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Abstract

This research develops a novel data-integrated simulation to evaluate nurse-patient assignments (SIMNA) based on

a real data set provided by Baylor Regional Medical Center (Baylor) in Grapevine, Texas. Tree-based models and

kernel density estimation were utilized to extract important knowledge from the data for the simulation. Classification

and Regression Tree models, data mining tools for prediction and classification, were used to develop five tree struc-

tures: (a) four classification trees, from which transition probabilities for nurse movements are determined; and (b) a

regression tree, from which the amount of time a nurse spends in a location is predicted based on factors such as the

primary diagnosis of a patient and the type of nurse. Kernel density estimation is used to estimate the continuous dis-

tribution for the amount of time a nurse spends in a location. Results obtained from SIMNA to evaluate nurse-patient

assignments in medical/surgical unit I of Baylor are discussed.

1 Introduction

The health care system in the United States has a shortage of nurses. In 2000, according to the U.S. Department

of Health and Human Services (DHHS), the national shortage for registered nurses was 110,000 or 6%. DHHS

anticipates that the shortage will grow relatively slowly until it reaches 12% around 2010. From then, it is expected

to worsen at a faster rate and reach a 20% shortage by 2015. A shortage of 3% or more was observed in 30 states

during 2000, and similar shortages are predicted to occur in 44 states by 2020 (HRSA, 2002). These statistics show
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that the severity of this shortage is widespread. As a consequence of the nurse shortage, it is natural to expect issues

such as job burnout and poor patient care (Aiken et al., 2002). In an attempt to ease the health care system from such

issues, California has set a limit on the number of patients that can be assigned to nurses at the same time (CDHS,

2005). Such restrictions may reduce nurses’ workload, but will unlikely resolve the issue because differences in

workload among nurses depend on amount of care required and the physical location of the patients to which a nurse

is assigned. Static nurse-to-patient ratios ignore the differences in patient mix, care unit, hospital layout, and nurse

resource across different hospitals. For these reasons, professional organizations such as, the American Organization

of Nurse Executives (AONE), the Society for Health Systems (SHS), and the Healthcare Information and Management

Systems Society (HIMSS) oppose the mandatory static ratios (AONE, 2003; SHS, 2005; HIMSS, 2006). All these

organizations, in their position statements, either implicitly or explicitly call for models that consider hospital specific

factors to address nurse-to-patient assignments. Thus, instead of statically limiting the number of patients per nurse,

it is important to optimize the nurse-patient assignments for a balanced workload with a hospital specific model. In

the literature, most of the relevant research focuses on nurse budgeting, nurse scheduling (rostering), and nurse re-

scheduling methodologies (Aickelin and Dowsland, 2003; Burke, Cowling and Caumaecker, 2001; Jaumard et al.,

1998; Kirkby, 1997; Miller et al., 1996; Warner, 1976; Bard and Purnomo, 2005b; Azaiez and Sharif, 2005; Beddoe

and Petrovic, 2006; Gutjahr and Rauner, 2007) and did not address nurse-to-patient assignment issue. Apart from

the proposed model in this paper, Vericourt and Jennings (2006) and Punnakitikashem et al. (2006) are two other

contemporary research that addresses nurse-to-patient assignment issue. However, these researches did not use real

data as extensively as it would require to model nurse-to-patient assignments at a care unit level for a given hospital.

By contrast, our research considers hospital and care unit specific factors and develops a data-integrated simulation to

evaluate nurse-patient assignments (SIMNA) that utilizes patterns in a real data set to balance workload among nurses.

The data set for this research was provided by Baylor Regional Medical Center (Baylor) and hence the results are

confined to it. However, the simulation model could be easily adapted to other hospitals once similar data analysis is

performed. The mechanism for adapting our simulation model to other hospitals is briefly explained in section 7.

In traditional stochastic simulation models, transition probabilities are obtained either subjectively or by looking at

all possible combinations of the levels of the simulation state variables. If the system under consideration is complex,

such as nurse movement, then a subjective approach is unlikely to be accurate, and an approach using all possible

combinations of the states will be impractical. In the past, in order to reduce the number of simulation variables,

factorial designs and screening methods were used (Bettonvil and Kleijnen, 1997; Cheng, 1997; Shen and Wan, 2005).

Even after eliminating some of the variables, a few remaining variables could lead to a huge number of combinations

for the simulation. For instance, six categorical variables with ten categories each will lead to a million possible states

in the simulation. Obtaining accurate transition probabilities for such a huge simulation model is still difficult. In this

paper, using data from Baylor Regional Medical Center (Baylor) in Grapevine, Texas, we present a new methodology
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to reduce the number of combinations and find transition probabilities for stochastic simulation models. Tree-based

models and kernel density estimates were utilized to extract important knowledge about the workload of nurses from

an encrypted data set provided by Baylor for four care units. The four units include two medical/surgical units, one

mom/baby unit, and one high-risk labor-and-delivery unit. Classification and Regression Trees (Breiman et al., 1984),

a data mining tool for prediction and classification, was applied to the Baylor data to develop five tree structures: (a)

four classification trees, from which transition probabilities for nurse movements are determined; and (b) a regression

tree, from which the amount of time a nurse spends in a location is predicted based on factors such as the primary

diagnosis of a patient and the type of nurse. Simulation models developed with this approach will be much more

representative of actual systems and more efficient than those that consider all possible combinations.

Following are two major contributions made in this research:

• This research introduces a novel approach, discussed in section 4, to the simulation community for constructing

efficient simulation models based on data mining. This way of simulation modeling avoids misrepresentation

of system dynamics and characteristics because it is entirely based on the pattern learned from a real data set

collected from the system over a long period of time. Moreover, this approach reduces simulation states and is

consequently more efficient to run.

• This research introduces a tool, discussed in section 5, to evaluate nurse-to-patient assignments and enable

decisions in real time. At Baylor, prior to a shift, the decision to hire agency nurses is determined by nurse

supervisors, who assess whether the set of scheduled nurses is sufficient for that shift. The SIMNA model can

aid them in their decisions by providing a tool to test nurse-to-patient assignments.

