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Abstract

The fleet assignment model allocates a fleet of aircraft to scheduled flight legs in an airline timetable. The robust

fleet assignment model addressed in this paper utilizes a two-stage stochastic programming framework along with

the Boeing concept of demand driven dispatch to assign crew-compatible aircraft in the first stage, so as to enhance

the demand capturing potential of swapping in the second stage. A design and analysis of computer experiments

approach is utilized to reduce the computation involved in solving the problem. A Latin hypercube-based design is

developed within the feasible region, and regression splines are employed to obtain the approximation for the second-

stage recourse function. The results on the accuracy of the fit for a real airline carrier are presented and future work is

discussed.

1 Introduction

As airline woes continue to persist, mainly due to rising fuel costs, major domestic airlines are battling to reduce

costs, increase load factors, and improve revenues. The International Air Transport Association reports that North

American carriers are expected to lose $8 billion dollars in the year 2005 (IATA 2005b). One way to reduce costs and

increase revenue is to strike a balance between supply (seats) and demand (passengers). Utilizing a smaller capacity

aircraft would result in spill due to seat shortage, and usage of a larger capacity aircraft would result in flying empty

seats. To avoid this, airline Fleet Assignment Models (FAMs) are used to assign aircraft to the scheduled flights

in order to maximize profit (revenue− cost). FAMs have been credited with an annual savings of $100 million at

Delta (Subramanian et al. 1994), $15 million annually at USAirways (Rushmeier and Kontogiorgis 1997), and a 1.4%

improvement in operating margins at American Airlines (Abara 1989).

The quality of a FAM solution depends upon the accuracy of cost and revenue estimates. While cost estimates are

relatively stable and well known, revenue estimates depend on demand forecasts. In addition to seasonal variations,

airline passenger demand has been affected by various events, such as the terrorist attacks on September 11, 2001,

the outbreak of SARS, and recently rising fuel costs forcing the airlines to increase fares and indirectly affect demand

(IATA 2005a). This uncertainty in demand makes it challenging to assign the right type of aircraft to each flight

leg in the schedule, which is published 90 days prior to the departure of the flight. Consequently, modeling demand

stochastically and delaying the fleet assignment decision closer to departure would likely improve profit.

In this regard, stochastic programming and the Boeing concept of Demand Driven Dispatch are very useful. A

brief introduction to the two concepts are given in Sections 1.1 and 1.2.

1.1 Demand Driven Dispatch

Since most demand for flights is realized after the schedule is published, arobust FAM approach would include

reallocation of aircraft much closer to departure. Berge and Hopperstad (1993) introduced the concept of Demand

Driven Dispatch (D3), in order to match demand to aircraft close to departure of the flight. In this approach, they
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use two stages of decision-making. The first stage occurs 90 days prior to the departure of the flight, when the

flight schedules are published. During this stage, crew-compatible families of aircraft are assigned to flights in the

airline timetable. Two aircraft are said to becrew-compatible, if they have the same cockpit model; hence, the same

crew could operate either aircraft type. The second stage occurs two weeks prior to the departure of flights, when

most of the demand is realized and individual aircraft are assigned within the crew-compatible families based on the

demand. Swapping can take place with the assignment of specific aircraft in the second stage. For example, Boeing

757 and 767 models are crew-compatible, but a 767 can fly more passengers than a 757. Suppose flights A and B are

initially allocated a 757 and 767, respectively. If two weeks before departure, flight A has realized a higher demand

than expected, while demand is lower than expected for flight B, then the airline can swap the 757 and 767 without

affecting the crew schedule. Higher profit is achieved via this swapping since more revenue is captured, and the the

cost of swapping is usually insignificant for the airline.

Using this concept, Berge and Hooperstad have reported 1% - 5% improvement in profits. The difficulty in imple-

menting a D3-FAM approach is assigning aircraft types to flights such that swapping is feasible within the practical

constraints of the airline network. Most notably, two planes can only be swapped if they depart from the same airport

and have similar departure times.

1.2 Stochastic Programming

The uncertainty in demand, which is realized close to departure of the aircraft, can be modeled using two-stage

Stochastic Programming (SP). SP models use probability distributions for random events, and their goal is to maximize

the expectation of some function of the decisions based on these random events. In two-stage SP, a decision is taken

in the first stage, after which a random event with a known probability distribution is realized, and a second-stage

recoursedecision is taken based on the random event and the decision from the first stage. The optimal decision

consists of a single first-stage decision and a set ofrecoursedecisions to be taken based on the random outcome.

As described in Birge and Louveaux (1997), the basic two-stage stochastic linear program with fixed recourse is

given by:

min z = cT x + Eξ

[
min q(ω)T y(ω)

]
(1)

s.t. Ax = b, (2)

T (ω)x + Wy(ω) = h(ω), (3)

x ≥ 0, y(ω) ≥ 0, (4)

wherex ∈ Rn1 is the first-stage decision vector with linear costsc ∈ Rn1 , y(ω) ∈ Rn2 is the second-stage decision

vector with linear costsq(ω) ∈ Rn2 , A is anm1 x n1 first-stage linear constraint matrix with right hand sideb ∈ Rm1 ,

andT (ω) andW are, respectively,m2 x n1 andm2 x n2 matrices specifying the second-stage linear constraints onx

andy with right hand sideh(ω) ∈ Rm2 . For a given realization of the stochastic variables,ω ∈ Ω, the second-stage

problem data,q(ω), h(ω) andT (ω), become known, and the second-stage decisiony(ω, x) can be obtained. LetΞ

denote a set of scenarios, and let the vectorξT (ω) represent a scenario with different components of the second stage,
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i.e.,q(ω)T , h(ω)T andT (ω), such thatξ ∈ Ξ. The objective function represented by (1) contains a deterministic term

cT x and the expectation of the second-stage objectiveq(ω)T y(ω) taken over all realizations of the random eventω.

