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Abstract. We present a brief overview of four stages of nurse plannittg.the last stage, which assigns nurses
to patients, a stochastic integer programming model isldped. A Benders’ decomposition approach is proposed
to solve this problem, and a greedy algorithm is employedteesthe recourse subproblem. Patient-to-nurse ratio
constraints are introduced to balance the workload of sussewnell as improve the overall performance of the algo-
rithm. Computational results are provided based upon data Baylor Regional Medical Center in Grapevine, Texas.

Finally, areas of future research are discussed.
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1 Introduction

One of the greatest problems in health care today is a skeodfagurses. The demand for nurses is growing, while
fewer young nurses are available to provide care. A survap&yAmerican Hospital Association found that 75% of
vacant hospital staffing positions are for registered raifs@]. The number of nurses per capita declined by 2% from
1996 to 2000, while the attrition rate of hospital nursiragffsjrew from 11.7% in 1998 to 26.2% in 2000 [14]. From
1993 to 2001, enrollment in registered nurse degree pragdatlined by 50,000 nurses [19]. With fewer new nurses
entering the profession, the average age of the workingtexgid nurse is increasing [7]. From 1983 to 1998, the
number of nurses under 30 years of age decreased by 41% [t8]eldierly population is growing in numbers, and
they need substantially more health care services [30]ebar, the number of citizens over 65 years old is expected
to be 70 million in 2030, more than twice that of 1999 [1]. Ceagently, the shortage will become more severe. By
2020, the United States will face a 20% shortage in the nurobeurses needed for the nation’s health care system
[7].

The nursing shortage affects patient care. The Nationakyumn Consumers’ Experiences with Patient Safety and



Quality Information Consumers showed that the most imporiactors causing medical error are workload, stress,

and fatigue of health professionals (74%); not enough tipemtwith patients (70%); and not enough nurses in health
care systems (69%) [28]. A study by the Agency for Healthd@esearch and Quality reported that nurses spend
insufficient time with patients in hospitals with low stafjifevels [26]. Powers [23] observed that excessive workload

enhances poor quality of patient care. Given that nursisguees are so scarce, intelligent planning methods are
needed to reduce the burden of the shortage. One methodueregcessive workload on nurses is balancing patient
assignments.

Stochastic programming has successfully optimized matysiny decisions including budgets for nursing [16],
but no one has used it to assign nurses to patients. Optionizasearch on nurse assignment only includes a few
deterministic integer programming models. In this papes, develop a stochastic programming model for nurse
assignment with a recourse penalty function to minimizeeegavorkload for nurses. In the stochastic model, the
amount of required care of a patient is random, so it consideveral scenarios for a patient’'s required care. It
provides the initial assignment of nurses to patients fanraing shift in a hospital unit.

In the remainder of Section 1, we describe four stages ofenplanning—Aurse budgetingnurse scheduling
nurse reschedulingandnurse assignmentin Section 2, we present a two-stage stochastic progragymindel for
nurse assignment that minimizes excess workload, anddBefiresents algorithmic approaches to solve it. Because
of the special structure of the recourse function, we sdheesecond-stage subproblem with a greedy algorithm.
Anecdotal accounts from nurses suggest that nurse asaigmsnasually performed within 30 minutes before each
shift. Consequently, the focus of this research is to find @gmlution with the time limitation. A patient-to-nurse
ratio is introduced to balance the number of patients assditmeach nurse. In Section 4, we compare the performance
from our model with those from other methods based upon daa & medical surgery unit at Baylor Medical Center

in Grapevine, Texas. Finally, we discuss conclusions apit$mf future research in Section 5.

1.1 Overview of Nurse Planning

Nurses work in a variety of environments including hospitallinics, private doctor’s offices, nursing homes, and
individual homes. Although our research is on nurses at aseital, it may be applied to other hospitals and envi-
ronments with multiple nurses and patients. Hospitals énUited States employ two types of nurseegistered

nurses (RNsandlicensed vocational nurses (LVNS)Ve describe the four stages of nurse planning in the Sexction

1.1.1 through 1.1.4.

111 NurseBudgeting

Financial planners create budgets and determine how masgsithey will hire as permanent staff and how many they
will hire from an agency. Warner [32] implemented a Markovanalysis to forecast nursing personnel for general

wards of a hospital. Kao and Tung [17] predicted patient detaa@ver a year by an autoregressive integrated moving



average forecasting method. Dieck [13] compared the Bakide modeling and the Winters’ heuristic approach for
forecasting patients admission to public health facsiti@rivedi [29] developed a mixed integer goal programming

model, while Kao and Queyranne [16] applied a stochastignarmaming approach to optimize a budget for nurses.

1.1.2 Nurse Scheduling

In the second stage, a nurse manager forecasts the numbatiesfte that will enter a hospital unit over four to six
weeks. Based upon the forecasted number of patients, thegeanses a census matrix to determine the number and
level of nurses needed. When the number of nurses of eachsymeivn, a schedule is created that partitions a day
into shifts that are typically 8 or 12-hours in length. Tyadlg, the manager posts a schedule two weeks before the
beginning of the time horizon. Most academic literature orsa planning is on scheduling [34, 20, 33, 8, 9, 3, 2, 4, 15,
18, 12, 22]. Because these algorithms only consider theerturdgeting and scheduling stages, they ignore changes
in staff and patient forecasts and assume the scheduleanitiitowed as planned. Anecdotal evidence suggests that
changes to the schedule are frequent, so intelligent gpignmiodels to reschedule nurses will dramatically improve

nurse planning.

1.1.3 Nurse Rescheduling

The rescheduling process occurs 90 minutes before eatchAlmifirse supervisor reviews the scheduled nurses based
upon the activities of the previous shift, activities of ethunits, and either a census matrix or a patient classificati
system. If there is a shortage of nurses for the upcoming, shé supervisor tries to recruit additional nurses who
work as needed?RN nursesnurses who work part tim@art-time nursesand nurses who are not scheduled for
the upcoming shifteff-duty nurses If an insufficient set of nurses agrees to work the shift, gshpervisor, upon
approval from a nurse manager, hires temporary agencysiasatisfy the remaining shortage. If there are too many
scheduled nurses for the shift than needed, then the sepehas surplus PRN nurses and part-time nurses take the
day off without pay.

