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Abstract 
 
Successful implementation of feature selection in nuclear magnetic resonance (NMR) 

spectra not only improves classification ability, but also simplifies the entire modeling 

process and, thus, reduces computational and analytical efforts. Principal component 

analysis (PCA) and partial least squares (PLS) have been widely used for feature 

selection in NMR spectra. However, extracting meaningful metabolite features from the 

reduced dimensions obtained through PCA or PLS is complicated because these reduced 

dimensions are linear combinations of a large number of the original features. In this 

paper, we propose a multiple testing procedure controlling false discovery rate (FDR) as 

an efficient method for feature selection in NMR spectra. The procedure clearly 

compensates for the limitation of PCA and PLS and identifies individual metabolite 

features necessary for classification. In addition, we present orthogonal signal correction 

to improve classification and visualization by removing unnecessary variations in NMR 

spectra. Our experimental results with real NMR spectra showed that classification 

models constructed with the features selected by our proposed procedure yielded smaller 

misclassification rates than those with all features.  

Keywords: False discovery rate; Metabolomics; Nuclear magnetic resonance; Orthogonal 

signal correction; Feature selection 
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1. Introduction / Background 

Metabolomics approaches that use proton nuclear magnetic resonance (1H-NMR) have 

been developed in recent years as a way to study the dynamic and time-dependent 

profiles of metabolic responses that occur in response to pathophysiological stimuli or to 

genetic modifications in integrated biological systems [1]. A metabolomics approach 

enables the investigation of hundreds of metabolites simultaneously.  In biofluids, 

metabolites are maintained in dynamic balance with those that are inside cells and tissues, 

and consequently, abnormal perturbations after toxic insult or disease progression will be 

reflected in disturbances in the ratios and concentrations of biofluid metabolites.  The 

introduction of 1H-NMR spectroscopic techniques makes it possible to investigate 

changes in metabolic composition and to quantify them without complex preparation of 

samples.  

1H-NMR depends upon the characteristic spin of the atomic nucleus of hydrogen, 

which exists in two spin states in the presence of a strong external magnetic field.  The 

lower energy spin state is aligned with the external field, but the higher energy spin state 

is opposed to the external field. Irradiation of a sample with radio frequency energy 

corresponding exactly to the spin state separation will cause excitation of those nuclei in 

the lower spin state to the higher spin state.  This radio frequency energy is reflected in 

the ppm (parts per million) value of the x-axis shown in Figure 1, which displays an 

example of multiple NMR spectra of human plasma. In different biological molecules, 

the energy required for this transition, often referred to as the chemical shift, is a 

characteristic for different hydrogen in specific chemicals.  Traditionally, chemical shifts 

along the x-axis are listed from largest to smallest. The y-axis is proportional to the 
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concentration of the hydrogen nucleus absorbing energy so that the spectrum provides 

information on the chemicals which are present and also the concentrations of those 

chemicals.     

[Figure 1 about here] 

A major limitation in NMR spectroscopic evaluation of tissues and body fluids 

lies in the complexity of the signals generated by the presence of multiple chemical 

species, which often have signals that overlap.  Because of this overlap, we refer to the 

amplitude at specific ppm (chemical shift) values as features.  To search for chemical 

species that are useful for classification and prediction, we separate two components, the 

first being an effort to identify metabolite features linked to potential risk factors (i.e., 

feature extraction/selection) and the second being a study to explicitly test whether these 

metabolite features predict disease (i.e., prediction or classification). 

The main purpose of feature extraction/selection is to simplify the entire modeling 

process and to reduce computational and analytical efforts by identifying the important 

features from the high-dimensional original dataset. There is a distinction between feature 

extraction and feature selection, although much of the literature fails to make a clear 

distinction. Feature extraction techniques attempt to create new features based on 

transformations of the original features to extract the useful information for the model, 

while feature selection techniques attempt to pick the subset of original features that leads 

to the best prediction or classification [2, 3]. Despite numerous studies of feature 

extraction/selection that have been conducted in fields of signal and image processing, 

feature extraction/selection methods have not been thoroughly studied for the application 

of NMR spectra.  
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The most widely used method in NMR applications includes a combination of 

principal component analysis (PCA) and classification models [4, 5]. Although PCA has 

been successfully used to facilitate visualization of the complicated spectra and, thus, 

provide an initial idea to guide subsequent statistical analyses [6-8], PCA is not an 

efficient method for the interpretation of the features selected. The reduced dimensions, 

called principal components (PCs) from PCA are each a linear combination of the 

original features, where the number of original features in the NMR spectra is usually 

hundreds to thousands. Thus, interpretation of the PCs cannot readily be made, and the 

extraction of meaningful information is cumbersome. Another major drawback of PCA is 

that the PCs may not always produce maximum discrimination between classes because 

the transformation process of PCA relies solely upon the input variables, and does not 

take into account class information.  