The rest of this paper is organized as follows: In Section 2, a literature review on nursing research and the contribu-

tions of this research are given. In Section 3, a brief introduction is given on data and notation. Section 4 describes the

data mining tree structures used to build the simulation model, kernel density estimation, and the simulation structure.

Section 5 presents results from SIMNA for a set of sample assignments from medical/surgical unit I. In Section 6, the

simulation modeled is validated by comparing simulation results with the actual data. Section 7 presents a discussion

on adaptability of the simulation model to a new hospital. In Section 8, we provide concluding remarks, discussion

on a possible simulation-optimization approach to optimize nurse-to-patient assignments, and other opportunities for

future work.

2 Literature and contribution

There are three major components in this research, i.e, nurse planning, data mining, and simulation modeling. This

chapter gives a brief literature review on each of these topics.

3



2.1 Nurse planning

Nurse planning typically has four stages: nurse budgeting, nurse scheduling, nurse rescheduling, and nurse assignment.

In the literature, most of the relevant research focuses on the first three stages of planning.

In nurse budgeting: Kao and Queyranne (1985) showed that a single-period demand estimate gives a good ap-

proximation for nurse budgeting cost. Trivedi (1981) used mixed-integer goal programming to optimize the expenses

for nurse personnel. Kao and Tung (1980) used a linear programming-based approach to assess needs for regular,

overtime, and agency workforce levels for a given time period.

In nurse scheduling: Warner and Prawda (1972) optimized nurse schedules by formulating a mixed-integer quadratic

programming problem. Later, Warner (1976) formulated and solved another multiple-choice math programming

scheduling problem incorporating nursing preferences. Miller et al. (1996) minimized an objective function that bal-

anced the trade-off between staffing coverage and preferences of nurses. Burke, Cowling and Caumaecker (2001) and

Burke, Caumaecker and Petrovic (2001) used a combination of tabu search, genetic algorithm, and steepest descent

improvement heuristics to solve a nurse rostering problem. Aickelin and Paul (2004) formulated the nurse scheduling

as an integer programming problem and compared solutions from different algorithms using statistical techniques.

Azaiez and Sharif (2005) computerized the nurse-scheduling problem for Riyadh Al-Kharj hospital (in Saudi Ara-

bia) using a 0-1 goal programming that incorporated nurses’ preferences and hospital objectives. Wong and Chan

(2004) introduced a probability-based ordering method for a nurse rostering problem that considered twelve nurses.

It reported its solution time as half a second. Beddoe and Petrovic (2006) used genetic algorithm to solve another

nurse rostering problem by considering violations made in prior rosters. Gutjahr and Rauner (2007) used ant colony

optimization to schedule nurses for four weeks among different hospitals in a region.

In nurse rescheduling: Benton (1994) showed how the scheduled nursing scenario changes when the patient acuity

and number of patients change. Walts and Kapadia (1996) developed a patient classification system to redistribute

nursing personnel across different care units based on patient acuity. Bard and Purnomo (2005a,b) formulated a nurse

rescheduling integer programming problem and solved it using branch and price considering the resource shortage,

demand drop, and nurse preferences. CDHS (2005) required health care providers to maintain certain nurse-to-patient

ratios for improving quality of care. Vericourt and Jennings (2006), using a queuing approach, showed that same

set of ratios for different sizes of care units lead to inconsistent amounts of care. Alternatively, they proposed a

heuristic-based policy to provide better care. However, their model allowed nurses to serve unassigned patients, which

is discouraged in practice for maintaining continuity of care.

In nurse assignment: Mullinax and Lawley (2002) formulated and solved an integer programming problem using

heuristics to assign nurses to patients by balancing workload for nurses based on patient acuity in a neonatal inten-

sive care. Punnakitikashem et al. (2006) formulated and solved a two-stage stochastic integer programming nurse

4



assignment problem to minimize excess workload of nurses. None of the methods discussed above provides a tool to

evaluate nurse-patient assignments to make decisions in real time. Also, other methods did not use real data to reflect

the real system as extensively as the approach presented in this research.

2.2 Data mining

Data Mining can be broadly classified into two groups: supervised learning and unsupervised learning. In supervised

learning, an outcome variable is present to guide the learning process. Whereas, in unsupervised learning or clustering,

one wants to observe only the features and have no measurements of the outcome. Data Mining can be viewed as

statistical learning from data or more generally as an approach that seeks to uncover patterns in data. Typically,

learning could be an outcome measurement, quantitative (like the amount of time spent by nurses in a given location)

or categorical (like different locations a nurse visits), that one wants to predict based on set of features (like type of

the nurse, diagnosis of the patient, and time of the day) if available (Hastie et al., 2001). Supervised learning is the

subject of interest in this research as we deal with predicting the time spent and location for nurses. Regression, kernel

methods, tree based models, neural networks, and support vector machines are some popular supervised learning

methods. Regression methods are one of the traditional tools used for prediction (Neter et al., 1996; Hastie et al., 2001;

Walpole et al., 2002). Multivariate Adaptive Regression Splines (MARS), a spline based prediction model (Friedman,

1991) was recently applied to different prediction problems (Chen et al., 1999; Tsai et al., 2003; Chen et al., 2003;

Siddappa et al., 2006; Pilla et al., 2005). Neural networks, a nonlinear statistical model (Ripley, 1996; Haykin, 1999),

often represented by a network diagram, can be used for prediction or classification. Le Cun et al. (1990) applied

neural networks to identify handwritten zip code digits. Cervellera, Chen and Wen (2006) and Cervellera, Wen and

Chen (2006) approximated stochastic dynamic programming value functions of an inventory forecasting problem and

a water reservoir problem with neural networks. Classification and Regression Trees (Breiman et al., 1984), a data

mining tool for prediction and classification, is used in this research for its applicability to regression and classification

problems, and its readily usable tree structures in simulation.

