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Abstract

Traditional ship-scheduling models ignore uncertainty, even in highly volatile markets. We present

a set-packing model that limits risk using a quadratic variance constraint. After generating first-order

linear constraints to represent the variance constraint, we develop a branch-and-price-and-cut algorithm

for medium-sized ship-scheduling problems. Computational results are provided, and extensions are

discussed.

Risk is prevalent in today’s global economy. Threats of terrorism, depleted oil reserves, and war are examples

of new sources of instability. Incomes in the United States have become more volatile, bankruptcies are

more frequent, and households are shouldering more uncertainty (Gosselin, 2004). As economic fluctuation

increases, logistics planners need to find methods of managing risk. We modify here a traditional set-packing

problem for ship scheduling by adding a quadratic constraint to limit the variance of profit. The new model

is formulated as

max cx

s.t. Ax ≤ 1

xT Qx ≤ d

x ∈ {0, 1}n,
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where A is a 0-1 matrix, and Q is a symmetric positive definite matrix in which an entry in the matrix

[qij ] is the covariance of profit for selecting both sets i and j. Although the application considered in this

paper is commercial ship-scheduling, the use of the set-packing problem is prevalent in industry. Some

applications include air traffic flow management (e.g., Rossi and Smriglio, 2001), aircraft rescheduling (e.g.,

Andersson and Vabrand, 2004), and plant location (e.g., Cho et al., 1983; Canovas et al., 2002). Moreover,

a set-packing problem can be easily transformed into a set-partitioning problem, and some set-partitioning

applications include commercial airline crew scheduling (e.g., Vance et al., 1997; Klabjan et al., 2001), aircraft

rerouting (e.g., Rosenberger et al., 2003), vehicle routing (e.g., Sindhuchao, 2005; Desaulniers, 2003), political

redistricting (Mehrotra, 1998), and organ transplantation (Kong, 2005).

In this paper we formulate a new ship-scheduling model as a set-packing problem with a quadratic con-

straint that limits the variance of shipping profit. Then we develop a solution method that generates columns

and cuts in a branch-and-bound tree. A brief background on the need for managing profit fluctuations in the

shipping business is given in the next section. In Section 2, the ship-scheduling model that limits variance is

described. Solution approaches based on a branch-and-price-and-cut method are then developed in Section 3,

and computational results are presented in Section 4. Finally, conclusions and future research are discussed.

1 Background and Literature

Ship-scheduling models optimize the transportation of commodities, so they are vital to world trade and

military logistics. A ship requires a multi-million dollar capital investment, and the daily operating costs

of a ship can be tens of thousands of dollars. Consequently, improved fleet utilization can yield significant

financial benefit.

Since the pioneering work of Dantzig and Fulkerson (1954), ship-scheduling models have been studied

extensively in academic literature (e.g., Ronen, 1983, 1993; Christiansen et al., 2004). There are three types

of shipping operations—industrial operators, tramp shippers, and liners. Industrial operators deliver their

own cargoes on their own ships at minimal cost, while tramp shippers transport cargoes for other companies.

Tramp shippers often have some cargoes under contract that they must ship, contracts of affreightment, so

general optimization models for industrial and tramp shippers are formulated similarly. Both industrial and

tramp shippers often transport additional cargoes from the spot market when capacity is available. When

an entire ship is available, they will place it on the spot charter market, so other shipping companies can

charter it. If an industrial or tramp shipper has a cargo that it cannot transport, this cargo is placed on the

spot market. The importance of spot rate costs is addressed in an example of Fisher and Rosenwein (1989),

the Tanker Division of the Military Sealift Command of the U.S. Navy, which is responsible for transporting

bulk petroleum products world-wide with a fleet of approximately 20 tanker ships. They calculate total profit
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by the total spot rate costs that would have incurred if the cargo had been delivered by spot charters minus

the operating costs of ships in their fleet. Unlike industrial and tramp shippers, liners operate according

to published schedules, so they differ significantly from the other two types of shipping operations. In this

paper, we focus on the industrial and tramp-shipper problem.

