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Abstract 

In this paper, an intelligent Decision-Making Framework (DMF) is developed to help decision-makers 

identify cost-effective ozone control policies.  High concentrations of ozone at the ground-level continue 

to be a serious problem in numerous U.S. cities.  Our DMF searches for dynamic and targeted control 

policies that require a lower total reduction of emissions than current control strategies based on the “trial 

and error” approach typically employed by state government decision-makers.  Our DMF utilizes a 

rigorous stochastic dynamic programming (SDP) formulation and incorporates an Atmospheric 

Chemistry Module to model how ozone concentrations change over time.  Within the Atmospheric 

Chemistry Module, methods from design and analysis of computer experiments are employed to create 

SDP state transition equation metamodels, and critical dimensionality reduction is conducted to reduce 

the state space dimension in solving our SDP problem.  Results are presented from a prototype DMF for 

the Atlanta metropolitan region.   

 

1.  Introduction 

The increasing concentrations of ozone in the urban (and often rural) atmosphere are a major 

environmental issue.  Ozone is considered to be a harmful pollutant because of its detrimental effects on 

humans and the natural ecosystem.  The Clean Air Act empowers the U.S. Environmental Protection 

Agency (EPA) to set the National Ambient Air Quality Standards (NAAQS).  Ozone is one of the EPA’s 

six criteria pollutants regulated by NAAQS (http://www.epa.gov/air/criteria.html).  The one-hour EPA 

standard defines an ozone exceedance as a daily peak hourly averaged ozone concentration that exceeds 

0.12 parts per million (ppm).  Given that modern ambient ozone monitoring devices are capable of 

precisely measuring ozone to within 0.001 ppm, the U.S. EPA adopted a standard rounding convention in 

the practical application of the NAAQS such that ozone concentrations of 0.124 ppm are considered to 

meet the NAAQS, and concentrations of 0.125 ppm are considered to exceed the NAAQS.  An area is 

determined to be attaining the standard when the number of exceedance days per year, averaged over 
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three years, is less than or equal to one.  For the stricter 8-hour EPA standard, an area is attaining the 

standard when the three-year average of the annual fourth highest daily 8-hour average ozone 

concentration does not exceed 0.08 ppm (0.084 ppm with rounding).  Additional non-attainment areas 

have been identified using the 8-hour standard.  Non-attainment areas are required to improve air quality 

to the standard set by the EPA.   

Ground-level (tropospheric) ozone is not emitted directly into the air but is created by a complex 

series of reactions involving nitrogen oxides (NOx = NO + NO2) and volatile organic compounds 

(VOCs) in the presence of sunlight (Sillman et al. 1995).  Primary sources of NOx are power plants, 

automobiles and industry.  VOCs have a wide variety of both anthropogenic sources (combustion, 

solvents) and natural sources (vegetation).  In order to control ground-level ozone, it is typically 

necessary to control emissions of NOx and VOCs.  Ozone exists naturally in the atmosphere. In the 

stratosphere, high concentrations of ozone protect the earth's surface from harmful ultraviolet radiation 

emitted by the sun.  Much lower concentrations of ozone are found in the unpolluted troposphere 

resulting from a complex series of natural photochemical reactions and stratospheric intrusions.  In the 

polluted troposphere, typically around urbanized areas where emissions of anthropogenic sources are 

greatest, photochemical reactions involving NOx and VOCs may increase ground-level ozone 

concentrations considerably.  Such increases are highest in the summer when sunlight and heat increase 

the rate of photochemical formation; thus, ozone concentrations build during the course of a day and fall 

as the sun goes down.  Ozone controls seek to reduce VOCs and/or NOx, depending on the characteristics 

of a non-attainment area, although nonlinearities in the air chemistry can occur when very high 

concentrations of NOx lead to lower ozone in local areas. 

Due to legislative efforts and increasing concerns for air quality, many research studies have been 

conducted on ozone pollution control.  Complex 3-D air quality photochemical models (e.g., Urban 

Airshed Model, U.S. EPA 1990; Comprehensive Air quality Model, http://www.camx.com/) have been 

developed to simulate air pollution emissions, chemical reactions, and atmospheric transport, in order to 

predict ozone concentrations and help government decision-makers evaluate control strategies.  Current 
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approaches in the U.S. predominantly employ “trial and error” to identify “across-the-board” control 

strategies.  Here “across-the-board” means that the emission reduction percentage of NOx or VOCs must 

remain the same for all emission sources across the entire urban area, 24 hours a day.  Identifying 

promising control strategies is a challenge due to many issues, including the complex mechanisms of 

ozone formation, large numbers of emission sources in the target geographical domain, and conflicting 

social and political interests.  Previous work in this area includes Seinfeld and Kyan (1971), Trijonis 

(1974), Kyan and Seinfeld (1974), and Loughlin et al. (2000). 

Seinfeld and Kyan (1971) proposed a pioneering framework for determination of air pollution 

control strategies in 1970s.  In this framework, a linear programming (LP) model was formulated and 

solved to optimally select control options which would reduce the total mass emissions to a projected 

level.  Then a simple model based on the concept of well-mixed cells was employed to relate the total 

amount of emissions to the concentrations of a pollutant such as ozone.  By solving these two problems 

for different values of total mass emissions, the optimal control strategies for different values of pollutant 

concentrations were obtained.  Kyan and Seinfeld (1974) further extended the decoupled two-stage 

optimization model of Seinfeld and Kyan (1971) to an integrated non-linear optimization model.  Trijonis 

(1974) used a simplified isopleth diagram approach to estimate the minimum required across-the-board 

VOCs and NOx reductions to achieve a target level of ozone, then solved an LP model to identify the best 

control strategies to achieve the minimum required emission reductions.  Loughlin et al. (2000) applied 

genetic algorithms to search for cost-effective control strategies based on a simple computer air chemistry 

model, Ozone Isopleths Plotting Package – Research Version. 

Most of the methods mentioned above aim to optimize control strategies in which the required 

emission reductions vary with emission sources, but none of them addressed the fact that the minimum 

required emission reductions need not be constant across different times of day to achieve the same 

results.  By allowing emission reductions to change with both source location and time of a day, we may 

obtain more cost-effective control strategies than those that only account for the location of emissions.  In 
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addition, simple analytical air chemistry models lack the capability of accounting for the complex terrain 

of target domain, complex weather conditions, and locality of emissions (Seinfeld 1988). 