Patient classification systems are the most sophisticatghblogy for nurse rescheduling. These systems group
patients into one of several categories. They estimate hamyrtimes certain tasks will be performed in caring for
a patient in each category. Using these estimates and theetexptime required to perform each task, the systems
determine the amount of time to care for a typical patientpAients are admitted into the unit, the system classifies
these patients, and nurse supervisors use the estimatedtatre to determine how many nurses are needed for the
shift in nurse rescheduling. As a patient’s condition clemdie may be given a new patient classification. Although
patient classifications systems provide benchmarks faenptanning, they have several drawbacks as described in
Section 2.2. Siferd and Benton [25] developed a stochasitetrbased upon the patients in a unit to determine how
many nurses are required for the shift. Bard and Purnomorfsjgmted an integer programming model for daily nurse

rescheduling and implemented a branch-and-price algotithsolve the problem.



1.1.4 Nurse Assignment

In the final stage of nurse planningyrse assignmena charge nurse assigns each patient to a nurse at the leginni
of a shift. Typically, the nurse assignment has to be performithin 30 minutes before a shift. Although the charge
nurse may update an assignment, in many hospital units, asichedical-surgical units, revised assignments only
include assigning a nurse to a new admission; rarely is amattassigned a new nurse during the middle of a shift.
Consequently, the initial assignment can determine theuatnaf workload given to each nurse during the shift. A
nurse’sworkloadis the amount of time required to care for her patients ovéma period, andexcess workloaib

the difference between the workload and the time availabledre. In reality, excess workload results in other nurses
assisting overworked nurses. One important considerationrse assignment is workload balance.

Developing balanced workloads for nurses is difficult beesaf the variation of patients’ conditions [21]. In prac-
tice, most nurse assignments are based upon either ariv@juiigment or the caseload method, in which each nurse
is assigned the same number of patients [24]. Modern patiassification systems partition the set of patients into
groups, and each group is assigned to a nurse (Overfelt 208)s and Kapadia [31] presented a patient classifica-
tion system and optimization model to determine the levstaffing to meet the required workload level, but they did
not use a detailed nurse assignment model. Mullinax anddyaffl] developed an integer linear programming model
that assigns patients to nurses in a neonatal intensiveuo#iteThe nurseries are divided into a number of physical
zones. They used a zone-based heuristic that assigns moiz@ses and computes patient assignments within each
zone. Unlike the stochastic programming model in this paiberse approaches and patient classification systems
ignore uncertainty, which is a major drawback considerireggnormous variance in patient care. We are unaware of

any previous research on stochastic nurse assignment.

1.2 Contribution

The contribution of this paper includes a stochastic pnogning model for the nurse assignment problem. The model

addresses several important issues that are ignored ipraatiterature and patient classification systems.

¢ Patient UncertaintyTraditional nurse assignment models ignore uncertainggaBse of the enormous variance

in patient care, the stochastic programming model thatidersuncertainty provides more robust solutions.

e Fluctuations in Patient Care.Traditional models ignore fluctuations in patient care agrihe shift. Some
patients, such as expectant mothers, require minimal oargaft of a shift but require significant care at other

times during the shift. The stochastic programming modetiters when patients require care.

¢ Differences in NursesIraditional models ignore the different skills of the nigs®any of them use a targeted
amount of time to perform certain tasks instead of an avetiageto complete the task. Some targets may be
realistic for some nurses but unrealistic for others. Tlelsistic programming model considers the skills of

each nurse individually.



In addition to the formulation of a new nurse assignmens, plaiper contributes a Benders’ decomposition approach to
solve it. We develop an optimal greedy algorithm to solvermurse subproblem. We demonstrate the effectiveness
of the model and algorithms with a computational study bagsah data from a medical surgery unit at Baylor

Regional Medical Center in Grapevine, Texas, that compawesethods with current approaches.

2 Modée Description

In Section 1, we described four stages of nurse planning,iratiis section we present a stochastic programming

model for the final stage, nurse assignment.

2.1 Model Assumptions

Prior to the beginning of a shift, a charge nurse assigns patibnt to an RN or an LVN. Although patients can

usually be nursed by either type of nurse, state regulatanspreclude them from performing certain patient care.
Furthermore, some states, such as Texas, require that pageyt be assessed by an RN within any 24-hour time
period. Consequently, a charge nurse will assign RNs tempEtivho were assigned LVNS in the previous shift. We

assume:

Assumption Al. A charge nurse determines which nurses can be assignedtb pdiiients before optimizing nurse

assignment.

Because patients enter and leave the hospital unit thraighshift, nurse assignments are updated dynamically.
However, revised nurse assignments often only includeyaisgj a nurse to a new admission. Rarely is a patient
reassigned a new nurse during the middle of a shift due toezasdor continuity of care. Hence, we make the

following assumption:
Assumption A2. Nurse assignments are not changed, except when there dseatbmitted patients.

Nurses distinguish between two types of patient cBigect careis the amount of time nurses spend with patients,
while indirect careis time spent on other tasks for patients, such as docun@mtaft a patient’s condition. In our
stochastic programming model, we divide a nurse shift ieteesal smalletime periods The amount of direct and
indirect care the patients require in each time period arengas parameters to the model. Nurses often provide
indirect care throughout the shift, but direct care is offetermined by a patient’s condition, which is usually more

urgent. Consequently, we make the following assumption:

Assumption A3. Direct care needs to be performed within the given time piesdile indirect care can be performed

in any time period from the given period until the end of thitsh



In addition to assumption A3, we assume nurses optimalbcate their indirect care to minimize excess workload. In
some assignments, a nurse’s patients will require moretiarethe nurse can provide. In such cases, a charge nurse,
a nurse aide, or another nurse may assist the overworked.ndHi@vever, an assignment requiring such assistance
is undesirable. Implicitly, we presume that nurses recesgistance when absolutely necessary. The penalty of
an assignment will be determined by a nondecreasing piseeimiear function as shown in Figure 1. Because the
function penalizes assignments with overworked nursegsaignment will not include overworked nurses if such a
solution exists. We describe the details of this functioBéttion 2.2.