Partial least squares (PLS) is another popular method that utilizes class 

information to help select a transformation better suited for classification [9, 10]. 

However, the reduced dimensions from PLS also do not provide a clear interpretation 

with respect to the original features due to the same reason described for PCA.  Recently, 

a two-stage genetic programming (GP) method was developed for identifying important 

metabolite features for the classification of genetically modified barley [11]. GP is also 

known as a hierarchical genetic algorithm, introduced by Koza [12]. The first stage of 

this method searches a whole spectrum to identify the significant features for 

classification using standard GP. In the second stage, additional GP is employed to find 

significant features from the features selected in the first stage. This method apparently 

overcomes the interpretation problem of PCA and PLS since the method does not utilize 
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any transformations to find the significant features. However, GP is known to be 

vulnerable to overfitting when the features are noisy or the dimension of the features is 

high [13]. Furthermore, GP is a purely numerical optimization technique, and it may be 

hard to interpret the feature selection results statistically.  

In this paper, we formulate a feature selection problem in NMR spectra as a 

multiple hypothesis testing problem controlling false discovery rate (FDR). More 

precisely, we propose a procedure to determine which metabolite features discriminate 

spectra among the experimental conditions based on a multiple testing framework.  It is 

well known that applying a single testing procedure to the multiple testing problems leads 

an exponential increase of the probability that at least one of the tests leads to rejection of 

a null hypothesis when the null hypothesis holds. To compensate for this problem, the 

procedures controlling the family-wise error rates (FWE) that control all the tests 

simultaneously were developed [14]. However, these procedures are too stringent to 

detect true significant features.  In other words, the procedures that control FWE lead to 

low power, where the power is the proportion of false null hypotheses, which are 

correctly rejected [14]. The FDR is the error rate in multiple hypothesis tests and is 

defined as the expected proportion of false positives among all the hypotheses rejected 

[15]. The advantage of an FDR procedure is to identify as many significant hypotheses as 

possible while keeping a relatively small number of false positives [15-17].  

The FDR-based procedure overcomes a limitation posed by the reduced 

dimensions in PCA or PLS and can identify the metabolite features necessary for 

classification without losing any information in the original features. Moreover, the FDR-

based procedure is a statistical approach that enables us to control FDR of the features 
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identified, thus provide the logical interpretation of feature selection results. FDR-based 

procedures have recently been used in microarray analysis to find co-expressed genes 

[18] and applied to neuroimaging analysis to identify active voxels in the image data [19]. 

In microarray/neuroimaging studies, a hypothesis test was performed in each gene/voxel 

to determine whether the gene/voxel contributes to classification between the different 

experimental conditions. 

It is known that high-resolution 1H-NMR spectra obtained from multiple samples 

may contain variability from a variety of sources (e.g., instrumental, environmental, and 

physiological), which deteriorate classification ability [20]. To improve visualization and 

discrimination in spectra, we applied orthogonal signal correction (OSC) that enhances 

the separability of the different classes by removing variability that do not contribute to 

prediction or discrimination [21]. The OSC technique for NMR spectra has been shown 

to minimize physical and biological variation, thus, improving the interpretation of 

statistical results [20, 22].  

Throughout the paper, the effectiveness of our procedures is demonstrated with 

1H-NMR spectra of human plasma, where the goal is to examine metabolic perturbation 

in response to sulfur amino acids (SAA) intake. SAA are highly variable in human food, 

and either the deficiency or the excess of SAA may lead to potential risk in human health. 

They are required for physiologic processes in addition to their role in the maintenance of 

protein synthesis and nitrogen balance.  