By contrast, our decision making framework (DMF) employs a comprehensive 3-D air chemistry 

photochemical model to search for cost-effective emission reduction strategies that dynamically vary over 

time, depending on the initial conditions of the day, and are targeted in critical locations and time periods.  

To accommodate continuous variables, time dependencies, and uncertainty, the DMF is based on a 

rigorous continuous-state stochastic dynamic programming (SDP) approach (e.g., Foufoula-Georgiou 

Kitanidis 1988, Chen et al. 1999).  The advantage of dynamic programming (Bellman 1957) is its ability 

to model a system changing over time, and it has been applied to a number of environmental engineering 

problems (e.g., Shoemaker 1982, Yakowitz 1982, Bouzaher et al. 1990, Johnson et al. 1993, Mhaisalkar 

et al. 1993, Seppelt 2001, Tsai et al. 2004).  Our DMF is illustrated in Figure 1.  First, potential SDP state 

variables, decision variables, and time 

stages must be identified.  These are 

then employed to construct the desired 

SDP cost objectives and constraints.  

More importantly, the Atmospheric 

Chemistry Module encompasses many 

steps using the comprehensive air 

chemistry photochemical model to 

identify the key state and decision 

variables, and ultimately estimate the 

SDP state transition equations.  

Finally, the SDP method brings all components together and solves for an optimal reduction policy.  To 

enable a computationally-tractable solution, statistical methods from data mining and computer 

experiments (see reviews by Hastie et al. 2001; Tsui et al. 2006; Chen et al. 2003, 2006) are utilized 

Figure 1: A Modular Decision Making Framework. 
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within the Atmospheric Chemistry Module and by the SDP solution method.  We refer to a “control 

policy” as a solution from the SDP method, while a “control strategy” is an implementable action. 

For the purposes of developing a DMF prototype, we focus on an Atlanta case study for the ozone 

episode during the time period from July 29 – August 1, 1987.  This remains to be one of the worst on 

record, and to date, no practical control strategy using typical approaches has been identified to handle 

this episode.  Our objective was to see if our DMF could identify a control policy that would achieve the 

EPA standard more cost-effectively than the across-the-board approach.  The details of the Atlanta 

Atmospheric Chemistry Module were presented by Yang et al. (2007).  Hence, the primary contributions 

of the current paper are to develop the complete SDP model and to demonstrate our DMF prototype using 

the Atlanta case study.  This is the first demonstration of numerically solving a continuous-state SDP 

problem with hundreds of potential state variables using a mining, metamodeling, and computer 

experiments based SDP solution method.  The success of our DMF prototype shows the potential for 

identifying dynamic and targeted control strategies for air quality; such a DMF for air quality has never 

been imagined before, much less realized.  More generally, our SDP approach could be applied to other 

highly complex stochastic dynamic systems, such as dynamic treatment strategies (Murphy 2003).   

For ozone pollution control, our objective is to minimize the expected total cost of reducing 

emissions in order to maintain a maximum ozone level below the EPA standard.  In the prototype DMF 

for Atlanta, we assume the same convex, monotonically increasing cost function for reduction of 

emissions at each source; however, real economic costs could be incorporated, if available.  Although the 

practicality of the control policy is not considered, a solution from our DMF would provide insights and 

directions for new control strategies.  A brief description of the Atmospheric Chemistry Module is given 

in the next section, our SDP approach is given in Section 3, and the Atlanta application is in Section 4. 

2.  Atmospheric Chemistry Module 

Yang et al. (2007) developed the Atmospheric Chemistry Module, in which statistical methods from data 

mining and computer experiments are employed to model the relationships between emissions and ozone 
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represented by a comprehensive air chemistry photochemical model. We provide a brief description here 

to facilitate understanding of our DMF, and results for the Atlanta case study are summarized in Section 

4.1.  Unlike many other applications, it is not practical to change the levels of emissions in a metropolitan 

airshed and then observe the resulting air quality.  Thus, collection of real experimental data is not an 

option.  Advanced air chemistry photochemical models, such as the Urban Airshed Model, are reasonably 

accurate in simulating air quality (SIP 2001).  Consequently, a state implementation plan (SIP) chooses a 

representative ozone episode, for which an advanced air chemistry photochemical model is painstakingly 

developed and then used by the state to demonstrate control strategies that lead to compliance with the 

EPA standard.  The weather conditions in the air chemistry photochemical model mimic the weather 

conditions of the specified ozone episode.   

Due to the computational requirements, direct optimization of ozone control strategies using a 

comprehensive air chemistry photochemical model has not been attempted to date.  Methods from design 

and analysis of computer experiments enable construction of an approximation of the desired 

performance measure(s) from a computer experiment, such as a simulation model, via “metamodels.” 

The input data to a comprehensive air chemistry photochemical model include geographical 

domain boundary parameters, meteorological parameters, and emissions data.  In constructing the model 

input for a specific metropolitan region, meteorological conditions, including wind direction, wind speed, 

temperature and sunlight, and emissions from various sources must be estimated.  Emission sources are 

categorized as point sources (e.g., power plants, chemical plants, steel mills), mobile sources (e.g., on-

road vehicles, ships, airplanes), and area sources (e.g., dry cleaners, paint shops, lawnmowers).  In this 

paper, the mobile and area sources are combined into a single non-point source category.  Typically, the 

model input is developed for a specific ozone episode that is representative for testing control strategies.  

The emissions that occurred during the modeled episode are called the base case emissions.  Control 

strategies (generally) would specify actions to reduce these emissions. 

In our DMF’s Atmospheric Chemistry Module, we are interested in the relationships between the 

emissions (point and non-point sources) and the maximum ozone levels given the meteorological 
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conditions of the specified ozone episode for a modeled metropolitan region.  Since we desire to vary 

emission reductions over time and space, the Atmospheric Chemistry Module’s tasks are as follows: 

1) Initialization: Identify spatial regions (non-point sources) and time periods in which emission 

reductions may be independently applied.  Identify monitoring stations at which to estimate 

maximum ozone.   