2.3 Simulation modeling in health Care

Studying industrial systems using simulation was prevelant as early as the late 1950’s and early 1960’s. Youle et al.

(1959) and Clementson (1966) discuss simulations of different industrial processes available at that time. In health

care, simulation modeling has been used to study a wide range of problems. Bailey (1952) and Kachhal et al. (1981)

studied patient queues and waiting times. Smith and Warner (1971), Lim et al. (1975), and Hancock and Walter (1984)

studied patient admission and its impact. Zilm et al. (1983) and Dumas (1984, 1985) modeled and analyzed patient bed

planning and utilization under different scenarios. Kumar and Kapur (1989), Draeger (1992) and Evans et al. (1996)
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evaluated nurse schedules for the emergency care department. In recent years, Zenios et al. (1999), Kreke et al. (2002),

and Shechter et al. (2005) utilized simulation models to study organ allocation systems. A comprehensive review of

health care simulation models can be found in Klein et al. (1993) and Jun et al. (1999). In the literature, most of the

health care staffing simulations analyzed the emergency departments in hospitals. Moreover, the simulation modeling

approaches in the literature, both deterministic and stochastic, required the knowledge of experts to estimate param-

eters and order of events in the simulation. If the system under consideration is complex, such as nurse movement

in hospitals, then it is impossible even for the experts to comprehend the intricacies of the system by observation.

Whereas, the simulation modeling technique introduced in this research captures the system dynamics from a real data

set collected from the system and requires only minimal input from the experts.

2.4 Contribution

There are two major contributions made in this research:

• This research introduces a novel approach to the simulation community for constructing efficient simulation

models based on data mining. This way of simulation modeling avoids misrepresentation of system dynamics

and characteristics because it is entirely based on the pattern learned from a real data set collected from the

system over a long period of time. Moreover, this approach reduces simulation states and is consequently more

efficient to run.

• This research introduces a tool to evaluate nurse-to-patient assignments and enable decisions in real time. At

Baylor, prior to a shift, the decision to hire agency nurses is determined by nurse supervisors, who assess

whether the set of scheduled nurses is sufficient for that shift. The SIMNA model can aid them in their decisions

by providing a tool to test nurse-to-patient assignments.

3 Data description

At Baylor, each nurse wears a locating device that transmits data to a repository, where the data automatically expire

after one month. Baylor provided data for this research from four care units: Medical/Surgical unit I, Medical/Surgical

unit II, Mom/Baby unit, and High-Risk Labor unit. These nurse data contain information on month, day, shift, time,

location, nurse, nurse type and time spent for the location visited by the nurse. Baylor also provided patient data,

which contain information on admit date, discharge date, room number and diagnosis code for each patient. These

two data sets were merged by matching the date and location information and are referred to as the merged data. The

resulting merged data have all the variables from the nurse and patient data sets. To preserve the confidentiality of

nurses, patients and the medical center, an encryption code using the U16807 method (Law and Kelton, 2001) was
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developed and employed to the data before our analysis. U16807 method was chosen for encryption because of its

efficiency to handle cycling. An example for date and location variables in our data before and after encryption is

shown in Table 1.

Table 1: Encryption Example

Variable Before After
Date 4/5/04 2/15/73622

Room 442 704

Two new variables were created to hold information on the previous two locations visited for each location entered

by nurses to predict patterns in their movements. In a related research, presented in Sundaramoorthi, Chen, Rosen-

berger, Kim and Behan (2006) and Sundaramoorthi, Chen, Kim, Rosenberger and Behan (2006), seven variables were

created to hold information on previous seven locations. The simulation models developed with seven previous lo-

cations were found to overfit the pattern based on movements and hence insensitive to other practically important

variables. For this reason, unlike Sundaramoorthi, Chen, Rosenberger, Kim and Behan (2006) and Sundaramoorthi,

Chen, Kim, Rosenberger and Behan (2006), the simulation presented here includes location variables that specify

only two previous locations and the current location to avoid overfitting patterns based purely on nurse movements.

Furthermore, a variable was created to indicate the nurse-patient assignments. To create nurse-patient assignment

variable, it is assumed that the nurse who spent the most time in a patient’s room during a shift is the nurse assigned to

that patient for that shift. After processing the data, medical/surgical unit I, medical/surgical unit II, mom/baby unit,

and high-risk labor-and-delivery unit have about 570,660, 418,683, 315,997, and 210,457 observations, respectively.

Following the conclusions in Sundaramoorthi et al. (2005) and further similar analysis presented in Sundaramoorthi,

Chen, Rosenberger, Kim and Behan (2006), the following types of variables with their specific levels are considered

significant for the methodology presented here.

1. Location : patient rooms, nurse station, break room, reception desk, and medical room.

2. Nurse Type: registered nurse (RN), licensed vocational nurse (LVN), and nurse aide (NA).

3. Diagnosis Code : 19 categories covering the range of diagnosis codes, and 2 dummy categories for empty patient

rooms and non-patient locations. See INGENIX (2003) for more details on diagnosis codes.

4. Shift: 3 weekday shifts (8 hours each) and 2 weekend shifts (12 hours each).

5. Hour: 24 hour ranges covering a complete day.

6. Assignment: An assigned nurse entering a patient room (1), an unassigned nurse entering a patient room (0),

and a nurse entering any location other than patient rooms (2).
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7. Time Spent: Time Spent is the dependent variable that denotes the amount of time a nurse spends in a given

location.

Data from different care units were handled separately as the number of categorical levels of the considered vari-

ables, listed above, differed slightly among different care units. In this research, we maintain the following notations:

XS , XT , XNT , XL, XA, and XD are the variables representing shift, hour, nurse type, current location, assignment,

and primary diagnosis of the patient in a current location, respectively. NS , NT , NNT , NL, NA, and ND are the

number of levels of XS , XT , XNT , XL, XA, and XD, respectively. XP1L, and XP2L are the variables representing

the two previous locations with XP1L being the latest and XP2L being the oldest among the two locations visited

before any current location. XP1L and XP2L have the same number of levels (NL) as of XL. For each nurse, XAL1,

. . . , XALR are the binary variables indicating patients assigned to her/him in a shift. R is the number of patient rooms

in a care unit. XDL1, . . . , XDLR are the variables representing primary diagnosis of patients in rooms 1 to R.