 

2. Experimental Data 

2.1. Collection of NMR spectra and experimental data structure 
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We conducted the study within two phases during which plasma samples were obtained 

from four healthy subjects under controlled metabolic conditions in the Emory General 

Clinical Research Center (GCRC). The subjects signed an informed consent approved by 

the Emory Institutional Review Board. During the 12-day GCRC admission, the subjects 

consumed defined diets at standardized intervals. During the 48-hour equilibration 

period, the subjects consumed a balanced meal plan with foods selected to ensure 

adequate energy, protein and SAA intake. The subjects were then placed on constant 

semi-purified diets designed to alter SAA intake, a 5-day zero sulfur amino acid phase 

(zero-SAA phase) immediately followed by a 5-day SAA supplementation phase 

(supplemented-SAA phase). In other words, during the initial 17 time points (first 5 

days), blood was collected when the subjects were consuming diets providing zero SAA, 

and during the latter 17 time points (next 5 days), blood was collected when the subjects 

were consuming diets providing 117 mg/kg/day SAA, or approximately 10 times the 

recommended daily/dietary allowance for SAA. 1H-NMR spectra of human plasma 

(drawn from blood) were then obtained by a Varian INOVA 600 MHz instrument.  

In our experiment, 34 NMR spectra were collected from each subject.  The 34 

spectra were analyzed in each individual, where the half of them (17 spectra) were 

collected from the zero-SAA phase (class label=0) and the other half were collected from 

the supplemented-SAA phase (class label=1). Because there are four subjects, the total 

number of spectra are 136 (= 4 subjects × 34 spectra), where again the half of them (68 

spectra) were collected from the zero-SSA phase (class 0) and the other half (68 spectra) 

were collected from the supplemented-SAA phase (class 1). 
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2.2. Preprocessing of NMR spectra 

NMR spectra require preprocessing steps before conducting statistical analysis to 

detect subtle variations from metabolic profiles. In general, the steps involve phase and 

baseline correction, spectral alignment, elimination of non-informative spectral regions, 

and normalization. Phase and baseline corrections using NUTS software (Acorn NMR 

Inc., Livermore, CA) achieved accurate computing of integration of peak regions. 

Spectral alignment enables direct comparison across different spectra. We utilized a beam 

search algorithm [23], which by maximizing their correlation determines the best 

alignment between the reference spectrum and the sample spectra that require alignment. 

Because they can mask signals from low metabolites, we removed the spectral regions 

containing signals from water (4.5 – 5 ppm) and artificial signals caused by endogenous 

plasma calcium and magnesium (in ppm: 2.573616 – 2.589738, 2.721409 – 2.726783, 

3.020354 – 3.156727, 3.22189 – 3.260854, and 3.62429 – 3.649818). Further, the 

spectral regions in 5.4 - 6.7 ppm and 7.8 -10 ppm were not considered in subsequent 

statistical analyses because they contain no significant metabolite signal. To ensure 

comparability between spectra, spectra were normalized to the area of the internal 

standard. An example of original spectrum is displayed in Figure 2 (a). A spectrum after 

preprocessing and removal of the redundant regions is shown in Figure 2 (b).  

[Figure 2 about here] 

3. Analytical Methods 

3.1. A multiple testing procedure controlling false discovery rate 

A multiple testing procedure controlling FDR is proposed to identify the 

metabolite features that play a significant role in discriminating time points in the zero-
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SAA phase from those in the supplemented-SAA phase.  FDR is a convenient definition 

of an error rate, which is defined as the expected proportion of false positives among the 

entire hypothesis rejected [15]. Furthermore, Benjamini and Hochberg introduced an 

ordered p-value procedure and proved that the procedure controls the specified FDR (or 

α) [15]. A multiple testing procedure identifies the metabolite features that are central to 

discriminating time points by their amount of SAA intake. More precisely, each null 

hypothesis states that the average intensities of the ith metabolite features are equal 

between the time points from the zero-SAA phase and the supplemented-SAA phase, and 

the alternative hypothesis is that they differ. Because we have 8,444 metabolite features 

of interest, we can construct multiple hypotheses as follows: 
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from g2. We compute ti for i=1, 2, …, 8,444 assuming that the null hypothesis is true. We 

next calculate p-values using a permutation method due to repeated measurements and 

thus we cannot clearly assume that each ti follows a t distribution. Under the assumption 

that there is no differential spectral intensity between the two classes (two SAA phases), 

the t statistic should have the same distribution regardless of how we make the 

permutation of spectra. Therefore, we can permute (shuffle) the labels of the 136 spectra 

and re-compute a set of t statistics for each individual metabolite feature based on the 

permuted dataset. If this procedure is repeated M times, we can obtain M sets of t-

statistics as follows:  The p-value for metabolite feature i 

for i=1, 2, …, 8,444 and M=200 is obtained by 
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Finally, we used the FDR procedure [15] that used ordered p-values (p(1) ≤ p(2) ≤ … ≤ 

p(8,444)) to select the significant metabolite features to discriminate the time points in 

the zero-SAA phase from those in the supplemented-SAA phase. The summary of the 

procedure is as follows: 

• Select a desired FDR level (=α) between 0 and 1. 