For a givenω, we can write the second-stage value function as

Q(x, ξ(ω)) = min
y
{q(ω)T y|Wy = h(ω)− T (ω)x, y ≥ 0}. (5)

Suppose, the expected second-stage recourse function is defined as:

=(x) = EξQ(x, ξ(ω)), (6)

then the deterministic equivalent of the two-stage stochastic linear program can be written as:

min z = cT x + =(x)

s.t.Ax = b, (7)

x ≥ 0.

The primary difficulty is determining the recourse function=(x). As stated above, each evaluation of=(x) at just

one value ofx requires calculation of an expected value of an optimized objective. For large, complex problems, like

fleet assignment, the iterative approximation methods described by Birge and Louveaux (1997) can be very slow to

converge because they typically require a large number of scenarios to adequately represent the stochasticity of the

second-stage optimization in (5). Thus, in each optimization iteration of the first stage, there is a high computational

cost for evaluating=(x) in the second stage, making the problem defined in (7) even harder to solve.

In order to control the computational requirement, Chen (2001) proposed discretization of thex-space to a finite

set of points and solving for=(x) only at those points, followed by a function approximation technique to estimate

the entire surface of=(x). This approximation,̂=(x), will be computationally trivial to evaluate in (7). In selecting a

discretization, it is important to select only thosex values which result in a feasible solution in the second stage.

1.3 Contribution

The FAM problem is modeled in this paper using a two-stage SP framework. The two stages correspond to the stages

of decision-making in the D3 concept. Similar to Berge and Hopperstad (1993), the FAM model presented here assigns

crew-compatible aircraft to flights in the first stage. Given an initial Crew-Compatible Allocation (CCA), the second

stage obtains many equally likely scenarios using a probability distribution, and for each scenario, a deterministic

FAM, using the current CCA, solves for the Linear Programming (LP) relaxation of assigning aircraft within the

crew-compatible families. This LP is separable by crew-compatible family. The estimate of the expected revenue is

determined as the average over the scenarios. As mentioned in Section 1.2, the basic SP solution approach can be

computationally intensive if an excessive number of scenarios is required to adequately represent the stochasticity of

the second-stage optimization.

A computationally tractable solution method is presented that employs statistical methods from Design and Analysis

of Computer Experiments (DACE, see Chen, Tsui, Barton and Allen 2003; Sacks et al. 1989). An experimental design
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is used to generate the initial CCA and then for each CCA and for each scenario (demand realization) in the second

stage, acomputer experiment(in our case, an optimization problem) is solved. The average over the scenarios is used

to estimate the expected revenue value of the recourse function for the two-stage SP model. A statistical model is fit

to these data to provide a continuous approximation of expected revenue over the initial CCA space. In our case, the

experimental design was based on a Latin hypercube, and the statistical model was based on Multivariate Adaptive

Regression Splines (MARS, Friedman 1991). Optimization of the recourse function is not considered in this paper.

A literature review regarding the FAM problem is presented in Section 2. Section 3 discusses more on DACE and

how it is applied in this paper, and in Section 4, the two-stage SP model for fleet assignment is presented. In Sections

5 and 6, we demonstrate the methodology of generating the first-stage experimental design and second-stage recourse

values, respectively. In Section 7, we present results of the application of this methodology to a real airline carrier, and

finally in Section 8, conclusions and future research are discussed.

2 Literature Review

The fleet assignment problem has been a well researched topic for the past fifty years and has been credited for

increasing profits at several airlines. Ferguson and Dantzig formulated a combined FAM and aircraft routing problem

with deterministic demand (1955) and stochastic demand (1956). Abara (1989) solved the FAM problem using an

integer LP model. He defined “turn” as the successive assignment of an aircraft to two consecutive flights and this

decision variable causes practical limitations to the FAM problem.

Hane et al. (1995) presented a detailed description on solving a fleet assignment problem as a multi-commodity

network flow problem, which formed the basis for a large portion of later FAM research. They modeled the FAM

problem as a Mixed Integer Programming (MIP) problem and reported run times twice as fast as the standard LP

based branch-and-bound code. Some of the concepts addressed in the Hane et al. (1995), like node aggregation and

islands at stations with low activity, are employed in this paper to preprocess the FAM model before solving.

Subramanian et al. (1994) implemented the Coldstart model to solve the fleet assignment problem at Delta Airlines.

Theoretical properties of the FAM problem were presented in Gu et al. (1994). Since the solution of FAM affects

subsequent planning decisions like maintenance requirements, aircraft routing and crew scheduling, extensions of

FAM were considered in Clarke et al. (1996), Rushmeier and Kontogiorgis (1997), Barnhart et al. (1998), Rexing

et al. (2000), Ahuja and Orlin (2002), and Klabjan et al. (2002). Disruptions during the operational phase of the

problem were addressed in Rosenberger et al. (2003).