2) Mining: Construct an experimental design over emissions from point and non-point sources to 

collect “data” from the comprehensive air chemistry photochemical model.  Mine this data to 

eliminate sources at which emission reduction has little effect on maximum ozone. 

3) Metamodeling: Construct an experimental design that varies the emissions retained after data 

mining over the time periods.  Use the resulting ozone data from the air chemistry photochemical 

simulation to fit metamodels for maximum ozone in each time period for each monitoring station.  

Potential explanatory variables include all emissions from current and previous time periods and 

maximum ozone in previous time periods. 

The purpose of the Initialization Phase is to integrate the expertise of air quality decision-makers.  

Following this, the Mining and Metamodeling Phases are general and do not require expert input, 

although, it is always worthwhile to share the results of the mining and metamodeling steps with the 

domain experts, so as to ensure their reasonability.  Given the number of emission sources, the Mining 

Phase requires construction of an appropriate experimental design, execution of the air chemistry 

photochemical model for each design point, and usage of an appropriate data mining method.  The 

approach taken by Yang et al. (2007) was to construct a Latin hypercube design and employ a stepwise 

linear regression procedure with a significance level of 0.10.  A potentially more efficient approach was 

proposed by Shih et al. (2006), which studied mining methods when the number of observations (design 

points) is less than the number of predictor variables (emission sources).  Requiring few design points 

would reduce the number of expensive air chemistry photochemical model runs.  Finally, the 

Metamodeling Phase typically requires a larger experimental design than the Mining task, so as to ensure 

 8



accurate modeling by the chosen approximation method.  These metamodels will be employed as the SDP 

state transition equations described in Section 3.3.  Yang et al. (2007) chose to employ linear regression 

metamodels for two reasons: (i) linear state transitions ensure convexity of the SDP optimization; (ii) 

nonlinearities in the air chemistry can occur when very high concentrations of NOx lead to lower ozone in 

local areas, and decision-makers know that increasing NOx to reduce ozone locally comes at a cost of 

increasing ozone concentrations elsewhere.  Although only the linear regression metamodels are used in 

the current paper, Yang et al. (2007) also explored the use of multivariate adaptive regression splines 

(Friedman 1991, Tsai and Chen 2005). 

Define 

S
pO  Maximum ozone at monitoring station S in time period p, 

pE  Vector of emissions for all sources in time period p, 

pO  Vector of ozone levels at all monitoring stations in time period p. 

An initialization time period p = 0 is included to initialize the SDP state variables.  Then, a general 

statistical model for the maximum ozone level at monitoring station S in time period p can be written as: 

ε+= − ),...,,,,...,,( 1p21p21 OOOEEES
p

S
p fO , 

where is the function to be approximated and )(⋅f ε  is the error term that follows a specified probability 

distribution.  A good approximation does not require all the potential explanatory variables, and model 

selection is a key component of the modeling process.  Of all the potential models for the response 

variables, we are interested in those with low complexity and good prediction accuracy, which are often 

obtained by minimizing prediction error on a validation data set or conducting cross-validation (Hastie et 

al. 2001).  In the case of linear regression, we can use measures such as the coefficient of determination 

(R2) or Akaike’s information criterion (Kutner et al. 2004). Only those explanatory variables that appear 

in the metamodels will need to be included the SDP formulation; thus, critical dimensionality reduction 

occurs within the Atmospheric Chemistry Module.  Further discussion on this is given in Section 3.1. 
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3.  Stochastic Dynamic Programming Approach 

A continuous-state SDP model over T discrete time stages can be written as (Chen et al. 1999): 

( )

,,...,1for  ,),( and  1,...,1for   ),,,(   s.t.

,,min
1,...,

TtTtf

cE

tt

T

t
t

=Γ∈−==

⎭
⎬
⎫

⎩
⎨
⎧

+

=
∑

ttttt1t

tttuu

uxεuxx

εux
T1         (1) 

where  is the state vector;  is the decision vector;  is a known cost 

function for period t; the known function

nR∈tx
mR∈tu

(

1: RRc lmn
t →++

)⋅tf defines the state transition from stage t  to stage 1+t ; 

is the set of constraints; and the expectation is taken over the random vector .  For the 

ozone pollution problem, T time periods defined in the Atmospheric Chemistry Module determine SDP 

stages 1 through T.  Details on the state and decision variables, objectives and constraints, and state 

transition equations are described in Sections 3.1, 3.2 and 3.3, respectively.  The SDP solution method is 

given in Section 3.4. 

mnR +
t ⊂Γ lR∈tε

3.1 State and Decision Variables 

In SDP stage t (t = 1, …, T), the set of decision variables corresponds to the emission sources (point and 

non-point) that will be controlled in time period t.  It should be noted that we can only control those 

emission sources that are explicitly represented within the air chemistry photochemical model of the 

specified ozone episode; hence, emissions beyond the boundaries of the modeling domain cannot be 

controlled.  The set of state variables in SDP stage t consists of the complete history of maximum ozone 

and emissions across the modeled domain, i.e., the maximum ozone levels and emissions occurring in 

time periods p < t.  In the Atmospheric Chemistry Module, ozone metamodels were developed to predict 

maximum ozone in time period p given the complete history prior to p and the set of emission variables in 

time period p.  However, not all the historical variables and emission variables are utilized within these 

ozone metamodels.  Consequently, the decision vector in SDP stage t need only maintain those emission 

variables that are required by the ozone metamodels for time period t.  Similarly, we can reduce the set of 

maintained state variables.  Clearly, historical variables required by the ozone metamodels for time period 
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t must be maintained in the state vector for SDP stage t.  In addition, a historical variable occurring prior 

to time period t that is required by an ozone metamodel in a time period p > t must be maintained in the 

state vector for SDP stage t, regardless of whether it was needed in time period t, in order to pass that 

information on to the later time period.  More precisely, we define the following sets of variables and set 

operations to obtain the minimal set of state variables for each SDP stage t (stored below in Xt). 

Vt = Set of historical variables needed to predict maximum ozone levels in time period t. 

Xt  = Set of variables to be maintained as state variables for SDP stage t. 

Ut  = Set of emission variables to be maintained as decision variables for SDP stage t. 