During a shift patients may enter the hospital unit by adimisfrom an emergency room, direct admission from
a doctor, transferring from another unit, or birth. Patsemtay leave by discharge, transferring to another unit, or
death. After a patient is discharged and his room has beanadeand sterilized, a charge nurse may assign a newly
admitted patient to the original patient’'s room. The chargese will often assign the nurse who cared for the recently
discharged patient to the newly admitted patient. She cticipate some of the patients that will be admitted because
they are currently in another hospital unit. Howeveruaanticipated patieninay enter a hospital unit during a shift
without any warning prior to the shift. Unanticipated pat&must be assigned a nurse, so we include them in the
set of patients. We can represent an unknown number of patigrincreasing the number of patients and randomly
allowing their required care to be zero. Similarly, we cardelaandom times for admissions and discharges. In this

paper, we assume:

Assumption A4. The set of patients to be assigned includes potential wipated patients, so the number of patients

is fixed.

2.2 Stochastic Model for Nurse Assignment

Let P and N be the sets of patients and nurses for a shift, respectiVéé/assume that a charge nurse determines
which nurses can be assigned to which patients before gatighnpatient assignment. For each patient P, let
N(p) be the set of nurses which can be assigned to patieRbr each nurse € N, let P(n) be the set of patients
that can be assigned to nursgthat is,P(n) = {p € P|n € N(p)}. For each patient € P, and nursex € N(p), let
assignment variable

X 1 if patientp € P is assigned to nurse € N(p),
pn —

0 otherwise.
Let = be a set of random scenarios, and for egaeh=, let ¢¢ be the probability that scenargooccurs.
A shift is divided into a set of time periods. As the workload of a nurse increases in a time period 7', her
patients receive less care, which is unsafe. We model thaltgdor assigning workload to nurses as a monotonically
nondecreasing piecewise linear function witlpieces, as shown in Figure 1. For each time periogd 7' and each

nursen € N, let Aﬁm be the amount of workload assigned to nuidgetweenmn.,,,; andm.,,(;+1) in scenarig € =.
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Figure 1:The penalty for assigning workload to nurses is a monotdlyiceondecreasing piecewise linear function.

Let a,; be the marginal penalty ofl,,,; for 1 < ¢ < k. Because the penalty is monotonically nondecreasing,
0=mr1 < ... < Mepg @O < g < ... < arpg. FOrnotation, letn,,, .41y be co. This penalty function is
nondecreasing and piecewise linear, so the marginal peioaldssigning more patient care to an overworked nurse is
greater than that of a nurse with less workload. Conseqyéind function naturally balances the workload and allows
nurses to provide better care. One special case of the pdoatition hask = 2, a1 = 0, arpe = 1, @andma 2
equal to the duration of the time periedor eachr € T'and each € N. We refer to the value of variablé$, , as
theexcess workloadn nursen in time periodr and scenarig.

For each patienp € P, each scenarig € =, and each € T, let dfp be the amount of direct care required by
patientp in time periodt. Because patient may be admitted or discharged during a shift, the patierg oay vary
dramatically throughout the shift. For each patigmt P, each scenari§ € =, and each time periode T, let efp be
the amount of indirect care required by patierdt the beginning of time perioduntil the end of the shift. For each
pair of time periodgt,7) € T x T, wheret < 7, and each nurse € N, letindirect workload variableE? . be the
total indirect care that can be performed during or afteetperiods and is performed in time period by nursen.

The amount of direct and indirect care the patients requoieach time period are given as parameters to the model.



The stochastic programming model for patient assignmd?h)® formulated as

k
min Z Z Z Z gi)éosz;Aim 1)

(€eEneN T€T i=1

> Xpn=1 Vp € P, (2)
neN(p)

IT|
Z etgp’nXPn = ZEan Vt € T’ n e N7£ € E’ (3)

pEP(n) T=t

T k
Z df-anpn + ZEan = ZA'érnz VT € T’ n e N’g € E’ (4)

peP(n) t=1 i=1
Xpn € {0,1} Vp € P(n),n € N, (5)
Ef. >0 Vt,reT,t <T,n€ N,EEE, (6)
an(i+1)_m’rniZA§—niZO VTET,ISiSk,REN,SEE. (7)

Objective (1) minimizes the workload penalty on nurses. fitst constraint set—thaurse assignment constraints
(2) ensure that every patient is assigned to a nurseinttiect care constraintén set (3) determine the total indirect
care performed by nursefrom the beginning of time periotuntil the end of the shift. For each time peried: T,

the workload of nurse € N consisting of direct care and indirect care is defined yoekload constraintn set (4).
Constraint set (5) requires that the assignment variatddsirary, and set (6) ensures the indirect care variables are
nonnegative. Constraints (7) give the upper and lower bewmdthe marginal workload variables. Observe that for
eachr € T,n € N, A, has no upper bound sinee,,, 1) = oo.

The following proposition is obvious

Proposition 1. Let (X*, A*, E*) be an optimal solution to SPA. Then for egck =, 7 € T, n € N, there exists a

positive integet < k such that

Mrn(i41) — Mrni 1<i< lv
A= A s i =1, (8)
0 <1<k

Given an assignmen, the constraints in (3), (4), (6), and (7) can be decompogeuilse and scenario resulting
in |[N| x |Z| recourse subproblems. In the next section, we implementralds’ decomposition to solve SPA.
Although typical real-world problems cannot be solved ttiroplity within 30 minutes, the remainder of this paper

focuses on finding a good solution within the time limit.



3 Algorithmic Approach

In this section, we present a Benders’ decomposition apprtmasolve SPA. Moreover, we develop an optimal greedy
algorithm for solving the recourse subproblems, and therdiseuss patient-to-nurse ratio constraints to improve

computational efficiency.

3.1 Benders Decomposition

Solving SPA with many scenarios and many time periods usiagdh and bound may be time consuming. However,
two-stage stochastic programming models, like SPA, havecklangular structure that is appropriate for mathemati-
cal decomposition. The standard L-shaped method, basedBgralers’ decomposition, is the most common solution
approach for two-stage stochastic programming problenikl]e Applying Benders’ decomposition to SPA, the mas-
ter problem assigns nurses to patients, and each recoutsemrpenalizes the assigned workload. Not only does SPA
decompose by scenario like the standard L-shaped methbid deo decomposes by nurse infg| x |Z| linear pro-
gramming subproblems. Therefore, the subproblems areraeea manageable than the standard L-shaped method,
X

which only decomposes by scenario. Déte a given assignment. For each T, Ietéfn =53 and

pEP(n) ez‘pn pns

let dm = peP(n) dtanpn. Theprimal subproblen{ PS$) for each nurse. € N and each scenaripc = is given

by

k
min Z Z aTmAfm- )

TeT i=1
|7
Z ES, =%, VteT, (10)
Z A‘rnz Z Ef‘r"n - & VT € T’ (11)

(A8, ES) satisfy (6) and (7)

no

In the primal subproblem, the workload variablé$, ; are obtained, and the indirect care variabig's, determine
the time periods in which indirect care is performed. Obsehat the solutiorf A, E) is feasible wherE?,, = €5,
andAE k= =B, + d for all ¢ € T', and all other variables are zero.