• Find the largest i denoted as w. 

,)(:max ⎥⎦
⎤

⎢⎣
⎡ ≤                          =

δ
α

m
iipiw  

where m is the total number of hypothesis (here m=8,444) and δ denotes the proportion of 

true null hypothesis. Several studies discuss the assignment of δ. We used δ=1, the most 

conservative choice. 
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• Let the p-value threshold be p(w), and declare the metabolite feature ti significant if 

and only if pi ≤ p(w). 

The original FDR procedure [15] assumes that the hypotheses tests are all independent. 

Later work revealed that the conclusion still holds even if the hypothesis tests are 

positively correlated [24]. Furthermore, Benjamini and Yekutieli [24] provided a 

procedure that can handle general dependency of the hypothesis tests through a simple 

modification of the original FDR procedure. It should be noted that metabolite features in 

an NMR spectrum are correlated with each other. 

3.2. Orthogonal signal correction  

To determine whether visualization and classification could be improved by 

removal of unwanted spectral variations, an OSC method was used. In a seminal paper, 

Wold et al., [21] introduced OSC, a partial least squares (PLS)-based solution that can 

selectively remove from X (i.e., predictor) the unwanted largest variation orthogonal (or 

unrelated) to Y (response). The first step of OSC is to calculate the principal component 

score vector t from X. The score vector t is then orthogonalized with respect to Y through 

the following equation: 

t* = t – Y(YTY)-1YTt. 

It is not difficult to show that t* is orthogonal to Y [21]. In the next step, a weight vector, 

w is calculated such that Xw = t*, followed by the calculation of a new score vector from 

X and w, t = Xw. The above steps are repeated until the difference between the new score 

vector and the previous score vector is less than a predefined threshold. Finally, a loading 

vector, p is calculated, and the correction is performed by subtracting tpT from X giving a 
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residual vector (E = X - tpT). The subsequent components can be computed using E as a 

replacement of X.   

Since the introduction of OSC by [21], a number of OSC algorithms have been 

proposed in the literature. These include modified versions of the original OSC [25, 26], 

a direct orthogonal signal correction (DOSC; [27]), and orthogonal projections to latent 

structures [28]. A comprehensive summary of OSC algorithms can be found in [29]. 

In the present study a DOSC algorithm was used and implemented using 

MATLAB codes available from [27].  DOSC was applied to raw spectra for the purposes 

of classification or discrimination, as in PLS-discrimination analysis. Thus, the response 

matrix Y, as categorical variables, contains information about class memberships of 

spectra (e.g., zero-SAA phase and supplemented-SAA phase).  

It is important to determine the proper number of OSC components in a given 

application because there is a risk of overfitting when too many components are used. 

Thus, OSC results were cross validated using k-nearest neighbor (kNN), one of the 

widely used supervised classification algorithms ([9], pp.415-420).  Here we used 

Euclidean distance to determine the neighborhoods and tested different k (i.e., k = 

2,3,…,10). To obtain cross-validated error rates, the experimental datasets were split into 

four groups corresponding to four subjects. Three subjects were used for training, and the 

one remaining subject was used for testing. This process was repeated three more times. 

The final classification results from the four different testing samples were then averaged 

to obtain the cross-validated error rates of the models. It can seen from Figure 3 that kNN 

models, processed by one OSC component yield higher cross-validated error rates than 

other kNN models, processed by more than two OSC components over the entire range of 
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k (k = 2,3,…10) considered here.  A comparison of models with more than two OSC 

components shows that they are all comparable in terms of their cross-validated errors.  

Thus, we used two-component OSC models in this paper. Previous studies also indicated 

that one or two OSC components are usually sufficient [21, 27].  

[Figure 3 about here] 

3.3. Classification methods and validation 

Classification was performed to obtain the models for separating distinct classes 

and classifying new spectra into previously defined classes. We considered k-NN, 

classification trees and support vector machines (SVMs); however, the k-NN classifier is 

known to be poorly suited for high-dimensional datasets and performed somewhat 

unreliably.  Hence, we present only the misclassification rates for trees and SVMs. 

