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Abstract 

We present a refinement of a network revenue management method that employs design of 

experiments and multivariate adaptive regression splines to approximate upper and lower bounds 

for the Markov decision process (MDP) value function. This approach involves an off-line 

statistical modeling module that approximates the value function to provide a policy for 

accepting/rejecting customer booking requests, and an on-line availability processor module that 

conducts the actual decisions as the booking requests arrive.  In the statistical modeling module, 

the data for the value function upper and lower bound functions are obtained by solving 

deterministic and stochastic linear programming problems, respectively.  The refinement in this 

paper identifies realistic ranges of remaining seat capacity at different reading periods by adding 

a state space simulation module preceding the statistical modeling module.  This effectively 

combines the advantages of a design of experiments approach and a simulation-based approach.  

Simulation results using a real airline network and based on actual demand data demonstrate up 

to 2.7% improvement over the original method before refinement, which corresponds to a 5.8% 

improvement over the bid price approach using the deterministic linear programming model to 

determine bid prices.  The state space simulation module could also be applied to improve 

approximate dynamic programming methods that conduct value function approximation. 



1 Introduction 

Revenue management (RM), also known as yield management, is defined as, “Selling the right 

seat at the right time to the right passenger for the right price” (Vinod 1995). RM is applied in 

various transportation sectors, such as auto rentals, ferries, rail, tour operators, cargo, and cruises. 

Other areas, like hotel/resorts, extended stay hotel, health care, manufacturing apparel, and 

companies that produce perishable goods etc., also use RM (Bodily and Pfeifer 1973).  There is 

competition among the airline carriers to expand and explore RM to improve their revenue. 

American Airlines, for example, reported an increase in revenue of 5% due to improved RM 

methods in 1992, which translated to $1.4 billion over a 3-year period (Smith et al. 1992). 

The network RM method in this paper is based on the approach of Chen et al. (2003) that 

employs an orthogonal array (OA) experimental design and multivariate adaptive regression 

splines (MARS) to approximate upper and lower bounds for the RM Markov decision process 

(MDP) value function. They formulated the RM model as an MDP, similar to that of 

Lautenbacher and Stidham (1999).  Traditionally, MDP solutions are obtained using dynamic 

programming (DP), which is computationally intensive.  Hence, the approach of Chen et al. 

(2003) was motivated by the OA/MARS DP value function approximation method of Chen et al. 

(1999).  In this present paper, we seek to improve upon the OA/MARS network RM method by 

refining the state space to a realistic range.  Intuitively, a reduced and more realistic state space 

should enable more accurate function approximations; however, identifying these ranges is not 

trivial and has not been previously attempted. 

Comprehensive RM overviews have been written by McGill and van Ryzin (1999), Talluri 

and van Ryzin (2004), and Phillips (2005).  In practice, the most effective RM approaches are 

based on bid-pricing (Simpson 1989, Williamson 1992, Talluri and van Ryzin 1998).  Bid 



pricing approaches approximate the “fair market value” of a seat with the sum the bid prices on 

the requested itinerary, where bid prices are obtained by solving for the dual of a revenue 

optimization formulation.  These bid prices are typically updated at the reading dates.  A booking 

request is accepted if the customer’s bid is greater than the (estimated) fair market value of the 

requested itinerary.  DP approaches based on the MDP formulation should yield more precise 

solutions than bid-pricing.  The approach by Chen et al. (2003), on which this present paper is 

based, is most closely related recent approximate DP approaches (Bertsimas and Popescu 2003, 

Adelman 2006, Zhang and Cooper 2005, Bertsimas and de Boer 2005, and van Ryzin and 

Vulcano 2006).  These will be discussed in Section 2, following a description of the MDP 

formulation and the OA/MARS network RM method of Chen et al. (2003).  Section 3 presents 

our realistic state space generation and details on our implementation of the OA/MARS approach. 

Our computational results on a real airline network are presented in Section 4, and concluding 

remarks are given in Section 5. 