Each primal subproblerﬁ’Si can be formulated as a network flow problem, as depicted inrEig. Consider a
directed networlG = (N, A) with node set\ and arc set4, in which |N| = (24 k)|T| 4+ 1 and|A| = |T|(|T] +
1)/242k|T|. The network includes four types of nodes+edes (the left nodes in Figure 2)nodes (the middle-left
nodes)¢’: nodes (the middle-right nodes), and a sink node (the rigtietabeleds). For each time periode T', at
node with supply?, and at’ node with supplﬁfn are in/V. An arc between andt’ nodes is ind whenever < ¢/,
and the flow on this arc represents the value of vari@je, in the primal subproblen?Ss. For eacht € T and each

i=1,...,k, at'i node is added td/, and an arc from th& node to the’i node is included ivd. The flow on the arc
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Figure 2:The network flow primal subproblem
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from thet’ node to the’i node is the value of the variablféf/ so it has a per unit cost of,,,,; and an upper bound

n?

of myrp(ig1) — Murni- A sink node with a demand of, - Efn + €, is used, and arcs from thi& nodes to the sink
node are inA.
Let wfn, Y5, andpﬁm- be the dual variables associated with constraint sets (idD}j¥.) and the upper bounds in

set (7), respectively. Théual subproblen{DS%,) is

k

max Z Z(mm — mt(i+1)),0§m + étﬂ'f + EtYﬁl (12)
teT Li=1

VE, — 05 < o VreT,1<i<k, (13)

xt <YE Vi, e T, t <, (14)

05, >0 VreT,1<i<k, (15)

nt YE free vt, 7 €T. (16)

The solution(7$, Y5, 55) = 0 is always feasible, so both the primal and dual subprobleaxs bptimal solutions.
Let DS be the combination of all dual subproblet$® over all nurses and scenarios. Lebe the set of extreme

points for the dual subproble®S. The original SPA problem is reformulated as follows:

minn a7

k
=YY T (frfnetpn + ﬁidtm) Xpn + > (Mini = mungisn))in;| V& Y,5) €A, (18)

neN E€=teT pEP(n) i=1

where X, satisfy (2) and (5)

Dual extreme rays are ignored because the dual subproblaimags feasible.

The L-shaped method is described as Algorithm 1. On eaddtiber, we consider a subset of dual extreme points
A C A, and let constraint set (18’) be the subset of (18) aveiWe solve a restricted master problem (2), (5), (17),
and (18) to find an assignmeif and an anticipated objective valge Using the assignmenX, we solve the dual
subproblem over all of the nurses and scenarios to obfai¥i, 7). If the anticipated objective valugis less than the
objective value of the dual solutidf, Y, p), then we add a Benders’ optimality cut to (18’). Otherwise, algorithm

terminates and the assignmentis optimal. In the next section, we solve the subproblems.

3.2 Greedy Algorithm

In this section, we present a greedy algorithm to evaluaeebourse functionPSfL. Properties of solutions by the
greedy algorithm are stated, and we prove that the greedyithlig is optimal. Finally, we describe how to find a
complimentary optimal dual solution. To simplify notatjome ignore the superscriptand the subscript.

The greedy algorithm works under the following reasonabsumption:

11



Algorithm 1 Nurse Assignment Benders Decomposition Algorithm (NABDA)
A« (), STOP « FALSE.

while STOP = FALSE do

Solve the restricted master problem (2), (5), (17), and)(b8btain an assignment and an anticipated objective
value7. (On the first iteration, leff < —oo, and letX be a feasible assignment.)
foralne N, €=do
Solve the dual subprobletiD{) to obtain extreme pointé, Y5, 55).
end for
17 < 3 pep Znen(p) 2ocez 2oter ¢ Kﬁfnetpn + Y/tidtpn) X + Yoiy (Mimi — mtn(i-}-l))ﬁini} then
A—AuU {(7% Y, ﬁ)}, where(#, Y, p) is the combination of the vectofg$, V£, 55).
else
STOP «— TRUE.
end if

end while

Assumption A5 The nondecreasing piecewise linear penalty is the sameafir #me period; that isy;; = ag; =

"':Oé|T|iandm1i:in:"':m|T|if0ra”’L':1,...,k,

The intuitive explanation for Assumption A5 is that worktbia equally penalized throughout a shift.

Consider the greedy algorithm (GAPS) for solving the priswdbproblemPS, displayed as Algorithm 2. GAPS
uses a solutioii4, ) that satisfies constraints in (6), (7), and (11), and it iasesA, E, and the objective value as
little as possible until constraints in set (10) are satisfigirst, GAPS introduces a countér) such that a marginal
increase in workload for time period will increase the objective value hy;(,). All direct care is assigned to its
given time period, andl is increased appropriately. On every iteration, GAPS atertsithe time periods in which
some indirect care on or prior to these time periods is ugassi. Among these time periods, GAPS examines those
with the smallest countdr (equivalently the least marginal penaty, and it selects the latest such time periad
Then GAPS finds the latest time period 7 that has remaining unassigned indirect care. Nk)ggﬂ andE,, are
increased until eitheﬁTl(T) reaches its upper bound (7) or all indirect care from timégpkris assigned. The counter

I(7) is incremented ifALZ(T) is increased to its upper bound.
Theorem 2. GAPS finds an optimal solutiqid, E).