Then, the relationships among these variable sets can be derived backwards as follows: 

       
{ }| ,  is an emission variable for time period T T

T T T

U v v V v T
X V U

⎧ = ∈⎪
⎨

= −⎪⎩
 

and 

    
{ }1

1

| ,  is an emission variable for time period  , 1, ,2,1
,  1, ,2,1

t t t

t t t t

U v v V X v t t T
X V X U t T

+

+

⎧ = ∈ ∪ = −⎪
⎨

= ∪ − = −⎪⎩

K

K
.  

Consequently, unlike the typical SDP formulation in equation (1), the state and decision variable spaces 

can be considerably different from stage to stage.  The dimension of the SDP problem is then taken to be 

the maximum state dimension among all stages. 

3.2 Objectives and Constraints 

The primary objective of an air quality control strategy is to maintain the air quality such that it satisfies 

the EPA standard, e.g., the one-hour EPA ozone standard of 0.12 ppm.  This could be enforced via a strict 

constraint, but to enable a smoother SDP value function, we chose a penalty approach.  In our DMF 

prototype the purpose of the cost function is to identify the emission reductions that provide the most 

reduction in ozone, so that minimal emission reductions are employed to achieve the EPA standard.  As 

long as the cost function is increasing in form and the emission reductions across sources are weighted 

equally, this purpose is served.  It is not presumed that this type of cost function represents reality since in 

 11



actuality control strategies will have different costs.  Further discussion on costs may be found in Section 

4.4.   

For our SDP model, our objectives are: 

1) If the EPA standard cannot be attained due to factors not controlled by the decision variables, 

such as meteorological conditions, initial conditions, etc., then find the SDP control policy to 

minimize the ozone level. 

2) If the EPA standard can be attained, then find a SDP control policy that attains the ozone goals 

with the least expected cost. 

To take these objectives into account, the cost function is formulated for each SDP stage t ( ) 

and can be stated as follows: 

Tt  ,...,2 ,1=

max( , , ) ( ) ( )
i
t t

i i S
t t t t t e t t

Su

c W c u cα β
∈

= + O∑ ∑
u

x u ε , 

where denotes the maximum ozone level at monitoring station S in time period t , which is predicted 

by a statistical metamodel developed in the Atmospheric Chemistry Module as a function of xt, ut, and ; 

 is a decision variable in  and corresponds to the fraction of  emissions reduced at the source indexed 

by i;  is a scaling factor for source i; ce(·) is an increasing emission reduction cost function associated 

with emission reduction; and cmax(·) is an increasing penalty function on maximum ozone.  Constants 

S
tO

i
tW

tε

i
tu tu

α and β  must be chosen such that the penalty cost dominates the total emission reduction cost when 

maximum ozone exceeds the EPA standard.  Both the emission reduction cost function and penalty 

function follow quintic forms similar to those used in Chen et al. (1999).  The choice of smooth convex 

functions enabled the use of a fast sequential quadratic programming optimization routine from the NAG 

library (NAG 1991, 2002).   

In our DMF, the emission reduction cost function has the form 
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3 4

0                                                                                   0
( ) 4 4                                                                    0 0.5

0.25                   
e

u
c u u u u

u

≤

= − < <
−                                                     0.5u

⎧
⎪
⎨
⎪ ≥⎩

, 

 where u is the fraction of the reduced emission, i.e., 
i i

i t
t i

t

tM Eu
M
−

= , where i
tM  is the base case 

(maximum) level of emissions at source i in time period t, and i
tE  is the corresponding reduced emission 

(hence, i
t

i
tM E−  is the amount of emissions that is removed).  When there is no reduction taken on an 

emission source, then the cost is zero.  A constraint of 1i
tu ≤  is needed to prevent removal of more 

emissions than were emitted (and this constraint can be adjusted to further limit emission reductions).  

Since the emission reduction cost function ce(·) is based on the fraction of emission reduction from the 

base case, the unscaled cost of  reducing the same fraction for a source with high base case emissions is 

the same as a source with low base case emissions.  In reality, it should cost more to reduce this fraction 

for the source with high base case emissions because more reduction would be required.  Hence, the 

scaling factor 
i

i
t

MW t

M
= , where M  is the total base case emissions summed over the modeling domain, 

is used to scale the emission reduction cost for source i in time period t based on the proportion of base 

case emissions generated by this source, where a source with higher base case emissions would have a 

higher . i
tW

The penalty function was chosen to have the form 

11 3 13 4
max

6

0,                                                                                   0.118
( ) 2.5 10 ( 0.118) 6.25 10 ( 0.118) ,            0.118 0.12

10 ( 0.119),                           

x
c x x x x

x

≤

= × − − × − < <

−                                     0.12x

⎧
⎪
⎨
⎪ ≥⎩

. 

When the maximum ozone level (x) is above 0.12 ppm, the penalty cost will exceed 1000.  Thus, the total 

emission cost should be scaled (using α ) such that the maximum total emission reduction cost should not 

exceed 1000.  When the maximum ozone level is less than 0.118 ppm, the penalty cost is zero (0.118 ppm 

is used instead of 0.125 ppm, the standard to 3 decimal places, to allow for a margin of error, since 
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photochemical modeling contains numerous sources of uncertainty).  Finally, it should be noted that there 

are modeling uncertainties in the system and the DMF, so in practice, the 0.118 and 0.12 values in the 

penalty function could be lowered to provide a greater margin for error.  However, this would primarily 

affect the amount of reduction, as opposed to the times and locations of reductions. 