A cargo is the entire content of a ship transported between two ports, and a schedule is a sequence

of cargoes delivered by the same ship. Ship-scheduling problems are solved by generating a set of feasible

delivery schedules for each ship and optimizing a set-packing (or set-partitioning) problem (e.g., Perakis

and Bremer, 1992; Kim and Lee, 1997; Bausch et al., 1998; Fagerholt and Christiansen, 2000a,b; Fagerholt,

2001; Christiansen and Fagerholt, 2002). However, traditional set-packing (or set-partitioning) models ignore

variability in the spot market.

Each year the International Tanker Nominal Freight Scale Association Ltd. (ITNFSAL) calculates a set

of values that estimate the cost of shipping between any combination of ports using a standard ship, called

Worldscale (WS) 100. In addition to these values, Worldscale publishes the current market value of shipping

freight in terms of a direct percentage of the WS 100 rates (Worldscale, 2000). The fluctuation of WS, or

spot tanker freight rates, for the past five years is well depicted in Figure 1.

Figure 1: Spot Rates (VLCC-AG/WEST), Weekly: Jan.2001-Oct.2005 (Hanbada Corporation, 2003)

As shown in the figure, the WS is highly variable, and, in OPEC data (OPEC, 2005), the fluctuation

rate is as high as 116% of WS 100 within one month. When we convert WS into U.S. dollars, the maximum

monthly fluctuation is $38.47/tonne, which is recorded in Gulf/West route during November and December,

2004. Considering the fact that a Very Large Crude Carrier (VLCC) is in the range of 150,000 to 300,000

tonne, the shipping cost increment of a VLCC could be $5,770,500 to $11,541,000 within a month. Even a

small change of WS could easily increase shipping costs tens of thousands of dollars. Consequently, the cost

of shipping on the spot market is extremely volatile, so managing these fluctuations is critically important

for a shipper’s success. In this paper, we limit volatility in ship scheduling by constraining the variance of
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shipping profit.

2 Formulation

Industrial and tramp shippers must transport contracted cargoes from origin to destination. In addition, they

may rent out some of their ships, or they may deliver additional cargoes from the spot market when capacity

is available. Conversely, they may also ship some contracted cargoes in the spot market. Most industrial

and tramp-shipping problems are modeled as set-packing (or set-partitioning) problems (Christiansen et al.,

2004), but we consider the variability of profit. The operating costs of the fleet are relatively constant and

controllable compared with the randomness of the spot rate costs, so we focus on the volatility of the spot

market.

Let V be the set of ships to be scheduled, and let K be the set of cargoes. Suppose set K is divided into

two sets of cargoes: K1 is the set of cargoes in contracts of affreightment, and K2 is the set of optionally

shipped cargoes from the spot market. For each ship v ∈ V , let Fv denote a set of candidate schedules, and

let random variable g̃v be the spot rate cost if the company charters out ship v. Let F be the set of all

candidate schedules F =
⋃

v∈V Fv. For each ship v ∈ V and each schedule f ∈ Fv, let constant cvf be the

cost of covering schedule f with ship v, and let the binary variable

xvf =

1, if ship v covers schedule f ;

0, otherwise.

For each ship v ∈ V , each schedule f ∈ Fv, and each cargo k ∈ K, the binary constant akvf indicates

whether ship v delivers cargo k in schedule f . For each cargo k ∈ K, let random variables r̃k and ẽk be the

revenue and the spot rate cost of delivering cargo k with a spot charter, respectively.
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Then the industrial and tramp shippers ship-scheduling problem can be written as

max
∑

k∈K1∪K2

∑
v∈V

∑
f∈Fv

E [r̃k] akvfxvf −
∑

k∈K1

E [ẽk] sk +
∑
v∈V

E [g̃v]uv −
∑
v∈V

∑
f∈Fv

cvfxvf (1)

s.t.
∑
v∈V

∑
f∈Fv

akvfxvf + sk = 1, ∀k ∈ K1, (2)

∑
v∈V

∑
f∈Fv

akvfxvf ≤ 1, ∀k ∈ K2, (3)

∑
f∈Fv

xvf + uv = 1, ∀v ∈ V, (4)

xvf ∈ {0, 1}, ∀f ∈ Fv, v ∈ V,

(5)

sk ≥ 0, (6)

uk ≥ 0, (7)

where sk is a binary variable that is equal to one if cargo k is serviced by a spot charter and zero otherwise,

and uv is a binary variable that is equal to one if ship v is chartered out on the spot market and zero

otherwise. Variables sk and uv need not be defined as binary variables because of constraints (2) and (4).

