ2

, . . . , Ẽtq−1τq−1
, Ẽt̂τ̃ ,ml(τ̂)+1 − ml(τ̂) − Ãl(τ̂)).

If dτ were increased byε, a feasible solution can be constructed in which bothẼt1τ1
, Ẽt2τ2

, ..., Ẽtq−1τq−1
and

Ẽt̂τ̃ were decreased byε, andẼt1τ2
, Ẽt2τ3

, ..., Ẽtq−1τq
, Ẽt̂τ̂ , andÃl(τ̂) were increased byε. Since the penalty

on Ãl(τ̂) is αl(τ̂) = Ỹτ , the increase in the objective value isεỸτ .
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Let (Ã, Ẽ) be a primal solution found by GAPS, and let(Ỹ , π̃, ρ̃) be the dual solution given by (24)-(26).

Lemma 9. (Ỹ , π̃, ρ̃) satisfies the complementary slackness conditions (19).

Proof. Suppose to the contrary, there exists a time periodτ ∈ T such thatÃτi < mi+1 − mi and ρ̃τi > 0. If dτ

is increased by a sufficiently smallε > 0, then a primal feasible solution in which the objective value is increased

by εαi can be constructed by Case 1 of Lemma 8. Consequently,Ỹτ ≤ αi, in contradiction to the assumption that

ρ̃τi = Ỹτ − αi > 0. Hence no suchτ ∈ T exists.

Lemma 10. (Ỹ , π̃, ρ̃) satisfies the complementary slackness conditions (20).

Proof. Suppose to the contrary, there exist a time periodτ ∈ T such thatÃτi > 0 andỸτ − ρ̃τi < αi. The index

i ≤ l(τ) sinceÃτi = 0,∀i ≥ l(τ) + 1. This impliesρ̃τi = 0 andỸτ < αi by definition (26) and̃Yτ < αi ≤ αl(τ)

by the definition ofα. SinceỸτ < αl(τ), the setT −1(τ) 6= ∅ by the definition (24). For a sufficiently smallε > 0

increase indτ , a primal feasible solution can be constructed in which the objective value is increased byεỸτ by case 2

in Lemma 8. Similarly, for a smallε′ = min(ε, Ãτi) > 0 decrease iñAτi, a primal feasible solution can be constructed

in which the objective value is decreased byε′(αi − Ỹτ ) > 0. The assumption that(Ã, Ẽ) is optimal is contradicted,

so no suchτ ∈ T exists.

Lemma 11. (Ỹ , π̃, ρ̃) satisfies the complementary slackness conditions (21).

Proof. Suppose there exist time periodst ≤ τ in which Ẽtτ > 0. By definition (25), let̃τ ∈ arg minτ̄≥t

{
Ỹτ̄

}
, so

π̃t = Ỹτ̃ and τ̃ ≥ t. By Lemma 8, for a sufficiently smallε > 0 increase indτ̃ , a primal feasible solution in which

the objective value is increased byεỸτ̃ can be constructed. Similarly, for a smallε′ = min(ε, Ẽtτ ) > 0 increase in

dτ̃ , a primal feasible solution in which the objective value is increased byεỸτ̃ can be constructed by decreasingẼtτ ,

increasingẼtτ̃ , and changing the same variables as done for an increase indτ̃ by ε′. Since case 2 of Lemma 8 includes

all such general constructions of primal feasible solutions, the increase in the objective function valueε′Ỹτ̃ is no less

thanε′Ỹτ . Hence,Ỹτ = Ỹτ̃ = π̃t.

Theorem 3. Let(Ã, Ẽ) be an optimal solution from GAPS. The dual solution given by (24) - (26) is an complimentary

optimal dual solution.

Proof. By definitions of(Ỹ , π̃, ρ̃) in equations (24) - (26), the dual feasibility constraints (13) - (16) are satisfied. By

Lemmas 9 - 11,(Ỹ , π̃, ρ̃) satisfies the complemnentary slackness conditions (19) - (21).

26