An important component of a successful FAM is modeling the objective function. The objective function can

be maximizing revenue, minimizing passenger spill (lost revenue due to assigning smaller aircraft) or minimizing

the number of aircraft being used. In this paper the objective is modeled as maximizing revenue and, similar to the

research mentioned earlier, we assume demand for each flight leg is independent. In practice, this is not true, since

in a multi-leg itinerary, the demand on one leg affects the others. This is also referred to as Origin Destination (O-D)

FAM. The network affect will be considered in future work. Jacobs et al. (1999) presented an O-D FAM formulation
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and solved it using Benders’ decomposition. Barnhart et al. (2002) developed a Passenger Mix Model (PMM) that,

given a schedule with known flight capacities and a set of passenger demands with known fares, determines optimal

demand and revenue. They proposed a combined PMM and FAM problem. Farkas (1996) demonstrated that revenue

management has a significant impact on passenger volume and mix, and by ignoring these effects FAM produces

sub-optimal solutions.

The stochastic nature of passenger demand was recently addressed in Listes and Dekker (2002) for determining an

optimal airline fleet composition. Given an airline schedule and a set of aircraft types, the fleet composition problem

determines the number of aircraft of each type that the fleet requires to maximize profit. They developed a two-stage

SP model to determine a single fleet composition that maximizes profit in the first stage across all demand scenarios

generated in the second stage. In the second stage, they solved a deterministic FAM model for each demand scenario

allowing swapping to occur (similar to Berge and Hopperstad (1993)) and employed a scenario aggregation approach

(Rockafellar and Wets 1991) to reduce the computational complexity.

3 Design and Analysis of Computer Experiments Approach

A Design and Analysis of Computer Experiments (DACE) approach is useful when a computer experiment is the only

means for representing a complex system (see recent reviews Chen, Tsui, Barton and Allen 2003; Chen et al. 2005;

Kleijnen 2005). DACE-related methods have been successfully employed for solving stochastic dynamic program-

ming and Markov decision problems (Werbos 1998; Chen et al. 1999; Chen 1999; Chen, Günther and Johnson 2003;

Tsai et al. 2003; Si et al. 2004; Cervellera et al. 2005), and their use was first suggested for SP by Chen (2001). This

paper represents the first implementation of these ideas for SP. Typically, the computer experiment is a simulation

model; however, in this paper it is an optimization model.

Specifically, ourDACE Phaseconducts the following:

• An optimization model (computer experiment) of system performance is constructed based on knowledge of

how the system operates.

• Design of Experiments (DoE) is used to select the set of sample points as input to the optimization model, which

then provides the corresponding responses.

• A statistical model is to fit these data.

For our robust FAM, the DACE Phase is illustrated in Figure 1. In particular, DoE points for the CCA space must be

feasible, which is an issue not typically handled by DACE methods; thus, a new approach is devised and described in

Section 5. In order to estimate the second-stage recourse function, scenarios are generated based on known probability

distributions, and for each CCA, average revenues from the second-stage FAM optimization are collected as responses

y (see Section 6 for details). A MARS statistical model,ŷ(CCA), is fit to these data to generate an approximate

second-stage recourse function, which can then be employed for more efficient future evaluations in the first-stage

optimization. The run time for MARS is dependent upon the number of basis functions that the user specifies with the
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parameterMmax. A variant of MARS that automatically selectsMmax, developed by Tsai and Chen (2005), is used

to decrease the time required to fit MARS.

Figure 1: DACE Phase of the Two-Stage SP Framework

4 Two-Stage SP FAM Formulation

Given an airline schedule and a set of fleets of different aircraft that can fly each flight leg, the fleet assignment problem

allocates the fleet of aircraft to the scheduled flights subject to the following operational constraints:

• Balance: Aircraft cannot appear or disappear from the network.

• Cover: Each flight in the schedule must be assigned to exactly one aircraft type.

• Plane Count: The total number of aircraft assigned cannot exceed the number of available aircraft in the fleet.

The objective is to find a feasible assignment that maximizes profit. In this paper, the fleet assignment problem

is formulated as an integer multicommodity flow problem on a time line network similar to Berge and Hopperstad

(1993) and Hane et al. (1995). For a given fleet type, a time line is a graph that represents the arrival and departure

events occurring at each station (airport serviced by the carrier) over a specified time period as shown in Figure 2.

Flights below the time line indicate arrivals, flights above the time line indicate departures, and the numbers indi-

cate the corresponding flight legs. Any flight, which arrives at a particular station, will not be available for departure

immediately because of the time required for fueling, loading passengers/baggage etc. As such, aturn timeis added to

all the arrivals before they are ready to take off. The turn time is dependent on the particular fleet type and the station.

A nodein a time line begins with an arrival and ends before the next arrival, with at least one departure in between. In

Figure 2, BC, DE, and FA represent nodes. The arcs that connect within these nodes are calledground arcs, and the

arc that connects the last arrival on the time line to the first departure is called theovernight arc. These arcs denote at

least one plane being on the ground at a station and are defined as continuous variables. Because all flight variables are

integral the values corresponding to these arcs will be integral as well. The sum of all the times corresponding to the

arcs represent thetotal ground timeof the planes at that particular station. The overnight arc includes aplane count
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Figure 2: Time Line

hour (typically 4 A.M. EST) that is used for developing the plane count constraints. A detailed description of how to

generate the constraints based on the time line is given in Section 5.1.