The profit of assigning ship v to cover schedule f is thus given by∑
k∈K

r̃kakvf +
∑

k∈K1

ẽkakvf − g̃v − cvf .

Observe that ẽk represents the reduction in opportunity cost of having to ship cargo k on the spot market,

and similarly g̃v is the lost opportunity from using ship v instead of selling it on the spot market.

To simplify notation, let

r̃vf =
∑
k∈K

r̃kakvf ẽvf =
∑

k∈K1

ẽkakvf .

The ship-scheduling problem with limited profit variance (SPLPV) then becomes

max
∑
v∈V

∑
f∈Fv

(E [r̃vf ] + E [ẽvf ]− cvf − E [g̃v])xvf (8)

s.t.
∑
v∈V

∑
f∈Fv

akvfxvf ≤ 1, ∀k ∈ K, (9)

∑
f∈Fv

xvf ≤ 1, ∀v ∈ V, (10)

var

∑
v∈V

∑
f∈Fv

(r̃vf + ẽvf − cvf − g̃v)xvf

 ≤ d, (11)

xvf ∈ {0, 1}, ∀f ∈ Fv, v ∈ V. (12)
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Here, objective function (8) maximizes expected profit. The constraints in set (9) ensure that cargoes in

contracts of affreightment and profitable spot cargoes are serviced, while constraint set (10) implies that

each ship in the fleet is assigned to exactly one schedule or chartered out on the spot market. Constraint

(11) limits the variance of the profit to a fixed value d > 0, a measure traditional ship-scheduling models

ignore. Finally (12) represents the binary requirements on the variables.

We can rewrite constraint (11) as∑
v1∈V

∑
f1∈Fv1

∑
v2∈V

∑
f2∈Fv2

cov(r̃v1f1 + ẽv1f1 − g̃v1 , r̃v2f2 + ẽv2f2 − g̃v2)xv1f1xv2f2 ≤ d. (13)

Variance is non-negative, so the covariance matrix must be symmetric and positive definite (Wu, 2002). For

each pair of ships (v1, v2) ∈ V × V , we denote the covariance of costs from assigning ship v1 to schedule

f1 ∈ Fv1 and assigning ship v2 to schedule f2 ∈ Fv2 as qv1f1v2f2 . Because the covariance matrix Q = [qv1f1v2f2 ]

is symmetric and positive definite, the quadratic function xT Qx is convex. By Kelley’s cutting plane method

(Kelley, 1960), we can replace the quadratic constraint (13) by an infinite set of first-order constraints given

by

2
∑

v1∈V

∑
f1∈Fv1

∑
v2∈V

∑
f2∈Fv2

qv1f1v2f2wv1f1xv2f2 ≤ d +
∑

v1∈V

∑
f1∈Fv1

∑
v2∈V

∑
f2∈Fv2

qv1f1v2f2wv1f1wv2f2 ∀w ∈ <|F |.

(14)

The formulations represented by (8)–(12) and (8)–(10), (12), and (14) are known to be equivalent in convex

programming (Kelley, 1960).

2.1 Modeling Random Profits

Market shortages and surpluses may cause large increases and decreases on all chartering rates. Consequently,

the spot rate cost ẽk will be given by

ẽk = αe
k + βe

kM̃ + γ̃e
k,

where M̃ is an independent random variable representing the fluctuation of spot market prices, αe
k is the

expected cost of chartering a ship on the spot market, βe
k is a constant rate for how the market random

variable M̃ changes the spot rate, and γ̃e
k is an independent random variable for the fluctuation from αe

k.

An implicit assumption is that shipping rates are linearly related to a single market chartering. Because of

the dominance of WS on shipping rates, this assumption is reasonable. This type of random profit modeling

can often be found in calculating the return on a portfolio (Sharpe, 1970).

The values αe
k, βe

k, and γ̃e
k can be adjusted so that, without loss of generality, E[M̃ ] = E[γ̃e

k] = 0,

E[ẽk] = αe
k, var(M̃) = 1, and var(ẽk) = βe

k
2 + var [γe

k]. For each cargo not under contract k ∈ K2, we let

6



αe
k = βe

k = γ̃e
k = 0. The random variables r̃k and g̃v are analogously defined; that is,

r̃k = αr
k + βr

kM̃ + γ̃r
k,

g̃v = αg
v + βg

vM̃ + γ̃g
v .