3.3 State Transition Equations 

The state variables of SDP stage t + 1 are determined by state transition equations, which are functions of 

the state, decision, and random variables of SDP stage t.  The state and decision variables have been 

identified in Section 3.1, such that in each SDP stage t, the necessary variables are available to calculate 

the predicted maximum ozone levels using the statistical metamodels; thus, these metamodels specify the 

state transitions for maximum ozone to SDP stage t + 1.  Using  to denote the maximum ozone 

occurring in time period t that is saved as a state variable in SDP stage t + 1, the state transitions can be 

written in the form: 

1
S ][ +ttO

1[ ] ( , )S S
t t t tO f Sε+ = t tx u + ,               t = 1, …, T  , 

where  is the state vector of SDP stage t;  is the decision vector of SDP stage t;  is the 

metamodel approximation for ; and  is a random variable that corresponds to the random error 

in the transition.  Note:  is the final maximum ozone level that is controlled by a constraint in 

SDP stage T.  Other state variables in SDP stage t + 1, namely emissions and maximum ozone levels 

occurring in time periods p < t + 1, simply take their values from a state variable or emission reduction 

variable  of SDP stage t, and the state transitions for these variables are called identity transitions. 

tx

E

tu )(⋅S
tf

1
S ][ +ttO

1+T

S
tε

S ][ TO

i
t

The stochastic variable  is based on the random error in a multiple linear regression model, 

and we assume these follow a normal distribution with mean zero and variance .  The error variances 

 are estimated using the mean square for error (MSE) from each regression model.  Residual analyses 

of the regression models were conducted to validate that normality was reasonably satisfied.  However, 

S
tε

S
tσ

S
tσ
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for computational reasons, the continuous normal distribution was not incorporated directly in the DMF.  

Instead, the simple two-point discretization for the standard normal random variable (Z) from Chen et al. 

(1999) was employed, as shown below. 

Z P[Z = z] 
−1 0.5 
+1 0.5 

 

Furthermore, it is assumed that all the stochastic components in the system are independent.  These 

discretized distributions for  are used to approximate the expected value in equation (1).  Finer 

discretizations would yield better approximations of the expected value in the same manner as numerical 

integration, and future research seeks to represent these uncertainties more realistically using the 

variability in actual data. 

S
tε

3.4 Solving the SDP model 

Chen et al. (1999) introduced the OA/MARS SDP method, which employed orthogonal array (OA, see 

Chen 2001) experimental designs to discretize a high-dimensional continuous state space 

and multivariate adaptive regression splines (MARS, Friedman 1991) to construct continuous 

approximations of the SDP future value functions.  A variant of OA/MARS using an automatic stopping 

rule for MARS (Tsai and Chen 2005) was applied to a 20-dimensional wastewater treatment problem 

(Tsai et al. 2004), and a version using neural networks in place of MARS was applied to a 30-dimensional 

water reservoir problem (Cervellera et al. 2006).   

Our ozone pollution DMF employed another version similar to the OA/MARS approach, using an 

experimental design based on a low-discrepancy sequence (a.k.a., number-theoretic method).  Much 

literature has been devoted to the construction of low-discrepancy sequences (see Chen et al. 2003 for 

background in the context of computer experiments), and application to SDP has only been studied 

recently (Wen 2005).  Well-known constructions include good lattice points, good points, Halton 

sequences, Hammersley sequences, Sobol´ sequences, Faure sequences, and Niederreiter-Xing sequences 

(e.g., Halton 1960, Hammersley 1960, Sobol´ 1967, Xing and Niederreiter 1995, Faure 2001).  The 
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advantage of low-discrepancy sequences over other experimental designs is that the discretization points 

are distributed in the space evenly according to a certain definition of discrepancy (Niederreiter 1992). 

4.  Prototype Decision-Making Framework for Atlanta 

For the Atlanta application, the DMF was used to study the ozone episode during July 29 – August 1, 

1987, which is one of the worst on record for Atlanta.  To date, no practical control strategy using typical 

approaches has been identified to handle this episode, and our ultimate objective is use our DMF to see if 

a dynamic and targeted control strategy could be more cost-effective.  A comprehensive air chemistry 

photochemical model was constructed using the EPA’s Urban Airshed Model, which is recommended by 

EPA for State Implementation Plan (SIP) demonstration, and has been used extensively to study ozone 

pollution in urban Atlanta (Chameides et al. 1992; Chameides and Cowling 1995; Saylor et al. 1999; 

Chang and Cardelino 2000; SIP 1998, 2001).  The base Urban Airshed Model was developed by Systems 

Applications International (SAI 1989) for Atlanta. 

The modeling domain for Atlanta encompasses a 160×160 kilometer square region containing 

the metropolitan area.  Our Atlanta DMF prototype only considers those emissions represented in the 

Atlanta Urban Airshed Model for the July 29 – August 1, 1987 ozone episode; emissions transported from 

outside the modeling domain are not studied.  Further discussion on this is given in the Appendix.  This 

Urban Airshed Model computes hourly-averaged ozone levels on a 40×40 grid over the modeling domain.  

Emissions in Atlanta are represented by 102 point sources (e.g., power plant smoke stacks) and cell 

regions in the 40×40 grid.  Base case emissions (without any controls) were estimated by the Georgia 

Environmental Protection Division (SIP 1998).  Meteorological conditions, such as temperatures, wind 

directions and wind speeds recorded for the 1987 episode, were duplicated in the model input.  The 

Atlanta Urban Airshed Model was run on a 360 MHz Sun Ultra workstation.  The first two days (July 

29 – 30) are used to initialize the system, and the ozone episode begins on the third day.  We studied only 

the third day to demonstrate our DMF approach.  The Atlanta Atmospheric Chemistry Module is briefly 

described in Section 4.1, and the SDP control policy for July 31 is discussed in Sections 4.2 and 4.3. 
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4.1 Atlanta Atmospheric Chemistry Module 

To reduce ozone concentrations, emissions of NOx and VOCs are candidates for reduction.  Atlanta, in 

particular, is “NOx-limited,” which means that targeting VOCs is not effective (Chameides et al. 1988).  

For our Atlanta DMF, we chose to control only NOx emissions.  However, if we included ozone and NOx 

at every point source (102) and every grid region (40× 40) and each hour (24), the number of state 

variables in the SDP model would still be exceedingly large.  Thus, in order to achieve a computationally-

tractable DMF, a major step in the Atmospheric Chemistry Module is dimension reduction, conducted by 

the 3 phases described in Section 2.  We summarize here the results of Yang et al. (2007) to facilitate 

understanding of the Atlanta case study.  In the Initialization Phase, they devised the following setup: 

a) Aggregate the Atlanta UAM 40×40 grid into a 5×5 grid (25 grid squares).  We refer to these grid 

squares with the notation (i, j), for i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4, 5, where grid square (1, 1) is 

at the bottom left, and grid square (2, 1) is one square to the east, etc. 

b) Reduce the 24-hour time horizon to the critical time horizon of 4:00 AM to 7:00 PM.  Define five 

time periods: (0) 4:00 AM – 7:00 AM, (1) 7:00 AM – 10:00 AM, (2) 10:00 AM – 1:00 PM, 

(3) 1:00 PM – 4:00 PM, (4) 4:00 PM – 7:00 PM.  Time period 0 is an initialization period.  The 

time periods include only daylight hours, since sunlight is required for ozone formation. 

c) Control maximum ozone concentrations only at the four Atlanta Photochemical Assessment 

Monitoring Stations (PAMS).  Only these four stations are monitored by the U.S. EPA. 