2 Background and Motivation 

A leg is a flight that travels non-stop from an origin to a destination.  In an airline reservation 

system, customers request a particular itinerary, which consists of one or more legs.  Prior to the 

booking period, an airline defines restrictions for each fare class, as described previously.  In this 

paper, we refer to the combination of an itinerary and a fare class as a demand class.  For each 

demand class, the airline determines a fare and a maximum number of seats allowed to be sold, 

called the authorization level.  The booking process typically starts three months prior to the date 

of departure.  In reality a customer makes a booking request that includes an itinerary and several 

other characteristics, such as the number of days in advance of the itinerary or whether the ticket 

is refundable.  The airline assigns the customer to a demand class that has the same itinerary, has 



not already sold more seats than its authorization level, has characteristics consistent with those 

of the booking request, and has the lowest fare.  The airline then offers to sell the customer a 

ticket for the requested itinerary at a price equal to the fare of the assigned demand class.  Finally, 

the customer decides to accept or reject the offer.  Authorization levels are often recalculated on 

certain specific dates during the booking process called reading dates.  These dates get closer to 

each other as the day of departure gets closer.  After the process, the airline collects data and 

estimates the demand for each demand class based upon the number of tickets purchased.  

In our simulation, we randomly sample customers from the estimated demand of the demand 

classes.  A customer makes a booking request by bidding a price equal to the fare of the demand 

class for the associated itinerary.  Once the request is placed, an airline representative uses a 

computer reservation system to decide if the request is to be accepted or rejected.  The 

customer’s requested price is compared with a threshold calculated by the airline that represents 

the fair market value.  If the customer’s bid is higher than the airline’s threshold value, then the 

request is accepted; otherwise, the request is rejected.  Like the real booking process, the 

simulation reoptimizes the fair market value on reading dates.  Booking requests rejected for any 

demand class due to unavailability or filled seats are called spilled demand.  The major drawback 

to models like our simulation and others like it in the literature (e.g., Smith et al. 1992, Chen et al. 

2003) is that demand for the demand classes is assumed to be independent.  In reality, however, 

demand may be highly correlated, some of it may be recaptured with even high-priced demand 

classes, while some may be lost or gained due to pricing of other competitive airlines.   

Nonetheless, the independence assumption is commonly used in practice and in the literature, 

Moreover, its usage here does not compromise the merit of using statistical models to 



approximate the MDP value function, nor the approach to obtain the realistic state space 

described in this paper. 

The state of the system consists of the remaining seat capacities on n flight legs in the 

network.  There are T reading dates, defining T reading periods, where the t-th reading period 

begins at the t-th reading date furthest from departure.  Denote the state vector at the beginning 

of reading period t by 1( , , )t t ntx x=x K

ija

.  The decision vector in reading period t, denoted by 

, consists of the seat allocations for m demand classes.  Let   denote the 

leg-itinerary incidence matrix with 

1( , , )t t mu u=u K t ( )ifA a=

1=  if leg i is utilized in demand class f and 0 otherwise.  

The revenue associated with demand class f is denoted by fr  (vector ).  The total seat demand 

for demand class f realized in reading period t is denoted by the random variable 

r

ftd .  Finally, 

the value function ( )  provides the maximum expected revenue accrued from reading periods 

t to departure.  In Section 2.1, the MDP value function is described, and its approximation via the 

OA/MARS network RM method is given in Section 2.2.  Section 2.3 discusses related 

approximate DP methods and provides motivation for both the OA/MARS approach and the 

refinement in this paper. 

tF xt

2.1 RM as an MDP 

In the airline booking process, the decision to accept or reject a current booking request depends 

on the remaining seat capacity, the time the request was placed, the itinerary and fare class 

requested, and other characteristics of the current request, but it does not depend on decisions 

made about previous booking requests.  Hence, RM can be classified as an MDP (Lautenbacher 

and Stidham 1999).  The MDP formulation for the RM problem divides the three-month booking 

period into tMDP time intervals, with at most one booking request per interval. These intervals are 



indexed in decreasing order, , where k = 1 denotes the first interval immediately 

preceding departure, and k = 0 is at departure.  These intervals are different from the reading 

periods since each reading period can have multiple booking requests while each MDP interval 

can have at most one booking request.  