4 Data mining for simulation

4.1 Classification and regression trees

Classification and Regression Trees (CART) are data mining tools for prediction and classification (Breiman et al.,

1984; Hastie et al., 2001). CART utilizes recursive binary splitting to uncover structure in a high-dimensional

space. CART, on application to a data set, will partition the input space into many disjoint sets, where values

within a set have a more similar response measure than values in different sets. Salford Systems’ CART R© software

(www.salfordsystems.com) was used to obtain our tree structures. In particular, five tree structures were developed:

(a) four classification trees from which transition probabilities for nurse movement are determined based on the levels

of XS , XT , XNT , XDL1, . . . , XDLR, XA, XP1L, and XP2L; and (b) a regression tree to predict the amount of time a

nurse will spend in a location based on the levels of XS , XT , XNT , XL, XD, and XA. A hypothetical regression tree

is shown in Figure 1(a) to illustrate a prediction of the amount of time a nurse would spend in a location. At each node

of the tree, a question is asked; a data point that satisfies the question will go left in the branching; and right if it fails

to meet the criterion. Based on the levels of XS , XT , XNT , XL, XD, and XA, every data point ends up in one of the

terminal nodes of the tree. Two hypothetical classification trees, one “location type tree” in Figure 1(b) and another

“location tree” in Figure 1(c), are shown to illustrate the estimation of the probability that a location would be visited

by a nurse. At each node of these trees, similar to the regression tree, a question is asked; data that satisfy the question

will go left in the branching; and right if they fail to meet the criterion. The probability of going to a location type, i.e,

unassigned patient room (0), assigned patient room (1), and non-patient room (2) is obtained from the location type

classification tree based on the levels of XS , XT , and XNT . In the “location tree,” depending on the levels of XS ,
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XT , XNT , XDL1, . . . , XDLR, XA, XP1L, and XP2L, every data point ends up in one of the terminal nodes of the

tree, where transition probabilities are estimated as follows:

p̂(l/j) =
1

n(j)

∑n(j)

i=1
I(i ∈ l), (1)

where, j = 1, . . . , J are the terminal nodes of a “location tree”; n(1), . . . , n(J) are the numbers of observations in

terminal nodes 1, . . . , J , respectively; l = 1, . . . , NL are the levels of XL, i.e., the different locations in a given care

unit, and I is an indicator function. The number of terminal nodes (J) differ for each tree. To be precise, J0, J1,

and J2 represent the number of terminal nodes of “location trees” for location types 0, 1, and 2, respectively. JLT

represent the number of terminal nodes of a “location type tree.” For a “location type tree”, l = 0, . . . , 2 are the levels

of XA, i.e., unassigned patient room (0), assigned patient room (1), and non-patient room (2).

One useful outcome from using tree-based models is the variable importance scores that provide information on

the influence of each variable to predict a response. Variable importance scores for all the trees are shown in Table 2.

Variable importance scores for the regression trees estimating the amount of time a nurse will spend in a location are

given in the first row. It can be seen that location is the most important variable. Primary diagnosis and assignment play

a relatively more important role in medical/surgical II and high-risk Labor units than mom/baby and medical/surgical I

units, and time (hour) of the day is more important than shift. Nurse type has about the same magnitude of importance

across all the care units. Variable importance scores for the “location type trees” predicting a nurse′s next location

type are shown in the second row of Table 2. It can be observed that nurse type for mom/baby and high-risk labor

units, and time (hour) of the day for medical/surgical I & II units are the most important factors to predict the location

type. Similar to the regression trees, time (hour) of the day is more important than shift. Variable importance scores of

selected variables in the “location trees” predicting a nurse’s next location for different location types are shown in the

last three rows of Table 2. It can be seen that the previous locations are the most important variables to predict the next

location. Once again, time (hour) of the day is more important than shift. Variable importance scores of the variables

XAL1, . . . , XALR and XDL1, . . . , XDLR in the “location trees” are not presented here to make the table concise. As

mentioned earlier, it is impossible even for a health care expert to observe all these intricate and subtle differences in

the system without using a tool like CART.

While growing the trees, 10-fold cross validation was used for testing; class probability and least squares splitting

rules were used for creating branching decisions of classification trees and regression trees, respectively. Developing

theories and models for justifying the choice of testing and splitting rules for data-integrated simulations would be an

interesting direction for future research.

9



4.2 Estimation of time spent distribution

For each terminal node of the regression trees, kernel density estimation (KDE) is used to estimate the probability

density function for time spent (Y ) by a nurse (under the conditions specified by that terminal node). Assume we

have n(j) independent observations y1, . . . , yn(j) for the random variable Y (j) in the terminal node j. Let K(·) be a

kernel function. Then the kernel density estimator f̂j,h(y) at a point y is defined by equation (2) (Silverman, 1986), as

follows:

f̂j,h(y) =
1

h×n(j)

∑n(j)

i=1
K(

yi − y

h
), (2)

where, h is the bandwidth, which controls the “window” of neighboring observations that will highly influence the

estimate at a given y. Sheather and Jones plug-in (SJPI) bandwidth estimates for h are used, as this method is one of

the best for optimizing bandwidth (Jones et al. (1996); Sheather and Jones (1991); Sheather (2004)); however, it should

be noted that bandwidth selection is not precise and often an “art.” Tuning of the bandwidths based on our desired

criteria is discussed in Section 4.2.2. Random variables Y (1), . . . , Y (JR) denote the time spent (Y ) in terminal nodes

1, . . . , JR, respectively. Kernel density estimates with SJPI bandwidths were obtained for each terminal node of the

regression trees. A typical plot with Gaussian and triangular kernels for each of the four care units is shown in Figure

2.