4.1 Model Assumptions

The following assumptions are taken to model the two-stage SP FAM problem:

• The revenue coefficients are calculated assuming that the demand for each flight is independent.

• All passengers for a flight have equal revenue. This is inconsistent with yield management practices because as

the capacity is added, incremental passengers have lower average revenue.

• Spilled passengers are assumed to be lost by the carrier and are not recaptured.

• The decision variables are relaxed to be continuous.

• Fleets within a crew-compatible family have same turn time. In practice, we can choose the maximum turn time

within a crew-compatible family.

These assumptions tend to bias FAM solutions to the over use of large aircraft. Considering an OD-FAM is more

reasonable and a subject of future research.

4.2 Stochastic Model

Let L be the set of flight legs (indexed byl). Let F denote the set of fleet types (indexed byf ), andG be the set

of crew-compatible families (indexed byg), which can be used for each of the legsl ∈ L. Since we assign, crew-

compatible families in the first stage, for each legl ∈ L and for each crew-compatible family typeg ∈ G, let a binary

variablexgl be defined such that

xgl =


1 if crew-compatible familyg is assigned to flight legl,

0 otherwise.

In the second stage, we assign specific aircraft within the crew-compatible family. As such, for each legl ∈ L, for

each aircraftf ∈ F , and for scenarioξ ∈ Ξ, let a binary variablexξ
fl be defined such that
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xξ
fl =


1 if aircraft f is assigned to the legl for scenarioξ,

0 otherwise.

Consider the following FAM parameters:

• S = set of stations, indexed bys,

• V = set of nodes in the entire network, indexed byv,

• f(v) = fleet type associated with nodev,

• Av = set of flights arriving at nodev,

• Dv = set of flights departing at nodev,

• Mf = number of aircraft of typef ,

• R(xξ
fl) = revenue if flight legl is assigned to aircraft typef for scenarioξ,

• C(xξ
fl) = cost if flight legl is assigned to aircraft typef for scenarioξ,

• aξ
v+ = value of ground arc leaving nodev for scenarioξ,

• aξ
v− = value of ground arc entering nodev for scenarioξ,

• Of = set of arcs that include the plane count hour for fleet typef , indexed byo,

• L0 = set of flight legs in the air at the plane count hour.

The two-stage formulation can be represented as:

max
∑
l∈L

∑
f∈F

E[ R(xξ
fl) − C(xξ

fl)] (8)

s.t.aξ
v− +

∑
l∈Av

xξ
f(v)l −

∑
l∈Dv

xξ
f(v)l − aξ

v+ = 0 ∀v ∈ V, ξ ∈ Ξ, (9)

∑
g∈G

xgl = 1 ∀l ∈ L, (10)

∑
f∈g

xξ
fl = xgl ∀l ∈ L, g ∈ G, ξ ∈ Ξ, (11)

∑
o∈Of

aξ
o +

∑
l∈L0

xξ
fl ≤ Mf ∀f ∈ F, ξ ∈ Ξ, (12)

xξ
fl ∈ {0, 1} ∀l ∈ L, ξ ∈ Ξ, (13)

xgl ∈ {0, 1} ∀l ∈ L, g ∈ G, (14)

aξ
v+ ≥ 0 ∀v ∈ V, ξ ∈ Ξ. (15)
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The objective is to maximize profit (revenue− cost) in the second stage by assigning aircraft within the crew-

compatible allocation made in the first stage. For each flight legl ∈ L, for an aircraftf ∈ g and in scenarioξ ∈ Ξ,

revenue is calculated as:

R(xξ
fl) = (min {[Demand]ξ, [Capacity]f}) ∗ (Average fare per passenger)l.

Theblock timeof a flight legl is defined as the length of time from the moment the plane leaves the origin station until

it arrives at the destination station. Letbl be the scheduled block time for flight legl. The cost for each flight leg is

calculated as a function of block time and operating cost of a particular fleet type per block hour, and is given by:

C(xξ
fl) = bl ∗ (Operating cost per block hour)f .

Constraints in set (9) represent the balance constraints needed to maintain the circulation of aircraft throughout

the network. Cover constraints (10) represent the first-stage crew-compatible assignment, and set (11) guarantees

that aircraft within the crew-compatible family (assigned in the first stage) are allocated. For formulating the plane

count constraints (12), we need to count the number of aircraft of each fleet being used at any particular point of day

(generally when there are fewer planes in the air). As such, theground arcsthat cross the time line at the plane count

hour and the flights in air during that time are summed to assure that the total number of aircraft of a particular fleet

type do not exceed the number available. Binary constraints (13) and (14) are relaxed to model the decision variables

as continuous in this paper. As in practice, most crew-compatible families include only one or two aircraft types, so

integer solutions result, as mentioned in Berge and Hopperstad (1993). For families with more than two aircraft types,

an upper bound on the objective function is obtained.

Since the variables are relaxed, the resulting fit for the recourse function obtained using MARS provides an upper

bound for the profit generated. A true recourse function can be estimated with MARS using integral values only at

the expense of higher computational time. This is difficult in the case of solving the two-stage SP with traditional

Benders’ decomposition because there are integrality issues during the generation of cuts.