To simplify notation, let αk = αr
k + αe

k, βk = βr
k + βe

k, γ̃k = γ̃r
k + γ̃e

k, and βvf =
∑

k∈K βkakvf + βg
v . For each

pair of ships (v1, v2) ∈ V × V , the covariance of costs for assigning ship v1 to schedule f1 and assigning ship

v2 to schedule f2, qv1f1v2f2 , is given by

qv1f1v2f2 = βv1f1βv2f2 +
∑

k∈f1∩f2

var(γ̃k) + var(γ̃g
v1

)Iv1=v2 , (15)

where the binary constant Iv1=v2 is defined as

Iv1=v2 =

1, if ships v1 and v2 are the same ship;

0, otherwise.

2.2 Tightening Constraints

Each constraint in set (14) can be tightened to

2wT Qx ≤ 2
√

dwT Qw ∀w ∈ <|F |. (16)

By the triangle inequality, for each real vector w ∈ <|F |,

2
√

dwT Qw ≤ d + wT Qw,

so constraints in set (16) are at least as tight as those in set (11).

Proposition 1. For all w ∈ <|F |, the associated constraint in set (16) is a valid inequality.

Proof. The constraints in both (14) and (16) for which w = 0 are redundant. For a vector w ∈ <|F | \
{
0|F |

}
,

wT Qw > 0 because Q is a positive definite matrix. Let u = hw, where h is a positive constant equal to√
d

wT Qw
. The constraint

2uT Qx ≤ d + uT Qu

in the set (14) is a valid inequality. This implies

2wT Qx ≤ d + h2wT Qw

h

=⇒ 2wT Qx ≤
√

wT Qw√
d

d +

√
d√

wT Qw
wT Qw

=⇒ 2wT Qx ≤ 2
√

dwT Qw.

�

Note that the constraints in set (16) are tangent to the quadratic constraint (11).
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3 Branch-and-Price-and-Cut

In Section 2, we described two formulations for ship-scheduling with constrained risk; one used a single

quadratic constraint, while the other included an infinite set of first-order constraints. In this section, we

develop a branch-and-price-and-cut to solve the latter model.

3.1 Delayed Column-and-Cut Generation

The simplest method to solve the continuous relaxation of SPLPV (CSPLPV) is Enumerated Kelley’s Cutting

Plane algorithm (EKCP), which is summarized in Algorithm 1.

Algorithm 1 Enumerated Kelley’s Cutting Plane Algorithm (EKCP)

Restricted Master Problem (RMP) Step: Let W ⊂ <|F | be a finite set, and solve the linear pro-

gramming relaxation of (8)–(10), (12), and a subset of constraints (16) using W to obtain x∗.

if x∗T Qx∗ > d + ε, where ε > 0 is a very small constant then

Cut Generation Step: W ←W ∪ {x∗} and return to the RMP Step.

else

Return the optimal solution x∗.

end if

In the remainder of this section, we develop a new delayed column-and-cut algorithm which combines

delayed column generation with EKCP to solve CSPLPV. Let π and ρ be dual vectors for constraint sets

(9) and (10), and (16), respectively. For any optimal solution (x∗, π∗, ρ∗) of CSPLPV, the reduced cost cvf

of each variable xvf is non-positive; that is

cvf = E [r̃vf ]+E [ẽvf ]−cvf−E [g̃v]−
∑
k∈K

akvfπ∗k−π∗v−2
∑

w∈W

∑
ṽ∈V

∑
f̃∈Fṽ

ρ∗wqvfṽf̃wf̃ ≤ 0, ∀f ∈ Fv, v ∈ V. (17)

Consider the delayed column-and-cut generation algorithm (DCCG), represented by Algorithm 2, for solving

CSPLPV. For the column generation step, we use a topological sorting algorithm to find a new ship schedule

with maximum reduced cost (17) on a directed acyclic graph described in Section 3.2.