Classification trees partition the feature space into disjoint hyper-rectangular regions 

according to performance measures (e.g., misclassification errors, Gini index, and cross-

entropy) and then fit a constant model in each disjoint region (Brieman et al., 1984). We 

used the Gini index as a performance measure. The number of disjoint regions (or the 

number of terminal nodes in a tree) should be determined appropriately because a very 

large tree overfits the training set, while a small tree cannot capture important 

information in the data.  A common approach to determine the right size of a tree is tree 

pruning that removes the leaves and branches of a full-grown tree to find the right size of 

the tree [30]. A cost-complexity pruning algorithm was used for tree pruning [31]. SVMs 

use geometric properties to obtain the separating hyperplane by solving a convex 

optimization problem that simultaneously minimizes the generalization error and 

maximizes the geometric margin between the points for different classes (two SAA 
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groups in our case) [32, 33]. Nonlinear SVM models can be constructed from kernel 

functions that include linear, polynomial, radial basis functions. In our experiment, we 

used polynomial (with degrees of two) kernel functions. Classification trees and SVMs 

were performed using MATLAB (The MathWorks Inc., Natick, MA).  

Classification models are frequently evaluated based on their misclassification 

rate. Four-fold cross validation was used to estimate of the true misclassification rate. As 

discussed in Section 2 for determining the number of OSC components, we divided the 

experimental datasets into four groups corresponding to four subjects. In each of four 

iterations, three subjects were used for training the models, and the one remaining subject 

was used for testing. This process was repeated three times more. The final classification 

results from the four different testing samples were then be averaged to obtain the cross-

validated error rates (or misclassification rates) of the classification tree and SVMs 

models.   

 

4. Results and discussions 

4.1. Metabolite feature selection  

A multiple testing procedure controlling FDR at 0.01 was performed to find the 

potentially significant metabolite features that differentiate spectra from time points in 

the zero-SAA phase to those in the supplemented-SAA phase. The procedure identified 

the region containing 1,458 chemical shifts as potentially significant metabolite features, 

demonstrating significant dimension reduction. In order to confirm the assignment of 

these chemical shifts to specific metabolites, an experimental validation is needed using, 

for example, two-dimensional NMR spectroscopy.  In the present study, we focus on a 
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computational evaluation of features selected.  Interpretation of results in the context of 

FDR implies that there are on average 15 (15 ≈ 1,458×0.01) false discoveries out of the 

1,458 features discovered from the FDR-based procedure. Higher levels of FDR (e.g., 

FDR level = 0.05 or 0.1) increase the number of significant features, which yields larger 

power but produces more false significant features (or false discoveries).   

4.2. Direct orthogonal signal correction processing 

The effect of DOSC preprocessing of original data in terms of discrimination can 

be found from the PCA score plots (Figures 4(a)-(f)). PCA was performed after 

normalization of spectra using SIMCA-P11 (Umetrics, Sweden). PCA identifies a lower 

dimensional space called principal components (PCs) through orthogonal transformations 

of the original features [34].   The PCs are uncorrelated to each other and generally, the 

first few PCs are sufficient to account for most of the variability in the original high-

dimensional space. Figures 4(b)-(f) display two-dimensional PCA score plots of the first 

two PCs (PC1 vs. PC2) for the DOSC processed spectra with different numbers of OSC 

components. Compared to Figure 4(a) (obtained from original spectra), Figures 4(b)-(f) 

(obtain from DOSC-processed spectra) show a well-defined discrimination of the two 

classes. It can be seen that the PCA score plots with large numbers of OSC components 

showed that metabolic variation, because of dietary SAA intake, is largely described by 

PC1. Different numbers of OSC components were plotted to see their effect on the PCA 

score plots (Figures 4(b)-(f)). Although using one OSC component improve the 

separation of group somewhat compared to original spectra, the score plot using more 

than two OSC components clearly visualizes groupings between the time points from the 

zero-SAA phase and the supplemented SAA phase. Generally, as the number of OSC 
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components increase, the score plots provided a slightly better separation in that the 

groups appeared more compact but not to a significant degree. This graphical analysis 

from the PCA score plots further justified that two OSC components are sufficient to 

discriminate two classes.  

[Figure 4 about here] 

4.3. Development of classification rules and validation 

Classification methods construct the decision rules that maximize the mathematical 

separation between different classes with knowledge of predefined class labels. To see 

the potential advantage of FDR and DOSC, the datasets with the different numbers of 

metabolite features indicated in parentheses were used for the classification methods.  