4.2.1 Kernel choice

Kernel functions include uniform, Gaussian, triangular, Epanechnikov, quadratic, and cosinus. Gaussian and triangular

kernels were chosen for this research as they are common among modelers. Moreover, it is relatively easy to draw

samples from Gaussian and triangular distributions, which is required for sampling the time spent random variable.

SJPI bandwidth estimates (Sheather and Jones, 1991) were calculated for each terminal node of the regression tree

using SAS R©. Figure 2 and the normal probability plots in Sundaramoorthi et al. (2005) show that the time spent data

have a long right tail, and a major portion of the data is concentrated near the left end of the distribution. Gamma

distributions provided inadequate density estimates, motivating the use of KDE. To assess how well KDE represents

the time spent distribution, 100,000 realizations of time spent data were generated from Gaussian and triangular kernel

density estimates. The simulated data were compared with the actual data in four different ranges, i.e., (0, M/2],

(M/2, M ], (M , (M + M/2)], ((M + M/2), ∞), where, M is the median of the actual data. Results from 100,000

simulated realizations of Gaussian and triangular kernels are shown in Table 3. There were 181, 109, 123 and 49

terminal nodes in the regression trees of medical/surgical I, medical/surgical II, mom/baby and high-risk labor units,

respectively. The table shows that the triangular kernel wins more often than the Gaussian kernel irrespective of the

care units and ranges. Among all the competitions i.e., JR × 4 competitions, the triangular won 75%, 80%, 82% and

78% of the competitions in medical/surgical I, medical/surgical II, mom/baby and high-risk labor units, respectively.
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A terminal-node-win was considered to be achieved if a kernel managed to win at least three ranges out of the four

considered. Both the kernels were considered to be tied if they won two ranges each. The results on terminal node

wins shown on the last two rows of Table 3 for each care unit further indicate that the triangular kernel is a better

choice to model the Baylor data.

4.2.2 Bandwidth tuning

The accuracy of estimates depends more on choosing an appropriate bandwidth than on the choice of kernels (Epanech-

nikov, 1969; Silverman, 1978). Bandwidth selection methods, including SJPI bandwidth estimates (Sheather and

Jones, 1991), try to find the optimal bandwidth that compromises a tradeoff between oversmoothness and under-

smoothness of the estimated density. After obtaining bandwidths, we can decide to either decrease or increase the

bandwidth size depending on the knowledge of the system. Data used in this project were collected over more than a

six-month period and have hundreds of thousands of observations for each care unit. With data collected over months,

the different possible characteristics of the Baylor system will be well reflected in the simulation if the bandwidths are

tuned to prefer a less smooth density estimate that reflects the data more accurately. In this research, if the fraction of

simulated realizations in the ranges given in the previous section goes beyond ± 0.015 of the actual fraction of data,

the bandwidth was iteratively decreased by one until this criterion was met. For example, the ninth terminal node of

medical-surgical unit I shown in Table 4 has realizations that violated the ± 0.015 limit. After forty four iterations of

bandwidth tuning, all four ranges have fractions within the limit. This leads to a change of bandwidth at this particular

terminal node to 8.46 from 52.46 and thus yields a less smooth kernel density estimate that is more representative

realizations of the time spent data.

4.3 Data-driven simulation model

To drive a nurse activity simulation, three essential questions are asked: (1) Which location type will a nurse go to next

given her nurse type, shift, and time (hour) of the day? (2) Where will a nurse go next given her two past locations, next

location type, shift, hour, nurse type, assignments, and diagnoses of all the patients? (3) How much time will she spend

there? After an initial simulation run in which nurses visit their assigned patients for an initial assessment, transition

probabilities obtained by equation (1) from the location type and location trees determine the next location a nurse will

visit. Once a location type and in turn a location has been sampled for a given nurse, the amount of time she spends

there is determined by a random sample of time spent y from the kernel density estimate at the appropriate terminal

node in the regression tree. Clock time and the location variables are then updated. The level of XT is changed if the

updated time enters a new category. The levels of variables XS and XNT associated with a nurse remain unchanged

throughout the shift. This process of sampling location type, location, and time spent is repeated until the shift ends.
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Traditionally, in stochastic simulations, transition probabilities are obtained either subjectively or by looking at

all the possible combinations of variable levels. In practice, simulation modelers combine states by making a variety

of assumptions on their models. For instance, suppose a simulation expert were to model a system using a queuing

network with one hundred servers. To model the system accurately, the modeler would need to determine whether

the service times of each pair of servers were independent. This would require ten thousand tests of independence.

If multiple servers were found to be dependent, then the modeler would have to group the servers into sets in which

the servers are dependent. Then, the modeler would have to develop enormous multivariate distributions for each

group that may consider tens of variables. In practice though, the modeler would likely make assumptions about

the independence of these variables to limit the dimensionality of the multivariate distributions. If the system under

consideration is complex, such as the care units in Baylor, then a subjective approach is unlikely to be accurate,

and it will be impractical to implement an approach using all possible combinations of the levels of the simulation

variables. In the latter approach, the number of possible combinations (NPC ) grows exponentially with the number

of variables. In our problem, there are NS×NT×NNT combinations, denoted as NPClt, for sampling a location

type and NS×NT×NNT×NA×NL
2×ND

R×2R combinations, denoted as NPCl, for sampling a location. On the

other hand, simulation models developed using trees, discussed in Section 4.1, require only JLT terminal nodes for

sampling a location type and J0 + J1 + J2 terminal nodes for sampling a location based on the patterns extracted from

the data. The more efficient the simulation, the more useful it will be for making real-time decisions. For example,

prior to a shift, a charge nurse will determine whether the set of scheduled nurses is sufficient for the shift. If there

is a shortage, nurse supervisor will call a nurse agency to hire nurses for that shift. The simulation model can assist

in this decision provided its run time is sufficiently fast. Differences between NPClt and JLT , NPCl and J0 + J1 +

J2 given in Table 5, demonstrate that our approach is significantly more efficient. All locations in the care units under

consideration can be visited from any other location of that care unit. Even though some of these combinations of

locations are unlikely to be visited in succession, without using a data mining tool like trees, it is not easy to justify

ignoring or combining them.