Traditional EKCP assumes all columns are available, and it adds first-order linear constraints in place of

convex constraints as in the cut generation step of DCCG. For large-scale problems, however, enumerating all

of the ship schedules is often impractical. Even for medium sized SPLPV problems we need to generate the

covariance matrix Q which increases quadratically as the number of columns increases. The computations

for constructing such problems grow exponentially, as noted in Section 4.1. Consequently, the use of DCCG

is inevitable.
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Algorithm 2 Delayed Column-and-Cut Generation Algorithm (DCCG)

Let W ← ∅ be a subset of linear constraints from (16). Generate a subset of ship schedules F v ⊂ Fv,

∀v ∈ V .

RMP Step: Solve CSPLPV over the set of subsets F =
⋃

v∈V F v and first-order constraint set W to get

a solution (x∗, π∗, ρ∗).

if x∗T Qx∗ > d + ε then

Cut Generation Step: Update the constraint set W ←W ∪ {x∗} and return to the RMP Step.

else

Find a ship v and a ship schedule f ∈ Fv \ F v that maximizes the reduced cost cvf from (17).

if cvf ≤ 0 then

Return the optimal solution (x∗, π∗, ρ∗).

else

Column Generation Step: F ← F ∪
{
f
}

and return to the RMP step.

end if

end if

3.2 Simplified Reduced Cost

For each ship v ∈ V , each schedule f ∈ Fv, and a subset of schedules F v, the reduced cost from (17) is also

given by:

cvf =
∑
k∈K

αk − π∗k − 2
∑

w∈W

∑
bv∈V

∑
bf∈F bv

(
βkβbv bf + ak bfbvvar(γk)

)
ρ∗wwbv bf

 akvf − cvf

+ αg
v − π∗v − 2

∑
w∈W

∑
bv∈V

∑
bf∈F bv

(
βg

vβbv bf + Iv=bvvar(γg
v )
)

ρ∗wwbv bf .

(18)

The operating cost cvf is a linear function of the ship v and each consecutive pair of cargo deliveries in the

schedule f . Consequently, we can generate a directed network for each ship v, similar to the one in Kim and

Lee (1997), to find the schedule f with maximum reduced cost. Each node in the network represents the

transportation of each cargo, and each arc represents a consecutive pair of cargo deliveries. The cost of an

arc includes the operating cost component of cvf minus the coefficient of akvf in (18) for the cargo k at the

head of the arc. Using this network, we can find a shortest path for each ship v ∈ V and subtract the lower

term in (18) to find the schedule with maximum reduced cost.
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The coefficient for a constraint in (16) is given by

2awxvf
=2
∑
k∈K

∑
w∈W

∑
bv∈V

∑
bf∈F bv

(
βkβbv bf + ak bfbvvar(γk)

)
wbv bf

 akvf

+ 2
∑

w∈W

∑
bv∈V

∑
bf∈F bv

(
βg

vβbv bf + Iv=bvvar(γg
v )
)

wbv bf .

(19)

Suppose

awk =
∑
bv∈V

∑
bf∈F bv

(
βkβbv bf + ak bfbvvar(γk)

)
wbv bf , (20)

awv =
∑
bv∈V

∑
bf∈F bv

(
βg

vβbv bf + Iv=bvvar(γg
v )
)

wbv bf , (21)

then the coefficient is simplified to

2awxvf
= 2awv + 2

∑
k∈f

awf . (22)

The reduced cost simplifies to the following:

cvf =
∑
k∈K

(
αk − π∗k −

∑
w∈W

awkρ∗w

)
akvf + αg

v − π∗v −
∑

w∈W
awvρ∗w − cvf . (23)

The arc costs in the network are now the operating cost component of cvf decreased by

αk − π∗k −
∑

w∈W
awkρ∗w. (24)

Similarly, the reduced cost of using a ship v ∈ V is given by

αg
v − π∗v −

∑
w∈W

awvρ∗w. (25)

For implementation purpose, the cut structure may only include coefficients awk and awv instead of awxvf
.

These coefficients are easier to manage, because the number of cargoes |K| and ships |V | are fixed, while the

number of schedules in the subset F varies as DCCG is executed.

3.3 Follow-On Branching

Vance et al. (1997) showed that follow-on branching, which is a variant of Ryan-Foster branching (Ryan and

Foster, 1981), improves the computational efficiency of the deterministic airline crew-scheduling problem.