MDP , ,1,0k t= K

Let ( )f
ip g

(0kp

 denote the probability that a request for g seats of demand class f occurs in time 

interval k; denotes the probability of no booking requests in time interval k; and Gf is the 

maximum size of a group request for demand class f.   Suppose the booking process is in state x 

at the beginning of time interval k. If a booking request for g seats that arrives during time 

interval k is accepted, then a new state  is reached at the beginning of time interval 

)

'x 1k − , 

where 'x  subtracts g seats from the legs involved in the requested itinerary and is greater than or 

equal to zero.  The MDP value function , for , provides the maximum expected 

revenue collected over time intervals k through departure when the system is at state x at the 

beginning of time interval k.  Then F

( )k x

0

F

( )

0≥x

0 =x  for all x.  Thus, the MDP value functions can be 

written as: 

{ }1 1

1 1 1

max ( '), ( ) , if ( ' 0)
( ) ( )

otherwise.( )

fGm
f k kf

k k
f g k

gr F F
F p g

F
− −

= = −

⎧ + ≥⎪= ⎨
⎪⎩

∑∑
x x x

x
x

 

If , then the airline will accept the booking request if ' 0≥x 1 1( ') ( )f k kgr F F− −+ >x

' 0≥

x

x

; otherwise, it 

will be rejected (Talluri and van Ryzin 2004).  Hence, the fair market value (FMV) of a group of 

requested seats is defined as the difference in the value function of rejecting the request versus 

accepting the request:   where .  The RM policy is then to accept 

the booking request if the “bid” 

1 1FMV ( ) ( ')k kF F− −= −x x

fgr  is greater than FMV.  As mentioned earlier, bid prices are 

used in practice to estimate FMV. 



2.2 An OA/MARS Network RM Approach 

Motivated by the successful application of design of experiments and regression splines in 

stochastic DP (Chen et al. 1999), Chen et al. (2003) proposed an OA/MARS network RM 

method. In this approach, the RM problem is solved in two parts, off-line and on-line. The off-

line statistical modeling module derives the RM accept/reject policy while the on-line 

availability processor module conducts the actual decisions. Their model assumes: 

1. The booking process starts ninety days before the day of departure. 

2. Flight capacities and the flight schedule are known. 

3. There is no overbooking or cancellation. 

2.2.1 Bounding the MDP Value Function 

Instead of directly approximating the value function, an OA/MARS approach is used to 

approximate upper and lower bounds.  At reading date t, we have remaining capacities , and a 

deterministic (DET) linear programming problem may be solved to obtain the seat allocations u 

aggregated over reading dates t through departure, given the expected demand [ ]E d  over reading 

dates t through departure: 

tx

(DET) max
s. t. 

0 [
tA

E ].
≤

≤ ≤

ru
u x

u d
 

Talluri and van Ryzin (1998) showed that the maximum revenue from (DET) provides an upper 

bound on the value function , and we denote this upper bound function by ( )t tF x ( )U
t tF x .  A 

stochastic model, also called the probabilistic nonlinear programming model is considered when 

demand is a random variable. This model is also referred to as the stochastic (STOCH) network 

model and is as given below: 



1 1

1

(STOCH) max [min( , )]

s. t. 

0.

t m

f f
f

t

t

ft

r E d u

A

u

τ τ
τ

τ
τ

= =

=

⎛ ⎞

f

≤⎜ ⎟
⎝ ⎠

≥

∑∑

∑u x  

Günther (1998) showed that the maximum revenue from (STOCH) provides an lower bound on 

the value function , and we denote this lower bound function by ( )t tF x ( )L
t tF x .  The duals of 

(DET) and (STOCH) are often used to provide bid prices for each flight leg (Williamson 1992, 

D’Sylvia 1982). 

2.2.2 Statistical Modeling Module 

The steps involved in this module are: 

1. The reading dates are chosen and remaining seat capacities are initially set equal to the 

flight capacities for the flight legs. 

2. An OA experimental design is constructed to provide discretized coverage of the 

remaining seat capacity state space. The state space ranges from zero to the plane 

capacities of the flights in the network. 

3. For each of the discretization points, the (DET) model and the (STOCH) model are 

solved to provide points on the upper and lower bound functions ( )U
t tF x  and ( )L

t tF x , 

respectively.  This loop is repeated at all reading dates. 

4. For each reading date, a MARS approximation is fit separately to estimate ( )U
t tF x  

and ( )L
t tF x  over the entire state space of tx . Thus, a total of 2T different MARS 

approximations are generated.  We denote these by ˆ ( )U
t tF x  and ˆ ( )L

t tF x . 



Figure 1 illustrates the procedure in the statistical modeling module. The MARS statistical 

models  and  are now available for the on-line availability processor module.  For 

a 20-city, 31-leg network, computational effort per reading date takes less than 10 minutes on a 

2.8-GHz Intel Xeon Workstation. 

ˆ ( )U
tF x ˆ ( )L

tF x

 
Figure 1 about here. 