5 SIMNA experiments

A generic C++ program was written to rebuild the tree structures given by CART and to run the simulation procedure

explained in Section 4 for medical/surgical unit I with a thousand different random seeds. A test problem with four

nurses and twenty one patients was considered. SIMNA tested four assignment policies, i.e., a clustered assignment

and three assignments from Punnakitikashem et al. (2006)–the random assignment, the heuristic assignment, and the

optimal assignment using Benders’ decomposition on a stochastic programming model. In the heuristic assignment,

when the number of nurses divides into the number of patients evenly, all of the nurses get the same number of patients.
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The patient with the highest expected direct care time is arbitrarily assigned to a nurse. The patient with the second

highest expected direct care time is then arbitrarily assigned to a second nurse, and so on. After assigning one patient

for each nurse, in the second cycle of assignments, the patient with the lowest expected direct care time is assigned to

the first nurse. The patient with the second lowest expected direct care time is assigned to the second nurse, and so on.

This process of assignment is repeated until all the patients are assigned. In the test problem, each nurse was assigned

to five patients by the heuristic method and the left over patient was arbitrarily assigned to the first nurse. In the

clustered assignment, patients are assigned by location; that is, patients in consecutive rooms are assigned to the same

nurse. In the test problem, the nurse assigned to the cluster closest to the nurses’ station was assigned six patients,

while the other nurses were assigned to five patients. Finally, the optimized assignment from Punnakitikashem et al.

(2006) seeks to balance the expected direct and indirect care provided by RNs. It should be noted that indirect care

cannot be quantified from our data and is not represented in our simulation.

The tested assignments and their results are shown in Table 6. Total assigned direct care (TADC), total unassigned

direct care (TUADC), total direct care (TDC), total time spent in non-patient locations (TNPL), and the walking time

(Walk Time) are shown in the last five columns. TADC is the total duration of time a nurse spent with her assigned

patients in the entire shift. TUADC is the total duration of time a nurse spent with unassigned patients. TDC is the

sum of TADC and TUADC. TNPL is the the total time spent at locations other than patient rooms (e.g., the medical

supply rooms, the charting rooms, the nurses’ station, etc). In order to assess the balance of workload, we consider

the ratios of maximum to minimum values for TADC, TDC, TDC for RNs, and walking time. Ratios closer to one

indicate better balance. These ratios are given in Table 7. For balancing TADC, the heuristic assignment performs

best and the random assignment performs worst. For balancing TDC, the heuristic assignment is worst, and the other

three are similar to each other. For balancing TDC for RNs, the heuristic and optimal assignments perform best, and

the random assignment performs worst. Finally, for balancing walking time, the clustered assignment performs better

than the others. In particular for the optimal assignment, the sum of all nurses’ TADC and TDC is higher than the

other assignments, while the total walking time of the optimal assignment is less than that of the other assignments.

Overall, the random assignment, not surprisingly, is the least desirable.

Prior to a shift, SIMNA results can aid the charge nurse in determining appropriate nurse-to-patient assignments.

If the direct care time and balance in workload are not satisfactory, nurse supervisor can call a nurse agency to hire

nurses for that shift. Thus, SIMNA upon installation in hospitals will aid charge nurses and management to make

decisions about assignments and the nurse work force based on the dynamics learned from the system itself.
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6 Simulation validation

Interestingly, it was observed that the “40-20-40” rule McKay et al. (1986); Sheppard (1983) still holds well in our

data-integrated simulation modeling. According to this rule, 40% of the effort in a simulation project is devoted

to understanding, conceptualizing the system, and formulating the model; 20% of the effort is devoted to make the

actual simulation model, and the last 40% of the effort includes analysis, calibration and validation of the simulation

model. Most of the first and last 40% of the project, i.e., understanding, formulation, conceptualization, calibration

and validation, are conducted through data mining.

Among different steps in the traditional simulation modeling, validation is an important step in which accuracy of

the model is verified by comparing it to the actual system. Depending on the magnitude of the discrepancy, if needed,

the simulation model would be calibrated based on the insights gained by the modeler from the simulation output

analysis. The following were among several common validation steps performed as part of the validation process in

this data-integrated simulation modeling approach.

1. Tree Structure: The tree structures were printed before the first scenario of simulation run to ensure accurate

building of trees for simulation runs.

2. Shift Duration: TDC, TNPL, and WALK TIME were added for each nurse to check with the entire shift duration.

3. Kernel Density: The kernel and bandwidth validations, presented in section 4.2, ensured a reliable approxima-

tion of data in regression trees.

4. Cumulative Density: The cumulative densities of kernel distributions in each terminal node were printed to

check if they were close to one.

The primary objective of this research is to provide a tool to aid charge nurses in making balanced nurse-patient

assignments. In this research, the balance of workload and performance of nurses were judged based on performance

measures TADC, TDC, TNPL, and WALK TIME that were introduced in section 5 and shown in tables 7 and 6.

As part of the main validation, actual TADC, TDC, TNPL, and WALK TIME of fifteen arbitrarily chosen nurses

were compared with that of simulated data. The fifteen arbitrarily chosen nurses with their assigned patients’ and

shift information were simulated over one thousand different scenarios. The comparison between mean values of

performance measures from a thousand scenarios and the actual data are plotted in figure 3.

Figure 3(a) specifically shows the comparison of actual and simulated TADC. In the TADC comparisons, as well

as TDC, TNPL, and WALK TIME comparisons shown in figures 3(b), 3(c), and 3(d) , purple curves represent the

mean from the one thousand simulation scenarios while dark blue curves represent actual data. Ideally, it is desirable

to have the dark blue curve overlapping with the pink curve. In TADC comparisons, the mean of the simulation

scenarios approximates the actual data closely by picking up the pattern as well as the magnitude. Among the different
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performance measures used in this research, TADC is the most important as it measures the amount of assigned direct

care provided by nurses and directly impacts patient care and continuity of care.