Considering their success, we use follow-on branching for ship-scheduling applications. One advantage to

using follow-on branching is ease of applying the branching logic to the column-generation subproblem of

DCCG. For the ship scheduling network, follow-on branching implies that we fix or delete certain edges

representing a connection between two consecutive cargo deliveries or a deployment of a ship to the first

cargo in a candidate schedule.
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4 Computational Experiments

In this section, we present the computational results on SPLPV instances. For small problems, we tested

EKCP. We implemented the first-order constraint set (16) and the DCCG method within a branch-and-bound

tree using COIN/BCP (COIN-OR, 2005). CPLEX 9.120 was used as the LP engine to solve the CSPLPV.

To generate columns that have the maximum reduced costs we used the topological sorting algorithm on

the network described in Section 3.2. We branched on follow-on variables as explained in Section 3.3. Our

experiments were conducted on a Dual 3.06-GHz Intel Xeon Workstation.

4.1 Problem Instances

In our computational analysis, we used modified instances of Kim and Lee (1997), which are similar to

those in logistics for world-wide crude oil transportation of a major oil company. A set of cargoes and a

set of ships are given for the planning period. In addition to the ship and cargo data, a distance matrix is

given. There are two sets of cargoes. The first set of cargoes is contracts of affreightment. The second set

of cargoes is from the spot market and may not be shipped depending on the schedule feasibility and/or

profit. Each cargo is characterized by size, type, loading date, discharging date, loading port, discharging

port, and revenue for lifting cargoes. A ship is assumed to carry only one cargo and can visit several ports

in the planning period. Some ships may be chartered out if they have no feasible schedule, or they may also

ship contracted cargoes in the spot market. Additional ships may be rented from the spot charter market.

Each ship is characterized by size, permitted types of cargo, initial open position, initial open date, speed,

fuel consumption, and the daily running costs.

Data sets from Kim and Lee (1997) include 96 ports, 30 ships, and 120 cargoes. Of course, we could

create many additional combinations of port, ship, and cargo sets. However, we found that small-sized

problems were trivial, so we focused only on medium-sized problems. We created SPLPV instances with

the combinations of 30 ships and 30, 60, 90, 120 cargoes for the experiments. The number of variables

increased exponentially with respect to the number of cargoes, and SPLPV instances have 1,409 variables,

4,561 variables, 414,369 variables, and 849,498 variables, respectively.

Each SPLPV instance was solved without constraint (11), which is equivalent to a traditional ship

scheduling problem, and the variance of schedules in the optimal solution (var) was calculated. Each

instance was divided into six different levels of limited profit variability by setting constraint (11) equal to

5, 10, 15, 20, 25 and 30 percent standard deviation reduction with respect to
√

var . We solved SPLPV

instances in all levels using both traditional EKCP and DCCG within branch-and-bound trees, and using a

ten-hour time limit.

The variability of spot rates was decided by β and γ. We randomly generated β values between 0 and
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α/3, and γ values between (0.05α)2 and (0.15α)2. To see these values are practical, we calculated the mean

squared percent error of OPEC data mentioned in Section 1, using an exponential growth trend and 6 months

of prices to predict next months price. The mean squared percent error lies between 40% and 60%, and that

is higher than that of our estimations, 17.7%, which suggested that our instances are conservative. Fifteen

medium sized ship scheduling problems were constructed from the ship and cargo data sets, and these β and

γ values.

To use EKCP, we had to generate all feasible schedules a priori and compare them with each other

for constructing a covariance matrix. Though our instances are medium-sized problems, time consumed on

constructing ship schedules and covariance matrices grew exponentially as the number of variables increased,

which is shown in Figure 2. SPLPV instances with 90 and 120 cargoes could not be constructed within the

Figure 2: Time spent on constructing models

time limit, which have 414,369 and 849,498 variables, respectively. As a result, we did not use EKCP for

these instances. Both EKCP and DCCG can reduce standard deviation to desired levels with reasonable

costs, which is shown in Section 4.2.