The proof Theorem 2 is given in the appendix. We now descrithgshsolution(7, Y, p) to DS that is complimentary

12



Algorithm 2 Greedy Algorithm for the Primal Subproblem (GAPS).

for all 7 € T'do
Let the countet(7) be such thatn ;) < dr < M y(r)41-
Mr(ipr) — Mri 1 <0 <U(7),
Ari =S d, —myy i=1(7),
0 I(r) <i<k.
B —0,Vt<T
end for
while "1 E- <%, vt € T do
T — max {arg minzep {l(?) ’3?§ T, ZLT:%E‘;? < é;}}.
t « max {tAE T ‘?g T, ZLT:%E;? < Eg}.
6 < min {a S B me ey — ATZ(T)}'
Ay — 6+ Ay
Eiyy «— 6+ Er
it Ay = M ((r)+1) then
I(7) — I(r) + 1.
end if

end while

13



to a solution from GAP$A, E). The complementary slackness conditiong®sfand DS are

(=Ari =Mz +Mriy1))pri =0 Vi=1,...,k,VT €T, (19)
(ari =Y+ pri)Ari =0 Vi=1,...,k,Vr €T, (20)
(7Tt - YT)EtT =0 vt,T S T,t <. (21)

For each time period, consider the following two sets of time periods:

T(T) = {7: S T|E|f,1, L. 775,1_1,7'1, ey Tgy T1 =T, Tqg = %,tl < T2,t2 < Tg,tq_l < Tqs
Et1717Et2T2a ceny th—qu—l > 0} U {7'}7 (22)
T Y1) = {t|Ewz > 0,¥F € T(7)}. (23)

Let time periodr € 7 (7). Consider the dual solutiofir, Y, 5) given by

~ min%Zmin T*l(T){al(f')} if T_l(T) # w

Y, = VreT, (24)
Qy(r) otherwise

T = In>irt1 Y, VteT, (25)

pri = max{Y; — a;,0} Vi=1,...,k\VreT. (26)

Theorem 3. Let ([1, E) be an optimal solution from GAPS. The dual solution giverddy-((26) is a complimentary

optimal dual solution.

The proof of Theorem 3 is similarly in the appendix.

3.3 Patient-to-Nurse Ratio Constraint

Many states limit the number of patients that can be assigmachurse for certain units in a hospital. For instance,
California mandates nurse-to-patient ratio regulatitvas &llow no more than six patients assigned to any one nurse
for medical/surgical unit [10]. Typically, the total nunmis# nurses for a shift are obtained from the nurse reschegluli
stage. Based upon the number of nurses and the number aftpatiee introduce the followinpgatient-to-nurse ratio

constraints

P
> Xms || e @n
pEP(n)

where[z] represents the ceiling of a value Constraint set (27) serves the two important purposes:

¢ It reduces the feasible region of SPA and improves the padace of the algorithm.

e It prevents an assignment with an uneven number of patiehish would not be popular with the nurses even

if it were balanced in terms of required care.

Although constraint set (27) can lead to suboptimal sohgtiave were unable to construct such a solution in practice.
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Instance| Shift | Pat| RN | LVN
1 Day | 19| 2 1
Day | 15| 4 0
2 1

1 1

2
3 Evening| 15
4 Night | 11

Table 1:Instances generated from Baylor data over ten months

4 Computational Study

In this section, we provide a computational study on nursigament. Problem instances were generated based
upon data from Baylor Regional Medical Center in Grapevifexas as described in Section 4.1. These instances,
however, cannot be solved exactly within 30 minutes. Comsetly, the focus of the computational study is to find

good solutions within the time limit. Moreover, we consigérseveral alternative assignment methods. Finally, we

compared the solutions from these methods with those frarawging the Benders’ approach for 30 minutes.

4.1 Problem |nstances

Each nurse at Baylor wears a badge that locates the nurseliw#pital unit. The purpose of the locator is so a charge
nurse can inform a nurse immediately when one of her patigits the nurses’ station. The locator system stores
data on the location of the nurses for one month. In additidhése data, Baylor provided encrypted patient data for
a medical surgery unit to study for this research from Mar@d4- December 2004.

We generated four random instances based upon these datdirsittwo instances were day shifts from 8:00
AM to 4:00 PM, while instances 3 and 4 were evening and nigtfitssiiom 4:00 PM to 12:00 AM and 12:00 AM to
8:00 AM, respectively. Sundaramoorthi et al. [27] noted thatients’ diagnoses and locations are the most significant
factors affecting the amount of time nurses spend with ptid-or each instance, we sampled a random set of patients
from an empirical distribution of patients with similar di@oses and patient rooms. We used a census matrix from a
medical/surgical unit to determine the number and type o$esifor the shift. Although we assumed nurses in our
computational experiments were identical, SPA allows fosas with different skills. Table 1 displays charactéersst
of the four instances. The column labelled “instance” isrdredom instance, “shift” is the time of the shift, “pat” is
the number of patients, and “RN” and “LVN” are the number difistered and licensed vocational nurses on duty,
respectively.

We partitioned the shift into eight one-hour time periodsfpand we generated 100, 200, 500, and 3000 random

scenarios foE. For each time period € T, each patienp € P, and each scenari < =, the direct carels , was

Tp’
sampled from a gamma distribution. Each gamma distributias fitted by the moment estimator method [35] from
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the amount of time during time periadthat nurses were in the rooms of patients with diagnoses@omds similar
to those of patienp. Because indirect care can be performed in several locgtibcannot be estimated from the data
from Baylor. However, in some patient classification systdéon similar medicial/surgical units, total indirect case

32% of direct care. Consequently, we estimated indirecﬁeiey =032xds,,VreT,Vp e P,andV¢ € Z. In

Tp!

addition, we implicitly assumed that that direct care emnlgpes indirect care.

4.2 Alternative Assignments

In this section, we describe several alternative appraatthéinding an assignment. With many scenarios, stochastic
integer programming problems are often computationatiyagtable, but the Mean Value Problem (MVP) often pro-
vides a good solution [6]. For each of the four instances f&eution 4.1, we replaced the direct and indirect care
random variables with their mean, and we solved the detéstidinteger programming problem. In all four instances,
solving MVP required less than one minute of CPU time, so fig@i good solution is computationally tractable.

In addition to MVP, we also used a heuristic that balancedkisad based upon the expected total required care of
the patients. When the number of nurses divides the numbeatiginps evenly, the heuristic assigns the patients with
the greatest and least required care time to the same nuttserwise, the heuristic assigns the patients with greatest
required care to the nurses who are assigned to fewer patkeinglly, we randomly divided the patients evenly among
the nurses without considering workload.

In practice, charge nurses often intuitively assign p#i¢a nurses. More sophisticated hospitals use patient
classification systems that only consider the expected ¢ate and ignore the fluctuations and uncertainty of care.