Simulated and actual TDCs, shown in figure 3(b), compare another important performance measure in terms of

nurse work load as well as patient care. It can be seen that, the mean TDC from simulation approximates the pattern

of actual data closely. However, the plots show that TDC from simulation over-estimates the TDC of actual data. If

the objective were to predict the TDC of nurses in isolation without any comparison, it would be desired to calibrate

the simulation to reduce the magnitude of TDC. However, this research seeks only the balance, as shown in table 7,

by comparing the maximum of a performance to the corresponding minimum. The resultant max-min ratio will not

be altered by the discrepancy in the magnitude, neither by an over-estimation nor an under-estimation, as long as the

pattern of the performance measure in simulation matches with the actual data as shown for TDC in figure 3(b). Also,

if optimization of the system with respect to TDC, either minimization of nurse-workload or maximization of patient

care, were the final goal, the discrepancy in the magnitude of the objective will not alter the optimal decision.

Figure 3(c) shows the comparison of actual and simulated TNPL. It can be seen from the figure that the simulation

model provides TNPL that matches the pattern of actual data and hence provides reliable max-min ratio for TNPL.

However, the plots show that TNPL from simulation under-estimates the TNPL of actual data and should not be used

to interpret the magnitude of TNPL of individual nurses in isolation. Simulated and actual WALK TIME, shown in

figure 3(d), compare the performance measure that accounts for the amount of time a nurse walks during the entire

shift. In this research, a deterministic time is added depending on the distance between two locations a nurse walks in

the simulation. In reality, these walk-times are stochastic as different nurses at different times would spend different

amounts of time walking between the same locations. As expected, it can be observed that simulated WALK TIMEs

have less variability across the nurses. It also shows that the simulation approximates the magnitude of real walking

time reasonably.

The above discussion shows that performance measures of the simulation model approximate the pattern of real

data, and to a certain extent the magnitude. Hence, it represents the actual system well enough to arrive at conclu-

sions about the nurse work load balance in terms of the ratios introduced in table 7 without further calibration of the

simulation.

7 Simulation adaptability

As mentioned earlier, the simulation model developed in this research is hospital specific and has to be adapted

accordingly to use in different hospitals. Section 3 introduced the variables used in this research. The number of

variables for the data mining and in turn for the simulation would depend on the availability of data in a given hospital.

Apart from the variables discussed in section 3, other variables such as, experience level and education level of nurses,

15



secondary diagnosis, length of stay, and age of patients, would be interesting to consider. For some hospitals, there

could be fewer variables than in this model due to unavailability of data. Even for the same variables, it is very likely

that the number of categories will be different at a different hospital. In any case, CART should be applied on the

hospital specific data set to fit the five tree structures discussed in section 4. The choice of independent variables for

each tree can differ from the ones used in this research. The selection of independent variables can be made based

on the variable importance scores from CART and practical significance of the variables to the hospital. Once data

mining is completed simulation is performed as explained in section 4.3. The generic C++ simulation code written in

this research can read any tree structure using the concept of structures and pointers (Foster and Foster, 2003; Lafore,

2000) and simulate by sampling repeatedly from trees until the entire shift period is exhausted. This way of coding

makes it easy to adapt the simulation code to different hospitals. Even for the same hospital, when new data is available

and hence new trees are built in CART, the simulation model could update itself by reading and simulating from the

new tree structures. As a result, this research introduces a hospital specific and yet an easily adaptable simulation

model to hospitals.

8 Conclusions and future work

A novel approach to construct a nurse activity simulation model from real data was developed using classification

and regression trees. Classification trees provide transition probabilities to determine where a nurse will go next.

Regression trees combined with kernel density estimates determine the amount of time she will spend once she goes

to a new location. Simulation models developed with this approach will be significantly more efficient than the

simulation models that consider all possible combinations. Optimal nurse-patient assignments can be identified by

applying simulation-optimization methods, such as Atlason et al. (2004) and Fu and Hu (1997), to our resulting

simulation model. Implementing this methodology as an information technology tool in hospitals will help charge

nurses make better decisions on nurse-patient assignments for a shift. As a result, better care for patients, balanced

work loads for nurses, and cost savings for hospitals can be achieved.

In the SIMNA model presented in this paper, it was assumed that there are no patient admissions and discharges.

However, it is common to have a discharge or/and admission during a given shift. Incorporating patient admissions

and discharges to evaluate nurse-patient assignments would be an interesting topic for future work.
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Table 2: Variable importance scores for regression and classification trees

Tree Type Med/Surg I Med/Surg II Mom/Baby High-Risk Labor
Regression Tree

XL 100.00 100.00 100.00 100.00
XD 11.20 60.02 7.54 70.42
XNT 17.17 17.70 16.76 14.78
XT 29.76 13.83 24.48 8.64
XS 10.35 6.82 9.82 4.75
XA 13.43 73.03 10.25 65.36

“Location Type” Tree
XNT 41.92 70.66 100.00 100.00
XT 100.00 100.00 40.60 16.47
XS 33.46 95.07 15.59 4.88

“Location” Tree
(XA = 1)

XP1L 100.00 68.36 100.00 100.00
XP2L 67.21 100.00 72.95 76.26
XNT 0.86 3.11 7.63 2.75
XT 4.52 8.16 17.84 14.97
XS 3.03 3.22 11.96 12.08

“Location” Tree
(XA = 2)

XP1L 100.00 100.00 100.00 100.00
XP2L 52.56 48.53 66.37 82.15
XNT 3.08 10.68 3.42 34.14
XT 5.79 6.17 4.10 4.57
XS 2.26 3.39 1.39 2.12

“Location” Tree
(XA = 0)