4.2 Computational Results

Computational results using EKCP are shown in Table 1. The first column values are seven different levels

of limited standard deviation d. None of the instances with constrained variance solved to optimality, but

in each instance very good solutions were found. The second column shows the standard deviation values of
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the best solution found within the time limit, while the third column displays the percentages of standard

deviation reduction from
√

var . The fourth column values are the expected profit of the best solutions found,

and the fifth column gives the proportions of the fourth column to the optimal solution found without the

quadratic constraint. The column labeled “CPU BS” shows the time spent to the best solution in seconds,

and the last column is the number of Kelley cuts generated.

Table 1: Enumerated Kelley’s cutting plane method results

d SD SD (%) BS Profit (%) CPU BS Cuts

30 ships, 30 cargoes, 1409 vars x 60 constraints

7434.02 7430.57 30.03 1560313 88.51 6530 88204

7965.02 7933.40 25.30 1627119 92.30 6612 73456

8496.02 8362.04 21.26 1665673 94.49 3568 15825

9027.02 8950.39 15.72 1721997 97.68 2490 9894

9558.03 9435.60 11.15 1760981 99.90 2 6

10089.03 9962.40 6.19 1762489 99.98 2 8

10620.03 10620.03 0.00 1762832 100.00 0 0

30 ships, 60 cargoes, 4561 vars x 89 constraints

12767.97 12742.84 30.14 2528840 85.61 1744 361

13679.97 13608.75 25.39 2682384 90.81 34188 7483

14591.96 14454.00 20.76 2738172 92.70 14636 3315

15503.96 15389.90 15.63 2826678 95.69 19010 2699

16415.96 16376.45 10.22 2886632 97.72 6902 746

17327.96 17312.22 5.09 2920067 98.85 19629 1480

18239.96 18239.96 0.00 2953939 100.00 0 0

With a small expected profit reduction, we can significantly limit standard deviation. For example, with

less than 5% profit reduction, we can decrease standard deviation by 15.63%, which is shown in the results

with 30 ships and 60 cargoes. The relationship between standard deviation restriction and profit reduction

is depicted by the efficient frontiers in Figure 3.

Table 2 presents computational results using DCCG for instances that have 30, 60, 90, and 120 cargoes.

The first to seventh columns are the same as those in Table 1. The column labeled “Vars” displays the

number of ship schedules generated to the best solution found, and “CPU Vars” shows the time spent

generating ship schedules.

DCCG becomes the practical method as the problem size increases, although EKCP performs better

than DCCG for small instances. DCCG can also significantly limit standard deviation with a small profit

13



Table 2: Delayed column-and-cut generation results
d SD SD (%) BS Profit (%) CPU BS Cuts Vars CPU Vars