5 Design of Experiments Approach

The main objective in the first stage is to assign the initial crew-compatible allocation (CCA) using DoE. The design

is generated within the experimental region formed by the first-stage FAM constraints. Since at this stage we are

concerned only with the CCA decision variables, the first-stage constraints are similar to the constraints described

earlier except that they are based on crew-compatible family variables as defined below:

(Balance) av− +
∑
l∈Av

xgl −
∑
l∈Dv

xgl − av+ = 0 ∀v ∈ V, (16)

(Cover)
∑
g∈G

xgl = 1 ∀g ∈ G, l ∈ L, (17)

(Plane Count)
∑

o∈Og

ao +
∑
l∈L0

xgl ≤ Mg ∀g ∈ G, (18)

0 ≤ xgl ≤ 1 ∀g ∈ G, l ∈ L, (19)
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whereOg represents the set of arcs that include the plane count hour for crew-compatible familyg, andMg denotes

the number of aircraft of crew groupg.

In order to generate an appropriate experimental design, the above constraints must be preprocessed, removing any

redundant variables, so as to specify the feasiblepolytope, defined by a system of linear inequalitiesAx ≤ b, in the

lowest dimensional space. Preprocessing is conducted by exploiting the explicit as well as implicit equalities present

in the constraints as defined in Section 5.1. Savelsbergh (1994) demonstrated the use of preprocessing techniques to

reduce MIP problems.

Let P := {x ∈ R|Ax ≤ b} be a nonempty convexpolytopeformed by the first-stage constraints. Discretized

points within thispolytopecan be generated as shown in Section 5.2 to represent the initial CCA decisions. Any

infeasible design points can be projected into the feasible polytope as described in detail in Section 5.2.2.

5.1 Reducing the Decision Space

Before generating the design, it is important to reduce the first-stage FAM to the minimum number of variables

because the precision of the estimates is adversely affected by multicollinearity (or correlations) among the input

variables (Myers and Montgomery 1986). Reducing to the minimum number of variables in the first stage removes the

redundancy as well as dramatically improves the efficiency of the design. In order to generate the feasible polytopeP ,

we start with the traditional FAM defined by Hane et al. (1995) and pivot out variables using the equality constraints

as demonstrated in Sections 5.1.1 and 5.1.2, and then remove the implicit equalities as discussed in Section 5.1.3. In

particular, Section 5.1.1 discusses the application of the Boeing concept of D3, and Section 5.1.2 takes advantage of

the first-stage constraints to reduce the number of variables. Once the equalities are removed, we are left with a set of

minimum variables that define the first-stage decision space.

5.1.1 Demand Driven Dispatch

The robust FAM approach presented in this paper incorporates the Boeing concept of D3 as defined in Section 1.1. In

the first stage (90 days prior to departure), before most demand is realized, crew-compatible families of aircraft are

assigned to flights. As such, in the first stage, only one variable needs to be considered when there is more than one

aircraft belonging to the same crew-compatible family that can be allocated to a flight legl ∈ L. For example, suppose

flight leg l can be assigned to six different fleet types; that isF = {1, 2, 3, 4, 5, 6}. The cover constraint for flight legl

is given by:
x1l + x2l + x3l + x4l + x5l + x6l = 1. (20)

Suppose aircraft 1 belongs to crew-compatible family 1, aircraft 2 and 3 belong to crew-compatible family 2, and

aircraft 4, 5, and 6 belong to crew-compatible family 3; that isG = {1, 2, 3}. In this case we substitutex2l andx3l

with justx2l, and we replacex4l, x5l andx6l with x3l. Then, the cover constraint for flight legl becomes:

x1l + x2l + x3l = 1. (21)

Thus, the number of variables has been reduced from six to three.
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5.1.2 Constraints

The special structure of each of the constraints in the first stage can be exploited to reduce the number of variables over

which the design has to be generated. Section 5.1.2.1 addresses the reduction due to cover constraints, and Section

5.1.2.2 describes the reduction achieved due to balance constraints.

5.1.2.1 Cover Constraints

For every legl, the cover constraint obtained after reduction through the Boeing concept can be manipulated to reduce

the dimensionality by one. For example, for equation (21) we have:

x1l + x2l + x3l = 1 ⇒ x3l = 1− x1l − x2l. (22)

We also have the constraints:
xgl ∈ {0, 1} andg ∈ G = {1, 2, 3}. (23)

Since we are modeling the variables as continuous, we have

0 ≤ x3l ≤ 1 ⇒ 0 ≤ 1− x1l − x2l ≤ 1 ⇒ 0 ≤ x1l + x2l ≤ 1. (24)

5.1.2.2 Balance Constraints

The balance constraints maintain the circulation of aircraft throughout the entire flight network. Based on the ground

time of the planes and the traffic intensity, stations are typically classified as hubs and spokes.