2.2.3 Availability Processor Module 

At time τ between reading dates t and 1t − , we use linear interpolation between  and ˆ ( )U
tF x

1
ˆ ( )U
tF − x  to approximate ; similarly, for .  An FMV for a booking request of group 

size g, for demand class f at time τ is estimated using 

( )UFτ x ( )LFτ x

ˆ ˆPessimistic = ( ) ( ')
ˆ ˆOptimistic ( ) ( ')

Pessimistic + OptimisticEstimated Fair Market Value
2

L U

U L

F F

F F
τ τ

τ τ

−

= −

=

x x

x x  

In Figure 2, the RM policy is defined as, “accept the booking request only if the requested fare is 

greater than the estimated fair market value.” 

 
Figure 2 about here. 

2.3 Approximate DP and Motivation 

2.3.1 Discussion of Approximate DP Methods in RM 

Both Chen et al. (2003) and Bertsimas and Popescu (2003) use the (DET) model to approximate 

the MDP value function in the definition of FMV.  The distinction is that Bertsimas and Popescu 

(2003) require solving (DET) every time FMV must be estimated, while Chen et al. (2003) used 

(DET) and (STOCH) to construct a MARS-based value function approximation off-line, then 



employed these quick-to-compute MARS approximations to estimate FMV during the on-line 

booking process. 

Adelman (2006) incorporates the linear programming approach to approximate DP (see de 

Farias and Van Roy 2003), which models the value function as a linear combination of 

“features” or basis functions, where the difficult task is identifying the appropriate set of features.  

Adelman (2006) uses an affine functional approximation with the remaining capacities as the 

features.  Further, Adelman (2006) derives theoretical connections between this approximate DP 

approach and the bid price approach.  Computational times were reasonable: for a 100-day time 

horizon, times were less than 4 minutes for a 20-leg hub-and spoke network and less than 157 

minutes for a 40-leg hub-and spoke network on a 3.6GHz Intel Xeon Workstation. 

Zhang and Cooper (2005), Bertsimas and de Boer (2005), and van Ryzin and Vulcano (2006) 

all consider a simulation-based approaches.  Zhang and Cooper (2005) derived upper and lower 

bounds for the MDP value function of a dynamic customer choice model and then solved this 

stochastic optimization problem via simulation-based approaches.  Bertsimas and de Boer (2005) 

employed fine-grained simulation-based state and decision space discretization and multi-linear 

interpolation to conduct value approximation, which required 50-60 hours to compute for a 30-

leg hub-and-spoke network.  By contrast, van Ryzin and Vulcano (2006) focused on a stochastic 

approximation approach with a continuous state and decision model to derive a computationally 

faster continuous optimization problem that overcomes the computational burden of the 

approach by Bertsimas and de Boer (2006).  Computational times were approximately a minute 

per reading date for a 62-leg network. 

Although a stochastic approximation approach is faster than a value function approximation 

approach, the value function approximation approach can yield better solutions (Wen 2005).  



The critical issue in speeding up a value function approximation approach is the state space 

discretization.  The novelty of the OA/MARS DP method of Chen et al. (1999) and the 

OA/MARS network RM method of Chen et al. (2003) is the use of design of experiments to 

obtain an efficient state space discretization.  We discuss the motivation for this approach next. 

2.3.2 Motivation for Refined OA/MARS Network RM Method 

Design of experiments dates back to Fisher (1925), Bose and Kishen (1940), and Cochran and 

Cox (1950), when the necessity of minimizing the number of experimental runs to achieve a 

desired modeling precision was dictated by the cost of physical experiments.  More recently, 

computer experiments have become a popular method to study complex systems.  Although the 

cost of physical experiments is not an issue, design and analysis of computer experiments 

evolved to efficiently conduct computationally expensive computer experiment runs (see Sacks 

et al. 1989, Koehler and Owen 1996, Chen et al. 2006). 

RM methods that seek to approximate a value function via a simulation-based approach 

automatically generate sample paths that represent a realistic state space; however, they do not 

take advantage of the efficiencies gained via design of experiments.  A sample path that realizes 

states close to previously realized states provides little new information in approximating a 

response surface of a computer experiment, such as a value function.  A simulation-based 

approach cannot control this, but design of experiments can, by spreading the discretization 

points over the state space, so that each point provides valuable information towards the 

approximation of the response surface.  The approach in this paper is the first to combine the 

benefits of a realistic state space and design of experiments. 