Consequently, assignments in practice are often simildrdse of the heuristic or random assignment.

4.3 Computational Results

In this section, we compare the performance of assignmeois five different assignment methods. We present
the appropriate numbers of scenarios for solving SPA. Wdystbe implementation of the patient-to-nurse ratio
constraints. Finally, the efficiency of using the GAPS verthe simplex method to solve the recourse subproblems is
discussed.

We evaluated the performance of five different nurse asstgmimethods—the random assignment method, the
heuristic, the mean value problem solution (MVP), and sm\$PA with and without using the Benders’ approach,
denoted as SPA-IP and SPA-BA, respectively. If a methodiredunore than 30 minutes to solve, we considered the
best solution found within the time limit.

Table 2 compares the expected excess workload for assigagieen five different assignment approaches. MVP,
SPA-IP, and SPA-BA were implemented in ANSI C and processed Bual 3.06-GHz Intel Xeon Workstation us-
ing CPLEX 8.0 software. All assignments from SPA-IP and S were obtained by optimizing the four patient
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instances with 500 scenarios. To find an initial solutionS&A-BA, we used the MVP for less than one minute and
then used SPA-BA for the remaining time. In other studies sl that averages estimated under 3000 scenarios
were within one minute of the true mean. Consequently, &fi®ing obtained solutions from each approach, GAPS
calculated the excess workload of each assignment in eablepn instance with 3000 scenarios. Table 2 displays the
expected workload in minutes, the average excess workéoatithe average excess workload as a percentage of the
expected workload minutes.

In all four instances, SPA-BA found the best solution wittkia time limit. Assignments from SPA-BA reduced the
average excess workload for nurses between 2 minutes anéhLi8&siover the random assignment, up to 15 minutes
over the heuristic assignment, and up to 13 minutes over NDdRsidering there are 1095 8-hour shifts per year,
SPA-BA could save up to 273 hours of excess workload eachigesch unit of a hospital. Thus, a nurse-assignment
decision-support system that used SPA-BA would reduceuhgeln of the nursing shortage.

We examined the number of scenarios that gives the best Sfedtge We obtained assignments by optimizing
based upon the four patient instances with 100, 200, and &tasios and evaluated those assignments with 3000
scenarios with GAPS. Table 3 compares the average excekbaaiand the percentage of average excess workload
to the expected workload minutes of optimizing SPA-IP and-8R with different numbers of scenarios. Optimizing
using SPA-BA with 500 scenarios found solutions within oriaute of solution quality of the best known solution in
each of the problem instances. Therefore, we used SPA-B/AS&AdIP with 500 scenarios in the remainder of this
study.

The computational effects of applying patient-to-nurd®reonstraints are in Table 4. Assignments were obtained
by solving MVP, SPA-IP, and SPA-BA with and without the pati¢o-nurse ratio constraints. Solving SPA-IP and
SPA-BA were also based upon optimizing instances with 5@dagos and evaluating those assignments with 3000
scenarios. Table 4 shows the average excess workload ghassits from the three methods with and without the
ratio constraints. Adding the patient-to-nurse ratio ¢t@ists to MVP and SPA-IP reduces average excess workload.
For both MVP and SPA-IP, there is only one problem instancehich the ratio constraints weakened the solu-
tion quality. Thus, the patient-to-nurse ratio constiintprove overall performance of MVP and SPA-IP. SPA-BA
provided good solutions without patient-to-nurse ratigplying that solving SPA with only Benders decomposition
algorithm provides well-balanced patient loads for nurses

We compared the efficiencies of GAPS and the simplex methadigAments were obtained by optimizing SPA-
BA with the four patient instances using both GAPS and CPLEX@& solve the linear subproblems. Table 5 displays
the average excess workload and the number of cuts added tegtiicted master problem by solving subproblems
with GAPS and simplex. We can add more cuts using GAPS thaug sgnplex in all instances, suggesting that GAPS
is faster than the simplex method. In three of the four paiigstances, adding more Benders optimality cuts to the
restricted master problem improved the quality of soludicdBAPS is computationally efficient because it is fastem tha

a current commercial linear programming solver. Applyinr§Rs to problems also offers potentially better solutions.
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Instance| Algorithm | Expected Total Workload Average Excess Workload Percent
1 Random 1136 51.0 4.49
1 Heuristic 1136 50.0 4.40
1 MVP 1136 48.4 4.26
1 SPA-IP 1136 39.9 3,51
1 SPA-BA 1136 354 3.11
2 Random 1083 36.9 341
2 Heuristic 1083 31.2 2.88
2 MVP 1083 375 3.46
2 SPA-IP 1083 24.8 2.29
2 SPA-BA 1083 24.1 2.23
3 Random 927 59.0 6.36
3 Heuristic 927 47.9 5.17
3 MVP 927 51.4 5.54
3 SPA-IP 927 43.0 4.64
3 SPA-BA 927 40.9 4.41
4 Random 368 8.1 221
4 Heuristic 368 6.1 1.65
4 MVP 368 5.9 1.61
4 SPA-IP 368 6.4 1.73
4 SPA-BA 368 5.8 1.58

Table 2: The computational results comparing solutions from 5 maghan instances 1, 2, 3, and 4
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Expected| 100 scenarios optimized 200 scenarios optimized 500 scenarios optimized
Instance| Algorithm | Patient | Average Excess % | Average Excess % | Average Excess %

Workload Workload Workload Workload
1 SPA-IP 1136 35.6 3.13 355 3.12 39.9 351
1 SPA-BA 1136 34.2 3.01 344 3.03 354 311
2 SPA-IP 1083 24.5 2.26 254 2.35 24.8 2.29
2 SPA-BA 1083 25.7 2.37 25.8 2.39 241 2.23
3 SPA-IP 927 42.8 4.61 41.4 4.46 43.0 4.64
3 SPA-BA 927 41.8 4.51 40.8 4.40 40.9 441
4 SPA-IP 368 5.8 1.58 5.9 1.61 6.4 1.73
4 SPA-BA 368 5.8 1.57 5.9 1.61 5.8 1.58