Balance Constraints for Spokes

Stations with low traffic intensity are calledspokes. A spoke time line consists of sudden activity during a period of

time where we can see equal numbers of arrivals and departures. Therefore, we can find time periods in a spoke time

line when there are no planes on the ground. The ground arcs corresponding to these periods can be dropped.Islands

can be defined as a set of nodes in which the incoming and outgoing ground arcs are zero, and acomplex islandhas

two or more nodes. Figure 3 represents a spoke time line. In Figure 3, A, B, C, and E represent nodes; B and D

represent islands while A forms anovernight island. Island D is a complex island with nodes C and E in it. The time

line for each crew-compatible family assists us in framing the balance constraints at each station. Consider a spoke

time line for crew-compatible familyg as shown in Figure 3. The balance constraint for node B is:

xg3 − xg4 = 0 ⇒ xg3 = xg4. (25)

Figure 3: Spoke Time Line
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Thus, the crew group type ofxg3 will determine that ofxg4. For node C, the balance constraints are:

xg5 + xg6 − xg7 − ag = 0 (26)

ag ≥ 0 (27)

whereag represents the ground arc from node C to E. For node E, the balance constraint is:

ag + xg8 − xg9 − xg10 = 0. (28)

From (26), (27) and (28), by dropping the ground arc variableag the balance constraints for the island D are:

xg5 + xg6 − xg7 ≥ 0 (29)

xg5 + xg6 − xg7 + xg8 − xg9 − xg10 = 0 ⇒ xg10 = xg5 + xg6 − xg7 + xg8 − xg9. (30)

Similarly, for node A:

xg11 + xg12 − xg1 − xg2 = 0 ⇒ xg2 = xg11 + xg12 − xg1. (31)

Thus, the total number of decision variables is reduced from twelve to nine.

Balance Constraints for Hubs

A hubconsists of continuous activity with periodic flights coming from the spokes. Because of the high traffic intensity

at hubs, we cannot eliminate all of the ground arcs as we did at spokes. Consider a hub time line for crew-compatible

family g with nodes A, B and C as represented in Figure 4. The balance constraints for nodes A and B are given by:

Figure 4: Hub Time Line

ag + xg1 + xg2 + xg3 − xg4 − xg5 ≥ 0 (32)

ag + xg1 + xg2 + xg3 − xg4 − xg5 + xg6 − xg7 ≥ 0 (33)

ag ≥ 0. (34)

Since the time line ends with the last departure at node C, the constraints for node C will determine the overall balance

constraint for the hub. Therefore, we have:

xg1 + xg2 + xg3 − xg4 − xg5 + xg6 − xg7 + xg8 − xg9 − xg10 = 0

⇒ xg10 = xg1 + xg2 + xg3 − xg4 − xg5 + xg6 − xg7 + xg8 − xg9. (35)
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For each of the hubs there will be one equality constraint for the entire time line to maintain the balance of flights

arriving and departing. Hence, the number of decision variables is reduced by one, and there is one ground arc

variable for each crew-compatible family.

5.1.3 Implicit Inequalities

In this section, we generate equations based on implicit opposing inequalities from the set of constraintsAx ≤ b.

This is achieved by formulating a LP problem that finds two implicit opposing inequality constraints using convex

combinations of the explicit inequalities. Any feasible solution to the LP refers to an implied equation that can be

generated.

An inequalityαx ≤ β from Ax ≤ b is called an implicit equality (inAx ≤ b), if αx = β for all x satisfying

Ax ≤ b. To check if there are any implicit equalities among the system of constraints defined by

∑n
j=1 aijxj ≤ bi, ∀i = 1, 2, ...,m, (36)

we formulate a LP. Letz ≥ 0 be a multiplier for constraint (36), so

∑n
j=1 aijxjzi ≤ bizi, ∀i = 1, 2, ...,m.

P is full-dimensional if and only ifP
′

:= {z|AT z = 0, bT z = 0, z ≥ 0} = {0}. The proof for this statement

is detailed in Gao and Zhang (2002), Sierksma and Tijssen (2003), and Pilla et al. (2005). The formulated LP is a

maximization problem as we are looking for a non-zero solution. Since the constraints inP
′

form a cone, we need to

add a constraint of the form
∑m

i=1 zi ≤ 1, to get a feasible solution. Thus, the LP can be represented as:

max
m∑

i=1

zi (37)

s.t. AT z = 0, (38)

bT z = 0, (39)
m∑

i=1

zi ≤ 1, (40)

z ≥ 0. (41)

If a nonzero solution exists for the LP, then an implicit equality can be generated. Figure 5 shows the flow chart used

for reducing the dimensionality of the FAM problem.

5.2 Generating the Experimental Design

An underlying form for the expected revenue function of a FAM model cannot be assumed; thus, we desire an ex-

perimental design that adequately represents the CCA space. This is challenging for several reasons that will become

apparent in the design generation process. After reducing dimensionality, the design is constructed in three steps:
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Figure 5: Decision Space Reduction Flow Chart
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• A Latin hypercube algorithm is devised to generate DoE points that satisfy the triangular FAM cover constraints.

This will provide a set of well-distributed points in the CCA space that are close to the feasible region.

• The current DoE points are projected to extreme points of the (convex) feasible region.

• Another Latin hypercube is used to generate interior feasible points as convex combinations of the extreme

points.

Given the high dimensionality of the CCA space, the Latin hypercube is a practical choice of design. Because perfect

correlation between two input variables is possible in a Latin hypercube design, our algorithm generates a larger design

and columns are eliminated so that the final design has low input variable correlations.

5.2.1 Latin Hypercube Algorithm for the Reduced Cover Constraints

After dimensionality reduction, supposem is the number of crew-compatible types andn is the number of legs. Let the

total number of design points beN = λp > mn, wherep represents design “levels” andλ is a frequency parameter.

• Draw a “grid” of p points in am-dimensional hyper-triangle representing a reduced cover constraint over crew-

compatible types.