NOx emissions are considered separately in the DMF for each of the grid squares and point sources 

during each of the time periods 1–4. 

In the Mining Phase, a small 149-point Latin hypercube experimental design (constructed such 

that all variance inflation factors were less than 7.0) determined NOx emissions from zero up to the base 

case level, and stepwise regression with a significance level of 0.10 was used to eliminate unimportant 

variables.  Different time periods were not considered.  Of the original 102 point sources, only 15 were 

found statistically significant, while others were clearly unimportant.  Nine out of the 25 grid squares 

were not statistically significant; however, all were retained for analyses in the next phase. 
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In the Metamodeling Phase, the NOx emissions for the 25 grid squares and 15 significant point 

sources were varied separately over the 5 time periods using a 500-point Latin hypercube experimental 

design (with all variance inflation factors less than 1.6).  The maximum hourly-averaged ozone at the four 

PAMS sites in time periods 1, 2, 3, 4 constituted a set of 16 response variables.  Separate regression 

metamodels were then constructed for each of the response variables.  Specifically, the state transition 

equation metamodel for maximum ozone in time period t could be a function of maximum ozone in 

earlier time periods and NOx emissions from time period t and earlier.   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Minimum set of decision variables by time period on the aggregated 5×5 grid.   

 

 

 

Ma es intained point emission sources are marked by triangles and maintained non-point emission sourc

are indicated by shaded grid squares.  Maximum ozone is observed at the Atlanta PAMS sites 

(Conyers, S. Dekalb, Tucker, Yorkville), which are marked by squares. 

In each SDP stage we only need to maintain those state and decision variables required by the 

state transition equation metamodels for that stage and later stages.  This greatly reduces the dimension of 

the SDP system.  For Atlanta, the minimum set of decision variables is shown in Figure 2.  The minimal 

 18



numbers of required state variables for SDP stages 1 through 4, shown in Figure 3, were 17, 25, 23, and 

19, respectively.  Hence, the effective dimensionality of this SDP problem is 25. 

Figure 3: Minimum set of state variables for SDP stages 1–4 on the aggregated 5×5 grid.   

Maximum ozone state variables are marked by squares, point source emission state variables are 

marked by triangles, and non-point source emission state variables are indicated by shaded grid 

squares. 
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4.2 SDP Control Policies for Atlanta 

In the Atlanta SDP model, time periods 1 through 4 were modeled as SDP stages, and time period 0 was 

considered only as an initialization time period.  The emissions from time periods 1 through 4 

corresponded to the decision variables in the four SDP stages.  As stated in Section 3.4, our SDP solution 

method employed an experimental design based on a low-discrepancy sequence to discretize the 

continuous SDP state spaces and continuous MARS approximations of the continuous SDP future value 

functions.  For state space discretization, point sets of 2000 points from Sobol´ sequences were used.  

These sequences were generalized by Niederreiter (1988) and Xing and Niederreiter (1995).  A public-

domain Sobol´ sequence generator obtained from http://ldsequences.sourceforge.net/ was used.  Table 1 

shows the resulting numbers of basis functions for the MARS future value function approximations in 

each stage and the corresponding run times. 

Table 1:  MARS results for approximating the SDP future value functions and corresponding run times. 

Stage Number of basis functions 
selected by MARS 

Running time 
(hh:mm:ss)  

1 1754 41:08:28 
2 1089 13:44:33 
3 120 0:18:55 
4 290 0:31:03 

 

Although the optimal solutions that were obtained by the backward SDP solution algorithm could 

be used to interpolate a control policy, a forward “re-optimization” technique (Tejada-Guibert et al. 1993) 

has been shown to provide better control policies.  For a given initial state vector entering the first SDP 

stage, , the state transition equation metamodels from the Atmospheric Chemistry Module are 

used to evolve the system, and the optimal decisions are solved forward using equation (1).  The “re-

optimized” SDP decision vector for initial state can be denoted as a T-tuple, ( , …, ), which 

specifies where, when, and by how much emissions should be reduced.  The re-optimized SDP decision 

vector is then simulated in the Urban Airshed Model to obtain the resulting ozone levels. 

nR∈1x

1x 1u Tu
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Figure 4:  SDP Control Policy for July 31.  Reductions in each grid square are combined for point and 

non-point sources.  In Stage 1, point source 4 contributes 77.20% of the reduction shown in grid square 

(1,4), and point sources 5 and 6 contribute 6.23% and 7.05% of the reduction shown in grid square (3,3).  

In Stage 2, point source 5 contributes 10.94% of the reduction shown in grid square (3,3).  In Stage 3, 

point sources 3 and 4  contribute 53.39% and 31.53% of the reduction shown in grid square (1,4), and 

point source 6 contributes 12.41% of the reduction shown in grid square (3,3). 

 
Figure 5:  The trajectory of maximum O3 levels on July 31: No control vs. SDP control policy.  

Figures 4 and 5 illustrate the SDP results for the base case emissions on July 31.  As can been 

seen in Figure 4, the SDP decisions are quite different for the different time periods, and the emission 
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reductions are clearly targeted in certain regions.  More importantly, Figure 5 shows that the SDP control 

policy enabled attainment of the EPA standard in the Atlanta Urban Airshed Model.  Since the chemical 

reactions that lead to ozone are driven by sunlight and heat, precursors (NOx and VOCs) by mid-day are 

more likely to be involved in these reactions than emissions occurring late in the day.  Even though air 

quality decision-makers are aware of this knowledge, it is not used in their current development of control 

strategies.  A progressive decision-maker would seek control strategies that achieve these optimal 

emission reductions; however, implementable actions that achieve these reductions may not exist.  For 

example, an action that seeks to reduce mobile emissions in a specific square region in the morning might 

limit traffic during the morning rush hour in that region.  This action would be implementable only if the 

desired traffic patterns can be enforced.  In addition, although this action would reduce the targeted 

emissions, it might simultaneously increase emissions during other time periods or locations.  If these 

transferred emissions occur during times or locations that have lower impact on maximum ozone, then we 

would still see an overall reduction in maximum ozone.  In seeking implementable actions, additional 

testing may be conducted via the DMF by adding physical/societal constraints to the set of constraints 

 in SDP equation (1) or altering the cost function if more detailed cost information is 

available.  For example, a constraint on a power plant’s emissions in a specified time period, such as 

, sets a maximum reduction limit of 20% for that point source in that time period.  Practical 

issues are discussed further in Section 4.4. 