30 ships, 30 cargoes, 1409 vars x 60 constraints

7434.02 7367.90 30.62 1443665 81.89 2146 209606 97652 405

7965.02 7942.22 25.21 1507933 85.54 720 28200 27213 124

8496.02 8475.97 20.19 1553957 88.15 3201 431175 192270 658

9027.02 8981.53 15.43 1608842 91.26 76 3390 1850 11

9558.03 9516.31 10.39 1659654 94.15 57 2118 2303 10

10089.03 10044.60 5.42 1698373 96.34 8984 473007 509687 2079

10620.03 10620.03 0.00 1762832 100.00 2 0 90 0

30 ships, 60 cargoes, 4561 vars x 89 constraints

12767.97 12728.12 30.22 2472711 83.71 21502 213467 198496 5163

13679.97 13679.66 25.00 2575115 87.18 28262 257952 249273 7095

14591.96 14551.91 20.22 2671811 90.45 61 232 670 18

15503.96 15454.84 15.27 2756273 93.31 73 151 627 22

16415.96 16383.86 10.18 2830737 95.83 31452 207321 294414 9052

17327.96 17326.48 5.01 2894907 98.00 22033 93115 290519 7426

18239.96 18239.96 0.00 2953940 100.00 11 0 190 3

30 ships, 90 cargoes, 414369 vars x 119 constraints

22678.81 22667.33 30.04 4155973 81.15 35392 16541 17307 21182

24298.73 24235.86 25.19 4331288 84.58 5403 2597 3035 3794

25918.64 25892.53 20.08 4498549 87.84 33254 14105 19828 20356

27538.56 27534.32 15.01 4665335 91.10 24544 3764 15939 18780

29158.47 29149.92 10.03 4803991 93.81 35625 16975 19904 20004

30778.39 30664.88 5.35 4958686 96.83 4872 683 3009 3604

32398.30 32398.30 0.00 5121210 100.00 1059 0 550 1045

30 ships, 120 cargoes, 849498 vars x 148 constraints

24989.61 24982.95 30.02 5116365 85.79 18805 3499 4661 14942

26774.58 26674.91 25.28 5315988 89.14 34197 5415 8262 27085

28559.55 28556.75 20.01 5489632 92.05 17923 2630 3926 15098

30344.52 30315.64 15.08 5591225 93.76 22301 1451 4919 18051

32129.50 32058.70 10.20 5748335 96.39 16705 1328 3975 14307

33914.47 33885.69 5.08 5847119 98.05 19288 703 4224 16643

35699.44 35699.44 0.00 5963505 100.00 3891 0 686 3735
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Figure 3: Enumerated Kelley’s cutting plane method

reduction. For example, with only 4.17% profit reduction, we can restrict the deviation to 10.18% as shown

in the instance with 30 ships and 60 cargoes instance. The efficient frontiers are depicted in Figure 4.
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Figure 4: Delayed column and cut generation

5 Conclusions and Future Research

As economic fluctuation increases, logistics planners must find methods of managing risk. In this paper, we

presented a new set-packing model for ship scheduling problems, which has a quadratic variance constraint

and limits the risk of the fluctuation in the spot market. We used traditional Kelley’s cutting plane algorithm

and a delayed column and cut generation algorithm (DCCG) on medium-sized ship-scheduling problems with

restricted variance. To use Kelley’s cutting plane algorithm, we enumerated all feasible schedules a priori

with the covariance matrix. As the number of schedules increased, time for constructing instances grew

exponentially and using Kelley’s cutting plane algorithm became impractical, a fact that motivated us to

develop DCCG. In each iteration of DCCG, we add either a new Kelley’s cut or a new schedule with

maximum reduced cost. The new schedule is found by using a topological sorting algorithm on a directed

acyclic graph. Computational experiments with instances similar to those in logistics for world-wide crude

oil transportation of a major oil company showed that both Kelley’s cutting plane algorithm and DCCG

can reduce variance significantly with reasonable expected profit reduction. Even though neither method

could optimize medium-sized instances within a ten-hour time limit, very good solutions were found. Because

adding multiple cuts and columns in each iteration of branch-and-price-and-cut often improves computational

efficiency, developing methods to add multiple cuts and columns in each iteration of DCCG is a topic of

future research.
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Restricted Master Problem (RMP) Step: Let W ⊂ <|F | be a finite set, and solve the linear pro-

gramming relaxation of (8)–(10), (12), and a subset of constraints (16) using W to obtain x∗.

if x∗T Qx∗ > d + ε, where ε > 0 is a very small constant then

Cut Generation Step: W ←W ∪ {x∗} and return to the RMP Step.

else

Return the optimal solution x∗.

end if



Let W ← ∅ be a subset of linear constraints from (16). Generate a subset of ship schedules S ⊂ S.

RMP Step: Solve CSPLPV over the set of subsets S and first-order constraint set W to get a solution

(x∗, π∗, ρ∗).

if x∗Qx∗ − d > ε then

Cut Generation Step: Update the constraint set W ←W ∪ {x∗} and return to the RMP Step.

end if

Find a ship schedule s ∈ S \ S that maximizes the reduced cost cs from (17).

if cs ≤ 0 then

Return the optimal solution (x∗, π∗, ρ∗).

else

Column Generation Step: S ← S ∪ {s} and return to the RMP step.

end if



Figure Captions

Figure 1: Spot Rates (VLCC-AG/WEST), Weekly: Jan.2001-Oct.2005 (Hanbada Corporation, 2003).

Figure 2: Time spent on constructing models.

Figure 3: Enumerated Kelley’s cutting plane method.

Figure 4: Delayed column and cut generation.



Table Captions

Table 1: Enumerated Kelley’s cutting plane method results.

Table ??: Delayed column-and-cut generation results.



Algorithm Captions

Algorithm 1: Enumerated Kelley’s Cutting Plane Algorithm.

Algorithm 2: Delayed Column-and-Cut Generation Algorithm.