Table 3:The computational results comparing average excess waalkftom solving SPA-IP and SPA-BA with differ-

ent numbers of scenarios

Instance| Algorithm | Average Excess Workload Average Excess Workload
with Ratio Constraints | without Ratio Constraints
1 MVP 48.4 494
1 SPA-IP 39.9 59.5
1 SPA-BA 354 34.0
2 MVP 375 42.8
2 SPA-IP 24.8 28.7
2 SPA-BA 241 24.2
3 MVP 51.4 46.9
3 SPA-IP 43.0 89.0
3 SPA-BA 40.9 42.3
4 MVP 5.9 13.9
4 SPA-IP 6.4 5.8
4 SPA-BA 5.8 5.8

Table 4:The computational results comparing average excess wadlkii@m 3 methods with and without patient-to-

nurse ratio constraints
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Instance| Algorithm | Average Excess Workload no. of cuts| Average Excess Workload no. of cuts
with GAPS with simplex
1 SPA-BA 354 428 34.4 385
2 SPA-BA 241 739 24.8 668
3 SPA-BA 40.9 658 41.0 585
4 SPA-BA 5.8 14 5.8 12

Table 5:The computational results comparing average excess walkiom solving subproblems with GAPS and the

simplex method

5 Conclusions and Future Research

In this paper, we developed a two-stage stochastic integgramming model for nurse assignment (SPA) with a
recourse penalty function to minimize excess workload farsas. We employed the L-shaped method to solve
our problem and demonstrated how it could save up to 273 hafuexcess workload on nurses per year in each
medical/surgical unit. However, decisions made in easliages of nurse planning can have a dramatic effect on nurse
assignment. Solutions for early stages that anticipatie tomsequences on nurse assignment would likely further
reduce the burden of the nursing shortage. One interestpig of future research is to integrate some of the earlier

stages of nurse planning, such as nurse rescheduling,veitstéchastic programming model for nurse assignment.
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Appendix
In the appendix, we give some properties of GAPS solutiodspmove Theorems 2 and 3. Let problem

PS(e1,dy, ..., dr|) be a special instance &fS in whiche, = 0 forallt = 2,...,|T].

Lemma4. Let (A, E) be a solution found by GAPS dS(ey,ds, ..., d|r|). Then(4, E) is an optimal solution to
PS(€1,31, . ,E|T|).

Proof. Suppose to the contrary théd, £) is not an optimal solution. Ldf(7), ¥r € T be the counters defined in
GAPS. Let(A*, E*) be an optimal solution t&S5, (e, ds, ..., d|r|) that minimizes the distancgE* — E||. Let
(p1) = 0, thenl*(r) = i + 1.
Because(A* EY) # (A E)and S Er = ST B = &, there exist time periods, 7 € T such that
<D A =G+ Brs < N D Az, = ds + Bnandd,e < G A = e + B < ST Ay =

d.« + E1,.-. Now consider the following cases:

I*(r), V7 € T, be the counters defined in Proposition 1Alf; = m;, —m; andA*

Casel: Supposel,. + Eip- < mj;y,,. Thend.. + Ef.. < dre + Eipe < myj,, andds + Ef; > ds +

Fi: > mic . By Assumption A5, increasing’j . and decreasin@’;- does not increase the objective value
of (A*,E*). Consequently, it is not an optimal solution R§ (€1, ds, . .., d7|) that minimizes the distance
|E" — E]l.

Case2: Supposel,- + Eppe > my Consider the last iteration of GAPS in whi#h - was increased. By the

T)+1*
definition of GAPS](7*) < I(7), sod,- 4+ E1.- would have increased to at mosf -, ,, in contradiction to

the assumption that,. + E;,« > M1

Thus, (4, E) is an optimal solution t®S (€1, dx, . .. , dj7)). O
Now consider two primal problemBS (e, ds, s, . . ,E‘lﬂ) and PS (1, dy, dy, ... ,E|2T|). Let primal problems

PS(ds, ... ,E‘lﬂ) and PS(d;, ... 78‘2T|) be special instances in whieh = d; = 0 and>>)",d, = 7L d and let
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andz be their optimal objective values, respectively. Withasgd of generality, suppose

z =1 =1 —2 =2
PS(dz,...,d‘Tl) PS(dz,...,d‘ﬂ)

<z

z =1 =1 —2 = .
PS(d2,.,.,d‘T|) PS(dQ,...,d‘T‘)

Lemmas. zpgz, 3, ) < 2Ps@ 2, dh)

Proof. Let (42, E?) be an optimal solution td’S(él,El,Eg, . ,E‘Qﬂ). Construct the following solutionA!, E).
Let the set of time periods® C T be such thatt! € T, Eil > Efl + E3,,. For each time periotle 7'\ T, increase
the value ofZ}, such thaid, + El, = d. + EZ,. Sincez; + Sier d, =& + ZteTﬁf = Yierm d + B2 +
Sieri di + B < Yyem dy + Bl + Y e dy, thenY, - B, > &1, Lett! € argmax{d, + E}y| E], > 0}, let
P=max{i=1,..., k\&tl + E}, > m;}, and reducez}, until either £, = 0, Ei + Ei, = m, ory, . Ef, = e.
Repeat the selection ¢f and reduction ofz}, until >, _,. E}, = €. Consider the subset of time pericfi$ c T
for which a time period? € 72, Efg > E;. Reducing the most penalizasz in time periodst? € 7 and increasing

831 in time periodst! € T! does not increase the objective penalty becayse,: <
27"

o z =2 -2 .. B
dip) PS(dy,....d7)) y

definiton 72 C T\ T, so reducing?uliz + Ej,, in the most penalized time period% € T\ T to account for
e EL - Efl + E2,, will not increase the objective penalty. Thus the objedlirection value of A, E') is less

1t
2 2 o _ o _
than that of( A=, E¢), SOZPS(Ehdhd;’”“’d‘lT‘) < Zp(er B iy)” O

Consider the revised greedy algorithm (RGAPS) /6t as given by Algorithm 3.

Algorithm 3 Revised Greedy Algorithm (RGAPS)
t — |T‘

whilet > 1 do
Solve PS(&;,dy, ..., dr|) using GAPS.
d; «—d; + B, Vi =1t,...,|T).
t«—t—1.

end while

Lemma6. Let(A, E) be a solution found by RGAPS. Theh, E) is an optimal solution foiPs.
Proof. By induction and Lemmas 4 and 54, E) is an optimal solution foiPS. O

Lemma 7. Let (A,E) be a solution found by GAPS. Let time period= T be such that there exists time periods
t1,ty € T, Wheret; < t, < 7andE,,, > 0 and E,,. > 0. Then GAPS increasds,, . to its final value before it

increases, ;.