• Order thep points according to distance from origin (randomly break ties)→ 1, 2, . . . , p. Each is anm-tuple.

• Generate a Latin hypercube withN = λp in n dimensions.

• Randomly assign the Latin hypercube levels for each dimension:

1, . . . , λ → 1

λ + 1, . . . , 2λ → 2
...

(i− 1)λ + 1, . . . , iλ → i, for i = 1, 2, . . . , p

Since each of the reduced cover constraints has a different number of crew-compatible types (m), our design generates

N = λp1p2 . . . pm points.

To determine thep points in hyper-triangles of the cover constraints, we maximized the minimum Euclidean

distance between points (Johnson et al. 1990). For a constraint with a single variable, we spread the points evenly

across the dimension, but for a constraint with more than one variable (two variables form a triangle, three or more

form a hyper-triangle), we spread them evenly across the design space. The problem of maximizing the minimum

pairwise distance amongn points in a unit square is equivalent to the problem of finding the maximum diameter of

equal non-overlapping circles contained in a unit square (Maranas et al. 1995). For example, a constraint with two

variables can be represented by a triangle, and its six equidistant points can be found as shown in Figure 6.

5.2.2 Projecting to the Feasible Region

It is critical that the final design points lie within the (convex) feasible region. Different options were explored,

including the omission of any infeasible points and the projection of points into the feasible region. The most promising
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Figure 6: Overlapping circles for generating design

option was projecting points to nearby extreme points of the feasible region. Given that the original set of design points

is well-distributed, the resulting set of extreme points should provide good coverage. However, it should be noted that

it is not computationally practical to identify all extreme points, so it is possible that some regions of the feasible

region will not be covered. The infeasible points(x0) are projected onto the feasible region using the L1-norm as

represented below:

min ‖x− x0‖ (42)

s.t. Ax ≤ b, (43)

x ≥ 0. (44)

Suppose the solution to the above LP is(x̃). The solution(x̃) actually lies on the face of the feasible polytope

P := {x|Ax ≤ b, x ≥ 0}. Finding a nearby extreme point to a point on the face of the polytope is a difficult task.

We searched for an extreme point in the direction of the gradient of the L2-norm given by‖x0− x̃‖2 and exploited

the features in ILOG CPLEX 8.0. Since every iteration of primal simplex provides a basic feasible solution that is an

extreme point, we can search in the direction of the gradient of the L2-norm by providingx̃ as the starting information

and stopping the primal simplex method after the first iteration. This will not guarantee the nearest extreme point, but

by providingx̃ as the initial primal values and iterating primal simplex once, it is likely that an extreme point close to

x̃ is obtained. The LP to optimize the gradient of the L2-norm at the pointx̃ is represented as:

min (x0 − x̃)T x (45)

s.t. Ax ≤ b, (46)

x ≥ 0. (47)

Nearby extreme points could also be obtained using neighborhood search methods likebreadth first search(Chvatal

1983).
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5.2.3 Interior Feasible Points

Although a MARS approximation could be fit to the extreme points alone, interior points would enable better repre-

sentation of the shape of the second-stage recourse function. By Minkowski’s finite basis theorem (Minkowski 1896),

interior points can be obtained by using convex combinations of the extreme points. A second Latin hypercube design

is used to specify the coefficients of the convex combinations.

6 Optimization

Once the initial CCA values in the first stage are obtained via the experimental design, random scenarios are generated,

and a deterministic second-stage FAM problem is solved for each CCA design point and scenario. The two-stage

optimization model was presented in Section 4. An estimate of the revenue was calculated as an average over the

scenarios. The objective of the second stage is to maximize profit (Revenue− Cost) of assigning aircraft to each

flight leg in the schedule. For calculating the revenue, average fares are multiplied with the minimum of demand and

capacity for each scenario. Passengers spilled (customers who cannot be accommodated due to insufficient capacity)

are assumed to be lost revenue and are not captured.

6.1 Scenarios

The purpose of scenarios is to provide estimation of an expected value, which is equivalent to numerical integration.

Swan (1983) developed an approach to estimate true demand from historical booking patterns and showed that booking

data from American Airlines and Swissaire followed either a normal or gamma distribution. In this paper, demand

scenarios for each flight are generated based on the normal distribution assuming that the mean and variance are

known. Since an average of the scenarios is estimated in the second stage, one would expect the performance of the

estimation in the second stage to improve as the number of scenarios increases.

To identify the appropriate number of scenarios, a sample size calculation based on confidence level information

is used. Supposēy is used as an estimate of average revenue (µ). Then given an estimate for the error varianceσ, we

can be approximately100(1− α)% confident that the error(|ȳ − µ|) will not exceed a specified amountE when the

sample size is: ⌈(
2 zα/2 σ

E

)2
⌉

.

It should be noted that the iterative approximation methods in Birge and Louveaux (1997) require enough scenarios

to adequately estimate the expected value and anexpected supergradientof the recourse function, and it is this latter

expectation that ultimately determines the necessary sample size for their methods. By contrast, our DACE approach

only requires accurate estimation of the expected revenue, which is a much smoother function than the supergradient.
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7 Case Study Results

We applied the methodology described in the previous sections to a real airline carrier with a weekly schedule contain-

ing 50 stations, 2358 legs, seven fleet types and four crew-compatible families. The traditional FAM model addressed

in Hane et al. (1995) included 6537 integer variables. The turn time was taken as 29 minutes and was assumed constant

irrespective of the crew-compatible family. This assumption can be relaxed to make the problem more realistic, but

this will make the problem even more complex. Based on the ground time for each station and the traffic intensity, six

hubs were identified. The results were computed using a Dual 2.8 GHz Intel Xeon workstation and ILOG CPLEX 8.0

software.