The statistical modeling method is also a critical choice, as that determines how well the 

given computer experiment data (e.g., points solved on the value function) can be employed to 



produce an accurate, yet, parsimonious approximation.  Splines were shown to be much more 

efficient at using data than multi-linear interpolation for value function approximation (Johnson 

et al. 1993), and MARS combined with the efficiency of OA experimental designs can break the 

exponential growth referred to in DP as the curse of dimensionality (Chen et al. 1999).  Neural 

networks have also been studied for this purpose (e.g., Bertsekas and Tsitsiklis 1996, Cervellera 

et al. 2006) and can provide comparable accuracy to MARS; however, there are complications in 

determining neural network architecture while MARS model structure is adaptively chosen by 

the MARS algorithm to fit the given data.  Finally, it should be noted that neither the affine 

functional approximation of Adelman (2006) nor bid price approaches incorporate possible 

interactions between the flight legs.  Interactions occur between flight legs on popular itineraries 

with a connection.  The MARS approximations for the 31-leg network of Chen et al. (2003) do 

involve several interactions terms. 

3 Refined OA/MARS Network RM Method  

In the refined version of the OA/MARS network RM method, realistic ranges of the remaining 

capacity state variable are generated, instead of the same ranges (from zero to capacity) 

throughout the booking period. Intuitively, these ranges should be close to the capacity at the 

beginning of the booking period and move closer to zero towards departure.  However, other 

than this intuitive information, realistic ranges are unknown a prior.  Hence, we achieve this by 

adding a state space simulation module preceding the statistical modeling module of Section 2.2. 

3.1 State Space Simulation Module 

In the statistical modeling module of Section 2.2.2, the state space remains the same for all the 

reading dates. As a consequence, the design points are spread out over a wider region than 

required. We know that, in practice, one is unlikely to find an empty flight on the day of the 



departure or a full flight 90 days prior to the day of departure. In order to be more realistic, we 

estimate the possible/realistic ranges for each reading date.  These are called trust regions. 

Demand scenarios are generated based on real data. Remaining flight capacity is initialized to 

the actual flight capacity. The (DET) model, as described in Section 2.2.1, is employed at the 

reading dates to generate bid prices. The RM policy which states, “accept the booking request 

only if the fare is greater than the bid price” is used to make decisions on accepting/rejecting the 

request. Upon accepting the request, remaining seat capacity is updated to remaining capacity 

minus the booking request’s group size g.  Demand scenarios are simulated many times and at 

the end of each reading date, remaining seat capacities are recorded. Figure 3 shows the 

generation of the trust regions. Remaining seat capacities obtained at each reading date over the 

entire simulation are used to determine the maximum and minimum capacities at those reading 

dates. 

 
Figure 3 about here. 

To estimate the number of simulation runs needed to obtain good realistic ranges, a simulation 

for an initial sample size of s = 30 was run. The resulting data was used to estimate the standard 

deviation of remaining capacity, σ. Desired sample size was then estimated using a confidence 

interval approach, 

2
/ 22zs

E
α σ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

where E is the desired width of the confidence interval and was chosen to be 5% of the expected 

value of the sample plus or minus the confidence coefficient times the standard error.  (Note: If 

the determined sample size is less than 30, then a confidence interval based on a t-distribution 

could provide a more accurate calculation.) 



3.2 Approximation of the Value Functions 

The remaining seat capacity state spaces are set according to the empirically-derived realistic 

ranges from the state space simulation module. Similar to step 2 of the statistical modeling 

module in Section 2.2.2, an OA experimental design is employed to identify discretization points 

in the realistic state spaces for each reading date. Otherwise, steps 3 and 4 in Section 2.2.2 

remain essentially the same (see Figure 1). 

As in Section 2.2.1, the (DET) model is used to provide an upper bound on the MDP value 

function, and the (STOCH) model is used to provide a lower bound. Solving the deterministic 

model is a straightforward LP, but there are different approaches for solving the stochastic model. 

The next section describes the approach used in this paper.  