XP1L 100.00 96.47 100.00 100.00
XP2L 65.35 100.00 68.35 94.09
XNT 5.50 11.69 6.33 9.54
XT 6.59 16.22 9.57 28.22
XS 2.38 6.67 2.81 10.87
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Table 3: Performance of Gaussian and triangular kernels

Care Unit Gaussian Triangular Tie
MED/SURG I
JR=181
Range I wins 26 155
Range II wins 45 136
Range III wins 77 105
Range IV wins 36 145
% wins 25% 75%
Ter. node wins 13 135 33
% Ter. node wins 7% 75% 18%

MED/SURG II
JR=109
Range I wins 15 94
Range II wins 24 85
Range III wins 31 78
Range IV wins 18 91
% wins 20% 80%
Ter. node wins 7 92 10
% Ter. node wins 6% 85% 9%

MOM/BABY
JR=123
Range I wins 13 110
Range II wins 25 98
Range III wins 31 92
Range IV wins 18 105
% wins 18% 82%
Ter. node wins 9 104 10
% ter. node wins 7% 85% 8%

HIGH-RISK
JR=49
Range I wins 9 40
Range II wins 13 36
Range III wins 19 30
Range IV wins 3 46
% wins 22% 78%
Ter. node wins 3 38 8
% ter. node wins 6% 78% 16%
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Table 4: Bandwidth tuning for terminal node 9 of medical/surgical unit I

Bandwidth Sim. Actual
Tuning Fraction Fraction Diff.

BEFORE
h=52.46
range I 0.070110 0.278986 0.208876
range II 0.083750 0.244842 0.161092
range III 0.075310 0.086039 0.010729
range IV 0.770830 0.390133 -0.380697

AFTER
h=8.46
range I 0.266580 0.278986 0.012406
range II 0.234510 0.244842 0.010332
range III 0.094890 0.086039 -0.008851
range IV 0.404020 0.390133 -0.013887

Table 5: Numerical values of levels in different care units and number of combinations

Variable Care Unit
Level Med/SurgI Med/SurgII Mom/Baby High-Risk
NS 5 5 5 5
NT 24 24 24 24
NNT 4 8 8 7
ND 19 21 10 8
NL 34 32 52 52
R 26 26 32 10
NA 3 3 3 3
NPClt 480 960 960 840
JLT 145 259 322 196
NPCl > 1046 > 1047 > 1047 > 1017

J1 397 440 271 69
J2 1816 1554 1194 96
J0 262 268 118 38
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Table 6: SIMNA assignment policy results for medical/surgical unit I

Assigned Assigned Walk
Assignment Patient Patient TADC TUADC TDC TNPL Time

Policy Locations Diagnoses (min) (min) (min) (min) (min)
RANDOM

Nurse1 (LVN) 4, 6, 10, 1, 6, 16, 92 119 211 158 116
17, and 18 8 and 14

Nurse2 (RN) 3, 13, 15, 9, 16, 13, 152 127 279 118 87
19, and 26 12 and 15

Nurse3 (RN) 1, 7, 14, 14, 10, 3, 220 84 304 94 87
16, and 20 4 and 8

Nurse4 (RN) 2, 5, 8, 13, 8, 3, 185 127 312 83 88
9, 23, and 24 6, 8, and 15

Total 651 459 1107 455 379
HEURISTIC

Nurse1 (LVN) 9, 10, 13, 6, 16, 16, 122 74 196 173 115
14, 23, and 26 3, 8, and 15

Nurse2 (RN) 5, 7, 15, 8, 10, 13, 209 95 304 93 87
16, and 20 4 and 8

Nurse3 (RN) 2, 4, 6, 13, 1, 6, 163 149 312 83 89
8, and 19 3 and 12

Nurse4 (RN) 1, 3, 17, 14, 9, 8, 192 126 318 83 84
18, and 24 14 and 15

Total 688 446 1132 434 376
CLUSTER

Nurse1 (LVN) 1, 4, 14, 14, 1, 3, 194 16 210 171 102
17, 20, and 24 8, 8, and 15

Nurse2 (RN) 3, 6, 8, 9, 6, 3, 172 139 311 83 90
10, and 13 16 and 16

Nurse3 (RN) 2, 16, 19, 13, 4, 12, 125 158 283 106 94
23, and 26 8 and 15

Nurse4 (RN) 5, 7, 9, 8, 10, 6, 107 195 302 89 94
15 and 18 13 and 14

Total 600 520 1107 451 381
STOCHASTIC
PROGRAMMING

Nurse1 (LVN) 10, 13, 14, 16, 16, 3, 164 45 209 172 104
16 and 17 4 and 8

Nurse2 (RN) 3, 7, 20, 9, 10, 8, 222 85 307 101 75
24 and 26 15 and 15

Nurse3 (RN) 1, 2, 4, 14, 13, 1, 193 120 313 82 89
6, 8, and 23 6, 3, and 8

Nurse4 (RN) 5, 9, 15, 8, 6, 13, 115 187 302 89 94
18 and 19 14 and 12

Total 696 441 1132 446 363
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Table 7: Maximum-to-minimum ratios for TADC, TDC, TDC of RNs, and Walking time

TDC Walk
Assignment Policy TADC TDC (RNs) Time
Random 2.39 1.48 1.12 1.33
Heuristic 1.71 1.62 1.05 1.37
Cluster 1.81 1.48 1.10 1.13
Stochastic Prog. 1.93 1.50 1.04 1.39
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(a) A Hypothetical Regression Tree.

(b) A Hypothetical “Location Type Tree”. (c) A Hypothetical “Location Tree”.

Figure 1: Regression and classification tree structures.
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Figure 2: Kernel density estimates (Solid-Gaussian, and Broken-Triangular).

(a) Actual Vs. Simulated TADC (b) Actual Vs. Simulated TDC

(c) Actual Vs. Simulated TNPL (d) Actual Vs. Simulated WALK TIME

Figure 3: Comparison of actual data with simulated data.
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