Proof. Consider the first iteration in whicEtlT was increased. By the definition of GAPEW would have been
selected unIesELT:‘t2 E}Z; = €. ConsequentlyEtzT must have been increased its final value before the iteration
O
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Theorem 2. GAPS finds an optimal solutidpd, £).

Proof. By Lemma 6, it remains to be proven that RGAPS and GAPS retguivalent solutions. Consider the fol-
lowing induction proof on the number of time periody. (Base CasgFor |T'| = 1, RGAPS has one iteration, which
uses GAPS, so they are equivalent algorithmadyction Hypothes)sSuppose RGAPS and GAPS are equivalent
algorithms for a problem instandes in which |[T| = T. Let (AT, ET) the optimal solution given by both algorithms
with counterdT(¢), vt € T. Consider an instance @S in which [T| = T + 1 andﬁ;r:ll =4 ande/ ' = ef,

vt =1,...,T. Let(AT*+! ET+!) be the solution given by GAPS. Létc T be such thalZ.* > 0, and consider
the iteration in whichZ."' was first increased. Prior to the iteratidfi,. "' had been increased to its final value and
Z‘T‘»E;E“ = e'*! for all time periods = 2, ..., by Lemma 7 and the definition of GAPS. Sirice=2,...,7,

T=t T

YT BT+ — g7+ ET+! must have been its final value, so the valugadtt! has no effect on the valug™+".
T=t IT t tT iT

. . . T+1 A . -_— A
The iteration then increasds . and update$(7) if necessary but makes no changeg(t for 7 # 7. Hence the

order of the selection of a time perieadn GAPS is not changed far # 7. Thus the value oElT++1 has no effect on

the valueE”” "', vi = 2, ..., |T|, and by the induction hypothesis;_ "' must be the same in the solution found using
RGAPS. Moreover, prior to the iteration that first increaﬁﬁ“, the countet(7) must be equal to the equivalent
counter in RGAPS after the iteration in whi¢h= T. Since the magnitude of an increaseAi."" uses the same
rule in both GAPS and RGAPS, the selection and changes iroilvgers are the same. Thus GAPS and RGAPS are

equivalent algorithms. O

Lemmas. Let(A, E) be an optimal solution found by GAPS with objective valukeet (Y, 7, 5) be the dual solution
given by (24)-(26). With a sufficiently small> 0 increase ind, for somer € T, there exists a primal feasible

solution with an objective function valuet Y.
Proof. Consider the following two cases:

Casel: Suppose&Z ~!(7) = 0. If d, is increased by < My(r)41 = My(r) — A‘rl(r)v then a feasible solution in which
/Lz(r) is increased by can be constructed. Since the penalty/b,q(ﬂ is oy (), the increase in the objective

value issay(,) = €Y.

Case2: SupposeZ ~'(7) # (). Let+ € arg MiNs> min 7-1(7) {00 (7) } @and lett = min7~'(7). By the definition of
T-'(r), 37 € T(r) such thatE;. > 0. By definition of 7(7), 3t1,...,t, 1,71 = T,...,7, = 7 such that

ty < 7oty <73,...,tg1 <TgandEy ., Etyryy .o, By, 7, > 0. NOW suppose
e <min(Eyry, Bty oo Bty yry oy By iy 41 — mugs) — Aigsy).
If d, were increased by, a feasible solution can be constructed in which bBth,,, Ei, -, -.., thfmfl and

E; were decreased by andEy, ., Ey, ., ..., By, ,+,, E;;, andA;;) were increased by. Since the penalty

on A;) is ays) = Y-, the increase in the objective valuesis; .
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Let (4, E) be a primal solution found by GAPS, and (&f, 7, 5) be the dual solution given by (24)-(26).

Lemma9. (Y, 7, p) satisfies the complementary slackness conditions (19).

Proof. Suppose to the contrary, there exists a time periagl 1" such thatd,; < mir1 —m; andpr; > 0. If d,
is increased by a sufficiently small> 0, then a primal feasible solution in which the objective eals increased
by ec; can be constructed by Case 1 of Lemma 8. Consequéntly; «;, in contradiction to the assumption that

pri =Y, —a; > 0. Hence no such € T exists. O

Lemma10. (Y, 7, p) satisfies the complementary slackness conditions (20).

Proof. Suppose to the contrary, there exist a time petiod 7' such thatd,; > 0 andY, — pri < a;. The index

i < 1(r) sinceA,; = 0,Yi > I() + 1. This impliesj,; = 0 andY, < a; by definition (26) and; < a; < ay(r)

by the definition ofw. SinceY, < (), the setT ~1(7) # 0 by the definition (24). For a sufficiently small> 0
increase inl,., a primal feasible solution can be constructed in which thjeative value is increased by, by case 2

in Lemma 8. Similarly, fora smal = min(e, fln-) > (decreaseinl,;, a primal feasible solution can be constructed
in which the objective value is decreaseddr; — Y;) > 0. The assumption thdtd, £) is optimal is contradicted,

S0 no suchr € T exists. O
Lemmall. (Y, /) satisfies the complementary slackness conditions (21).

Proof. Suppose there exist time periotls< 7 in which E;, > 0. By definition (25), letF € arg min;>; {Y;}, S0
7 = Y- and7 > t. By Lemma 8, for a sufficiently smadl > 0 increase ind;, a primal feasible solution in which
the objective value is increased bY; can be constructed. Similarly, for a small= min(s,E’tT) > 0 increase in
d>, a primal feasible solution in which the objective valuerisreased byY; can be constructed by decreasifig,
increasingF, ;, and changing the same variables as done for an incredsdin:'. Since case 2 of Lemma 8 includes
all such general constructions of primal feasible solujdhe increase in the objective function valt¥; is no less
thane’Y,. HenceY, = Y: = 7. O

Theorem 3. Let (A, E) be an optimal solution from GAPS. The dual solution giver2dy { (26) is an complimentary

optimal dual solution.

Proof. By definitions of(Y', 7, 5) in equations (24) - (26), the dual feasibility constrairit8)(- (16) are satisfied. By

Lemmas 9 - 11(}77 7, p) satisfies the complemnentary slackness conditions (19)- (2 O
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