3.3 Solving the Stochastic Network Optimization Model 

In the (STOCH) model, let variable fw τ be the expected number of passengers for demand class f 

at reading date t 1,2,..., , ..., .0,1,f m tτ∀ = ∀ =  We can impose this definition using the following 

constraint set:  

[min( , )], 1,2,..., , 0,1,..., .          (1)f f fw E d u f m tτ τ τ τ≤ ∀ = ∀ =  

We can then replace the objective function by the following: 

1 1
max .

t m

f f
f

r w τ
τ = =
∑∑  

For each 1,2,...,f m= and each 0,1,..., tτ = , the function  is known to be 

concave, as long as the random variable 

[min( , )]f fE d uτ τ

fd τ is continuous.  In this case, it is well-known within 

convex programming (Kelley 1960) that constraint set (1) can be replaced by an infinite set of 

first-order, so (STOCH) is equivalent to following reformulation: 
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However, when the random variable fd τ  is discrete, the function is not smooth, 

so constraint set (2) is undefined. In particular, suppose demand follows a compound Poisson 

process with arrival rate λ. From the definition of expected value we know that, for any discrete 

random variable L, . For simplifying the derivation, we omit the subscripts f and τ, 

and let  and . Hence, 

[min( , )]f fE d uτ τ

[ ] ( )E L lp l=∑

fu uτ =fd τ = d

d

0 1
[min( , )] ( ) ( ),

u

d d u
E d u dp d up d

∞

= = +

= +∑ ∑  

where p(d) is the probability of demand d. Let H be the cumulative distribution function for the 

Poisson distribution and h be the probability mass function for the Poisson distribution. Hence, if 

, then 1u ≥
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0 1
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For , 1 0u> ≥ [min( , )]E d u  is just equal to ( )1 (0)u H− . Since the cumulative distribution 

function H is a step function, [min( , )]E d u is piecewise linear.  We can show that it is also 



continuous and hence concave.  Observe that for a sufficiently small increase in the 

valueu , the slope of the function is equal tou< ⎡ ⎤⎢ ⎥ [min( , )]E d u ( )1 H u− ⎢ ⎥⎣ ⎦ . Now consider the 
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continuous. Consequently, we can replace the constraints in set (2) by an infinite set of 

constraints associated with discrete integer values of . Thus, the original (STOCH) model is 

equivalent to the following reformulation: 

0u

1 1

0 0min( , )] (1

,..., , 0,1,...,
0, 1, 2,...,

t m

f f
f

ft

r w

E d u

f m
f

τ
τ

τ

= =

−

∀ =
≥ ≥ ∀ =

∑∑

1
s.t. 

(1 ( ))

t

f f

A u

w H u u

τ
τ

τ τ

=

⎛ ⎞
≤⎜ ⎟

⎝ ⎠
− −

∀ =

∑

0 0

0

max

[ ( ))

1,2 ,         (3)
, 0,1,..., .

t

f f

x

u H u

t u
u w m tτ τ τ

+

≤ −

∀ ∈
∀ =

�

 

The set (3) has an infinite number of constraints, so it is computational intractable to solve this 

linear programming problem exactly as stated. However, we can approximate this linear 

programming problem by replacing the infinite set +�  by a finite set in which u0 = 1, 2, . . . , ū, 



where ū in a practical upper bound on the values ufτ , for all f = 1, . . . ,m and τ = 0, . . . , t. In our 

computational experiments in Section 5, we set ū to be 50. 

4 Computational Results 

Our methodology was tested on the 31-leg airline hub application used by Chen et al. (2003). 

Their application used fifteen reading dates, included 123 itineraries, and had a maximum 

demand of 50. Data on flight capacities and demand distribution parameters were provided by a 

domestic airline carrier. 

Based on the confidence interval approach, a total of 85 simulation runs were conducted in 

the state space simulation module to obtain the realistic state spaces.  The computational effort 

was less than 5 minutes on a 2.8-GHz Intel Xeon Workstation.  An OA experimental design, was 

used to generate 312 design/discretization points. Demand scenarios were generated based on the 

data given. Using all this information the refined statistical modeling module was executed, and 

the resulting RM policy was employed in a simulated booking process. The results obtained from 

2000 simulation runs are given in Table 1. 

 

Table 1 about here. 

The column labeled “Load” is the nominal load factor, defined to be the quotient of total 

requested capacity over available capacity. Airlines use nominal load factors of up to 150%. The 

column “CV” contains the coefficient of variations considered for each load factor. The average 

revenues generated in the simulation are reported for four RM methods: the (DET) bid price 

approach, the (STOCH) bid price approach, the original OA/MARS network RM method of 

Section 2.2, and the refined OA/MARS network RM method of Section 3. The standard error is 

given below each average revenue, followed by the percentage increase in average revenue 



compared with the (DET) bid price approach. The upper bound at each of the load factors are 

obtained by solving (DET) model at 90-days before the day of departure for maximum capacities. 