( , ) t∈Γt tx u

0.20u ≤

The SDP solution, given by the MARS future value function approximations, is valid for a range 

of initial conditions.  For the purposes of illustrating the (re-optimized) SDP control policy under 

different conditions, 50 hypothetical scenarios were created by randomly generating initial state vectors.  

Further results for these scenarios are given in the Appendix.  The Atlanta Urban Airshed Model was 

calibrated for each scenario and then used to calculate the corresponding maximum ozone levels.  

Variation in the decision variables is grouped into three categories in Table 2.  About one-third of the 

sources exhibited no variation; these were reduced by either 0% or 100% in all scenarios.  The remaining 
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sources exhibited some variation, demonstrating the dynamic nature of the SDP solution.  Overall, nearly 

two-thirds of the decision variables are similar across all scenarios, but the remaining optimized decisions 

depend on the initial conditions.  With regard to identifying control strategies, sources that exhibited little 

to no variation could be leveraged to create static controls (that are still targeted in time and location); 

however, the ultimate efficiency does require some dynamic controls that depend on the initial conditions 

of the day.  Implementation of dynamic controls is certainly not practical at this time. 

Table 2:  Categories of decision variables based on variation in the control policies for the 50 scenarios.  

Emission reduction variable in square (i, j) in time period p is denoted by .  Emission reduction 

variable at point source pt(k) in time period p is denoted by .  In the category of  slight variation,” 

each emission reduction variable has the same value for more then 90% of the scenarios or has very small 

variance (variance less than 0.02 when reductions converted to percentages of base case emissions).   

),( ji
pE

)(pt k
pE

Stage No variation Slight variation Significant variation 
1 )4,1(

1E
)6(pt

1E

)3,4(
1E

)1,3(
1E

)4(pt
1E )2,3(

1E

 

)3,1(
1E

)5(pt
1E

)3,2(
1E

)4,3(
1E

)3,3(
1E

)5,3(
1E  

)2,1(
1E )2,4(

1E )4,4(
1E )4,2(

1E )4,5(
1E  

2 )3,1(
2E     )4,2(

2E )4,3(
2E )5(pt

2E )4,1(
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2E )3,3(
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2E )3,4(
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3 )2,4(
3E  )2,3(
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3E  )3,1(
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3E )4,1(
3E )3(pt
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4 )3,1(
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4.3 Cost-effectiveness of SDP Control Policies 

To demonstrate cost-effectiveness, across-the-board approaches with varying percent reductions were 

simulated in the Atlanta Urban Airshed Model for all 50 scenarios, and the resulting maximum ozone 

levels are shown in Table 3.  To achieve equivalent maximum ozone levels as the SDP control policies, 

an across-the-board reduction of 50% to 60% is needed.  As seen in Table 4 of the Appendix, the SDP 

control policies require a similar total emission reduction in the first time period (7:00 AM – 10:00 AM) 

and much lower reductions in the later time periods.  Since the across-the-board approach requires 

maintaining the stated percent reduction over the entire 24 hours, it is clear that our DMF approach yields 
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more cost-effective control policies.  Even within the 7:00 AM – 7:00 PM time period controlled by our 

DMF, the total percent reduction is lower using the SDP control policy.   

Table 3: The maximum hourly-averaged ozone level over the 50 scenarios for different reductions using 

the across-the-board approach. 

Overall Reduction Percentage Maximum O3 (ppm) 
100% 0.092 
90% 0.092 
80% 0.100 
70% 0.111 
60% 0.121 
50% 0.131 
40% 0.139 
30% 0.145 
20% 0.150 
10% 0.155 
0% 0.158 

 

4.4 Beyond a Prototype 

The knowledge gained from the results of our DMF suggest that (1) it is much more cost-effective to 

target reductions by time and location, and (2) it would be worthwhile for decision-makers to start 

thinking about dynamic controls.  This is demonstrative of the power of the described DMF for finding 

heretofore undiscovered opportunities for effectively and efficiently managing air quality. The results 

shown, however, should not yet be considered a practical solution for improving air quality in the 

metropolitan Atlanta area, nor have they been considered as such by any authority. While the cost 

functions used here are reasonable for this demonstration, they are not based on any real experience or 

survey of expected costs. Further, they do not reflect the many other potential continuous and 

discontinuous constraints that decision makers must consider, e.g. considerations of economic and 

environmental justice, political will, social acceptance, or the ability to enforce controls.  It is possible to 

include these issues in a much more complicated model, and to use real cost data that reflects local 

anomalies and regional trends, but that is well beyond the scope of this study.  It is expected that if this 

DMF were to be applied to any region for the purpose of identifying control strategies beyond the 
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prototypical demonstration shown here, a significant fraction of the project would consist of developing 

reasonable, realistic and comprehensive cost functions and constraints. Once in hand, the approach 

described here can be used to find an optimum solution. 

5.  Concluding Remarks 

Although tremendous scientific advancements have been made in air quality modeling, cost-effective 

ozone management is still a challenging issue.  In this research, statistical computer experiments, 

stochastic dynamic programming, and a comprehensive 3-D air chemistry photochemical model, were 

utilized to develop a computationally-tractable DMF that searches for dynamic and targeted control 

policies.  The DMF can help decision-makers identify where, when, and how much emissions should be 

reduced to achieve the EPA ozone standard more cost-effectively than an across-the-board approach.  To 

reduce the computational requirements of our DMF, parallel computing can be utilized in the 

Atmospheric Chemistry Module and in solving SDP (see Eschenbach et al. 1995).  If cost and emission 

reduction information is available, implementable actions could also be explored via our DMF.   