• Dataset 1: All metabolite features (8,444). 

• Dataset 2: Metabolite features selected by FDR with level = 0.01 (1,458). 

• Dataset 3: DOSC-processed dataset 1 (8,444). 

• Dataset 4: DOSC-processed dataset 2 (1,458).  

• Dataset 5: Metabolite features selected by FDR at α=0.01 after DOSC (5,810).   

Dataset 1 is the full dataset containing all metabolite features. Dataset 2 contains 1,458 

features selected by the FDR procedure (FDR level = 0.01). Datasets 3-5 were 

preprocessed by DOSC with two OSC components. Dataset 3 consists of all metabolite 

features (dataset 1) processed by DOSC. Dataset 4 consists of the features selected from 

FDR (dataset 2) processed by DOSC. Dataset 5 applies FDR to Dataset 3 (post-DOSC), 

resulting in the selection of 5,810 features. The FDR procedure selected more features 

after DOSC because the reduced variation in the dataset enabled FDR to distinguish more 

potentially important features.  
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Misclassification rates obtained from four-fold CV are shown to evaluate the 

accuracy of classification trees and SVMs for each dataset (Table 1). For both 

classification trees and SVMs, the performance of classification using DOSC-processed 

datasets (Datasets 3, 4, 5) was significantly better than datasets without DOSC (Datasets 

1 and 2). More importantly, the FDR-based feature selection method identified 1,458 

features among 8,444 features, and classification trees and SVMs constructed with the 

features selected by FDR (Dataset 2) yielded smaller misclassification rates than those 

with all features (Dataset 1). Hence, the FDR-based feature selection method achieved a 

huge dimensionality reduction by eliminating non-informative features for classification, 

and yielded classification accuracy that is at least as good as using all features. 

Classification modeling with these reduced features reduces computational and analytic 

efforts. For the DOSC-processed datasets (Datasets 3, 4, 5), the application of DOSC 

post-FDR (Dataset 4) takes advantage of the dimensionality reduction (from 8,444 to 

1,458) while achieving nearly as good misclassification rates as using all features 

(Dataset 3), and the application of FDR post-DOSC (Dataset 5) achieves dimensionality 

reduction (from 8,444 to 5,810) and equivalent misclassification rates compared with all 

features.  The results also indicated that the performance of the different classification 

methods depended on different datasets. In general, SVMs perform better than 

classification trees except on Dataset 2.  Overall, the FDR-based feature selection method 

reduced the dimensionality of the original data without degrading classification accuracy  

 

5. Conclusion 
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1H-NMR spectroscopy measures extract a considerable amount of the structural 

information available from a profile of a metabolite signal. Analysis of NMR spectra, 

accompanied by appropriate multivariate statistical techniques, has the potential to 

provide the tools necessary to facilitate visualization of inherent patterns by reducing the 

complexity of such information-rich data and discerning metabolic changes reflective of 

physiological variation, disease states, toxic stress, and nutrition intake.  

In this paper, we proposed use of a multiple testing procedure controlling FDR to 

compensate for the limitations of PCA and PLS by achieving better interpretation of the 

feature selection results. The advantage of using the FDR-based feature selection method 

is fourfold. First, the identified features are not linear combination of a large number of 

original features; thus, the interpretation of results is straightforward. Second, the 

procedure utilizes class information to help select features better suited for classification. 

Third, the ability of the procedure to control FDR allows us to interpret the results 

efficiently. Four, the effect of correlated features can be automatically accommodated. In 

addition, the present study utilized a DOSC technique to enhance visualization, which 

leads to more accurate classification results.  

The experimental results from real NMR spectra from human plasma demonstrate 

the effectiveness of FDR-based feature selection and DOSC to achieve better feature 

selection and classification.  The overall results show that classification accuracy was 

improved by FDR and DOSC, while keeping only relevant features.   

It should be noted that because our procedures are purely statistical methods 

based upon the available data, the metabolite features selected in the procedure may not 

be generally applicable to samples collected under other conditions. Further, in the 
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experimental design, giving 10 times more the RDA of SAA to one of two subject groups 

might be a lot in reality. Finally, the relatively small number of samples used in the 

present study may not allow the biological implications of our application to be 

generalized for practical applications. Nevertheless, we have shown that the procedures 

used here are potentially useful for the understanding of implicit metabolic patterns in 

biological systems and stimulate further investigation in the development of better 

analytic tools for the study of complex high-resolution NMR spectra.  
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