5 Concluding Remarks 

It can be seen in Table 1 that the original OA/MARS network RM method is better than both the 

(DET) and (STOCH) bid price approaches, and the refined original OA/MARS network RM 

method shows improvement over the original. We can also observe that the (STOCH) bid price 

approach performs better than the (DET) bid price approach in certain instances. These results 

not only demonstrate the benefit of an OA/MARS network RM method, but, further, the benefit 

of using realistic trust regions for the state space. Although the idea of employing a state space 

simulation module to define realistic trust regions was first tested here in this paper on the 

OA/MARS network RM method, its success suggests that the OA/MARS DP method and similar 

value function approximation approaches would also benefit. 

In on-going research, we are relaxing the assumption of no overbooking or cancellation. It is 

possible to estimate the number of seats to be overbooked, called overbooking pad, for each 

flight leg before the booking process starts. In the statistical modeling approach, the state space 

would be modified to be the sum of the actual flight capacity and the overbooking pad. Using a 

MARS approximation of revenue, we are studying the use of a combined Newton’s and steepest 

ascent method to estimate the optimal overbooking pad. 
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Table Caption 

Table 1: Average revenues from 2000 simulations of the 31-leg hub using four methods: DET = 

Deterministic Bid Price, STOCH = Stochastic Bid Price, STAT = Original OA/MARS Network 

RM Method, REF STAT = Refined OA/MARS Network RM Method. Results are shown for 

load factors of 75%, 120%, and 150%, and various coefficient of variation (CV) values. Standard 

errors are given in parentheses, and percent increase in average revenue from DET is shown. 



Figure Caption 

Figure 1: Flow chart representing the statistical modeling module. 

Figure 2: Flow chart representing the availability processor module. 

Figure 3: Flow chart representing the state space simulation module for generation of realistic 

state spaces. 



 Table 1: Average revenues from 2000 simulations of the 31-leg hub using four methods: DET = 

Deterministic Bid Price, STOCH = Stochastic Bid Price, STAT = Statistical Modeling Approach, 

REF STAT = Refined Statistical Modeling Approach. Results are shown for load factors of 75%, 

120%, and 150%, and various coefficient of variation (CV) values. Standard errors are given in 

parentheses, and percent increase in average revenue from DET is shown. 

Load (%) CV DET STOCH STAT 
REF 

STAT 
Upper 
Bound 

75 0.4 790427.2 789450.1 790536.7 790975.7 799594.1 
  (586.00) (533.60) (503.50) (486.50)  
   -0.12% 0.01% 0.07%  

75 0.56 718729.4 720331.5 725763.9 728458.5 799594.1 
  (680.40) (762.60) (623.00) (645.30)  
   0.22% 0.82% 1.35%  

75 0.63 662294.1 662522.5 665756.5 668229.7 799594.1 
  (769.20) (858.70) (845.40) (764.40)  
   0.03% 0.52% 0.89%  

120 0.32 807252.8 801192.2 818754.6 820075 993560.8 
  (586.00) (508.00) (455.20) (467.50)  
   -0.75% 2.70% 2.86%  

120 0.45 779258.5 775292.9 808538.4 817417.1 993560.8 
  (603.20) (548.40) (457.70) (428.40)  
   -0.51% 3.76% 4.90%  

120 0.6 699243 709387.4 720865.3 739938.6 993560.8 
  (702.60) (774.00) (736.80) (632.70)  
   1.45% 3.09% 5.82%  

150 0.48 787231.3 784911.9 790875.8 799574.9 1108892 
  (591.10) (500.60) (524.60) (425.65)  
   -0.29% 0.46% 1.57%  

150 0.56 766360.9 724377.4 789653.5 794364.7 1108892 
  (609.40) (770.10) (643.90) (700.60)  
   -6.90% 3.04% 3.65%  

150 0.7 721903.3 607282.8 749655.7 753297.7 1108892 
  (679.00) (779.30) (756.90) (737.80)  
   -15.88% 3.84% 4.35%  

 



 

Figure 1: Flow chart representing the statistical modeling module. 



 

Figure 2: Flow chart representing the availability processor module. 



 

Figure 3: Flow chart representing the state space simulation module for generation of realistic 

state spaces. 

 