Appendix 

The modeling domain for Atlanta is drawn over the state of Georgia in Figure 6.  While this encompasses 

a fairly large region beyond the city of Atlanta, since regulators were not able to meet their attainment 

objective in Atlanta by controlling sources only in Georgia for this same ozone episode described in our 

study, the State of Georgia joined the Ozone Transport Assessment Group (OTAG, Environmental 

Council of the States, http://www.epa.gov/ttn/naaqs/ozone/rto/otag/finalrpt/, last updated on 3/9/2006, 

accessed on 7/20/2007) and sought emissions controls from upwind sources.  The OTAG study was 

convened by the U.S. EPA in 1995 to quantify the amount of upwind emissions that must be controlled in 

order for downwind areas in the eastern U.S. to meet heretofore impracticable clean air goals.  In 1998, 

the U.S. EPA issued a ruling called the “NOx SIP Call” plan that required states that were upwind of 

nonattainment areas to reduce emissions to a threshold budgeted amount as determined by the OTAG 

study (U.S. EPA 1998).  Controls in the upwind areas, however, did not fully mitigate the ozone problem 
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Figure 6: Location of Urban Airshed Model domain for Atlanta. 

in the nonattainment areas, including in Atlanta.  In turn, the State of Georgia again was required to 

consider controls on sources for which it has the authority to regulate -- namely those sources in Georgia.  

In recognition of the jurisdiction over which state regulators have authority, and their pertinent marginal 

decision-making needs, it is appropriate that options for control are constrained to only those within the 

defined system. 
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Table 4 summarizes the decisions from the re-optimization process for each of the 50 

hypothetical scenarios of Section 4.2, and shows the resulting maximum ozone level calculated by the 

Atlanta Urban Airshed Model. In each time period, the total percent reduction was calculated as: 

sum of emission reduction requirements in time period 100
total emissions in time period 

p
p

× . 

No emission reductions are taken before 7:00 AM or after 7:00 PM.  Of the 50 scenarios, 35 attained the 

EPA standard of 0.125, with the maximum ozone level ranging from 0.1210 to 0.1296 ppm.  As 

mentioned in Section 3.2, parameters of the penalty cost function can be adjusted to allow a greater 

margin for error. 

Table 4:  Maximum hourly-averaged ozone and reductions in emissions for the 50 scenarios 

as percentages of the total base case emissions within each time period.  Maximum and minimum values 

across the scenarios are shown in boldface, and the average is calculated at the bottom. 

Scenario 
No. 

Maximum 
O3 (ppm) 

Reduction requirement (% of total base case emission) 
7AM–10AM 10AM–1PM 1PM–4PM 4PM–7PM 

1 0.1231 53.68% 29.60% 32.56% 6.69%
2 0.1226 53.63% 29.40% 33.68% 6.74%
3 0.1241 45.49% 20.72% 33.40% 13.63%
4 0.1214 53.81% 35.79% 26.54% 7.99%
5 0.1294 55.04% 8.95% 44.60% 3.39%
6 0.1233 49.49% 32.00% 28.80% 6.67%
7 0.1227 53.87% 28.44% 37.30% 6.56%
8 0.1211 53.98% 36.39% 30.78% 9.57%
9 0.1235 48.56% 34.17% 33.30% 5.97%
10 0.1286 53.36% 16.18% 38.26% 3.50%
11 0.1293 53.61% 16.19% 38.26% 3.59%
12 0.1282 53.78% 16.18% 38.26% 3.39%
13 0.1233 53.69% 31.63% 29.92% 6.45%
14 0.1210 53.84% 33.25% 25.48% 9.71%
15 0.1283 55.09% 16.18% 38.23% 3.39%
16 0.1221 53.87% 26.98% 34.40% 6.36%
17 0.1221 54.98% 20.71% 35.80% 5.16%
18 0.1211 53.67% 33.25% 25.00% 9.44%
19 0.1291 54.10% 16.18% 33.40% 3.44%
20 0.1223 53.84% 28.87% 35.10% 6.47%
21 0.1296 53.82% 16.18% 38.26% 3.51%
22 0.1224 53.84% 20.77% 38.25% 3.49%
23 0.1287 53.87% 12.06% 37.90% 8.09%
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24 0.1234 48.19% 29.27% 32.84% 6.71%
25 0.1223 52.84% 28.96% 34.37% 6.50%
26 0.1231 53.72% 30.15% 32.26% 4.88%
27 0.1287 52.79% 9.53% 44.63% 3.53%
28 0.1231 49.54% 29.14% 32.24% 6.77%
29 0.1229 53.64% 28.70% 34.71% 6.59%
30 0.1210 52.78% 33.25% 25.57% 9.62%
31 0.1292 52.79% 16.18% 38.26% 3.47%
32 0.1238 53.82% 34.27% 29.76% 6.68%
33 0.1219 52.75% 20.73% 38.25% 3.51%
34 0.1211 53.95% 33.25% 24.94% 9.41%
35 0.1233 48.27% 29.58% 36.31% 6.48%
36 0.1233 48.19% 32.64% 32.53% 6.52%
37 0.1296 53.90% 16.18% 35.82% 3.41%
38 0.1285 55.21% 16.18% 33.40% 3.38%
39 0.1210 53.79% 33.25% 25.54% 9.66%
40 0.1226 54.01% 27.83% 34.13% 6.53%
41 0.1286 53.83% 16.18% 38.26% 3.43%
42 0.1211 53.84% 33.25% 24.94% 9.41%
43 0.1219 52.67% 37.95% 24.92% 10.95%
44 0.1226 48.22% 30.45% 33.58% 3.42%
45 0.1263 53.64% 13.46% 43.64% 5.80%
46 0.1225 53.86% 20.71% 36.24% 8.86%
47 0.1229 48.22% 29.32% 36.85% 5.63%
48 0.1231 53.68% 30.05% 31.42% 6.65%
49 0.1211 53.80% 38.22% 24.77% 9.62%
50 0.1293 55.16% 16.19% 33.46% 13.06%

Average 0.1195 85.10% 46.57% 42.77% 27.92%
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