In order to use DoE for generating the first-stage CCA values, the reduced CCA decision space was obtained using

the approach presented in Section 5.1. As discussed in Section 5.1.1, the Boeing concept ofD3 was used to create

the cover constraints with only crew-compatible families as variables. The obtained cover constraints were used to

pivot out one variable for each flight, as mentioned in Section 5.1.2.1. The balance constraints were generated for

each station using a time line, as discussed in Section 5.1.2.2, and the equalities obtained were used to pivot out more

variables. The plane count constraints were added to the model to maintain feasibility in the first stage. Finally, after

reducing the model to the least number of variables using the equalities in the operational constraints, the model was

checked for implicit equalities. In our first-stage problem, we did not find any implicit equalities. Pilla et al. (2005)

showed that it is possible to generate implicit equalities using the formulation defined in Section 5.1.3. The results of

the first-stage dimensionality reduction are presented in Table 1.

Table 1: Computation Results

Total number of variables 6537

Variable reduction due to

Demand Driven Dispatch (D3) 2441

Cover Constraint 2358

Balance Constraint 474

Implicit Equalities 0

Remaining variables 1264

The obtained 1264 CCA variables represented 972 legs, with the corresponding cover constraints forming a poly-

tope. Following the methodology discussed in Section 5.2, a Latin hypercube design was generated based on the cover

constraints. Out of the 972 legs, the cover constraints of 680 legs involved one variable, and the remaining 292 legs

involved two variables. Sincen = 972,m = 1 or 2 andN should be greater than 1264 (680*1 + 292*2), we considered

N = 1980 design points, with three levels for 680 legs, and six levels for 292 legs as shown below:

• p1 = {0, 0.5, 1} (corresponding to three levels)

• p2 = {(0,0), (0,1), (1,0), (0, 0.5), (0.5, 0), (0.5, 0.5)} (corresponding to six levels).

These six levels correspond to the six centers of the circles as shown in Figure 6.
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The generated Latin hypercube design was mapped to the corresponding levels, which resulted in 1980 first-

stage CCA decision values. However, none of these satisfied the first-stage operational constraints. Following the

methods in Section 5.2.2, the 1980 infeasible points (x0) were projected onto the feasible polytope formed by the

cover constraints, resulting in 141 points (more than one infeasible point getting projected to the same point,x̃). Since

the optimal solution lies at an extreme point, nearby extreme points were obtained by considering the gradient of the

L2-norm and using one iteration of ILOG CPLEX 8.0. This resulted in 1525 extreme points (x∗). The spread of these

points with respect to the original infeasible DoE points was measured using the ratio

||x0 − x∗||
||x∗||

, (48)

and the histogram of these ratios is shown in Figure 7. There are chances of some corners in the polytope being left

behind during this process as there are a total of

(
3695
1264

)
combinations of extreme points, and it is impossible to take

into account all of these. Given that there are no gaps in the histogram, the points appear to be well spread across

the polytope. Finally, interior points were obtained using convex combinations of these 1525 extreme points. Thus,

Figure 7: Histogram to check the spread of points

around 3562 total first-stage assignments were obtained, which included 141 feasible projections, 1525 extreme points

and 1896 interior points.

In order to solve the second stage, demand scenarios were generated using a normal distribution with known mean

and standard deviation values for each flight leg. As discussed in Section 6, for a desired error of approximately 0.1%

of the average revenue, we obtained the sample size of scenarios to be 30. For each design point and for each scenario,

the second-stage LP as discussed in Section 4 was solved, and the expected revenue was calculated as the average over

the scenarios.

Using the average revenue response values at the CCA design values, a MARS approximation was fit using an

automatic stopping rule as discussed in Tsai and Chen (2005). The fit resulted in 320 basis functions with a coefficient

of determination (R2) of 99.013%. A validation data set was generated (utilizing new convex combinations of 1525

extreme points) to test the MARS approximation, and relative errors were calculated using the formula

|y − ŷ|
|y|

. (49)
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The maximum relative error was obtained as 3 x10−5 and the median relative error was 6 x10−6, both of which

are very small. A new set of extreme points was generated to evaluate the MARS approximation in regions possibly

outside of that represented by the experimental design, and the relative error was on the order of10−3. Thus, the

MARS approximation is a very good fit for the second-stage recourse function.

8 Future Work

The main contribution of this paper is a method to estimate the recourse function for the two-stage SP model using a

MARS approximation over a discretized first-stage decision space based on a Latin hypercube design. The obtained

fit can be used for future evaluations and optimized so as to generate a single first-stage decision. In this aspect,

derivatives of the MARS function can be utilized to generate revenue cuts. The revenue generated from using our

approach will be compared to the present methods utilized.
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Figure 1: DACE Phase of the Two-Stage SP Framework



Figure 2: Time Line



Figure 3: Spoke Time Line



Figure 4: Hub Time Line



Figure 5: Decision Space Reduction Flow Chart



Figure 6: Overlapping circles for generating design

Figure 7: Histogram to check the spread of points


