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methods for operations research problems appearing in engineering and science. She has 

expertise in the design of experiments and statistical modeling, particularly for computer 

experiments and stochastic optimization. She has studied applications in inventory forecasting, 

airline optimization, water reservoir networks, wastewater treatment, and air quality. Through 

her statistics-based approach, she has developed computationally-tractable methods for 

continuous state stochastic dynamic programming, yield management, and environmental 

decision-making. 
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Abstract 

We develop an overbooking approach for airline revenue management. We estimate a revenue 

function by employing a statistical modeling approach, specifically a multivariate adaptive 

regression splines approximation of a stochastic network model. We develop an overbooking 

cost function using a binomial distribution to model the number of customers that show up for 

the flight. We implement a hybrid gradient algorithm that combines Newton’s and a steepest 

ascent method to optimize profit. Finally, we compare our method to one that overbooks based 

on the probability that the number of customers that show up for a flight exceeds the flight 

capacity. 



Revenue management is defined as, “Selling the right seat at the right time to the right passenger 

for the right price” (Vinod 1995). After deregulation in 1979, revenue management research has 

evolved to efficiently utilize resources and generate higher revenue. One of the revenue-

capturing concepts identified was overbooking, where airlines sell more seats than the capacity 

of the flight. Overbooking is essential because not all customers who buy tickets show up on the 

day of departure. Some of them are cancellations (customers who cancel a purchased ticket), 

while others are no-shows (customers who do not show up for their ticketed flight). The 

overbooking level (or authorization level) specifies the number of seats that may be overbooked 

on a flight. In this paper, we present an approach to determine optimal overbooking levels, so as 

to generate higher profit (revenue − cost). The revenue is estimated using a design and analysis 

of computer experiments (DACE, Sacks et al. 1989) approach, and only overbooking costs are 

estimated. (We ignored other airline costs, such as fuel burn, labor, etc. that are generally 

considered independent of the booking process.) To optimize profit, a hybrid algorithm that 

combines Newton’s method and a steepest ascent method is developed (Bertsekas 1999). 

Perishable goods need to be utilized well before the end of their life cycle. The overbooking 

concept can be applied to various transportation sectors, such as auto rentals, ferries, rail, tour 

operators, cargo, and cruises. Other areas, like hotels and resorts, extended stay hotel, health care, 

and companies that produce perishable goods can also use overbooking. In the airline industry, 

once a flight takes off the seats are said to be “perished.” Hence, we should efficiently utilize 

those seats. Given the schedule, flight capacities, and demand distributions, how many seats 

should be overbooked on each flight, so that the seats are efficiently utilized and higher profits 

are achieved? The remainder of this section provides background on airline overbooking, and 

describes the contribution of this paper. Section 1 explains the methodology adapted in this paper 



to determine the optimal overbooking levels, and Section 2 presents computational results. 

Finally, concluding remarks are given in Section 3.  

Overbooking Concept 

Let nc be the number of cancellations and no-shows, and let y be the overbooking level. 

 
Figure 1about here. 

Figure 1 shows the three possible outcomes of overbooking. 

• The number overbooked equals the number of cancellations and no-shows (y = nc), which 

is ideal. 

• The number overbooked is less than the number of cancellations and no-shows (y < nc). 

In this case, although overbooking is considered, it is still insufficient to fill all of the 

empty seats. Revenue is lost because a few seats fly empty; this is called spoilage. 

• The number overbooked is greater than the number of cancellations and no-shows (y > 

nc). In this case, some of the passengers are unable to board the flight, called bumped or 

oversold passengers. A penalty has to be paid to those bumped passengers by providing 

them with a voucher for another round trip or an accommodation in a hotel to wait for the 

next flight. 

Hence, it is important to identify the optimal number of seats to be overbooked. 

Overbooking Literature 

Chatwin (1993) stated, “experience shows that nearly 15% of the seats fly empty if overbooking 

is not considered.” Kosten (1960) developed a continuous time stochastic model, but the model 

was proved impractical by McGill and van Ryzin (1999) because it required finding a solution to 

many differential equations. Bodily and Pfeifer (1973) considered the probability of a customer 



cancellation, and determined that it depends on (1) when the reservation was made, and (2) 

unknown events that might occur before departure. The drawback of this approach was that it did 

not consider the dynamic nature inherent in the reservation process. 

Rothstein (1971) was the first to formulate airline overbooking as a dynamic programming 

problem. This approach was computationally intractable due to the curse of dimensionality. 

Chatwin (1993) mentioned two ways to overcome the above problem of computation: (1) 

approximate the states by aggregating them or (2) develop a theory of the structure of an optimal 

solution, so as to facilitate more efficient computation. The first approach was followed by 

Alstrup et al. (1989). They developed a dynamic programming approach to solve the 

overbooking problem for two fare classes. They assumed that customers requested and cancelled 

reservations in groups of five, thereby reducing the size of the state space by a factor of 25. Their 

dynamic yield management model is being implemented worldwide. Chatwin (1993) 

implemented the second idea in his dissertation. He considered overbooking models with (1) 

discrete time and discrete state spaces and (2) a continuous time birth and death process. 

Subramanian et al. (1999) formulated the overbooking revenue management problem as a finite-

horizon, discrete-time Markov decision process (MDP). It was an extension to the model 

developed by Lee and Hersh (1993). Chatwin (1998) solved the multiperiod overbooking 

problem that relates to a single flight leg and service class. The conditions on the fares, refunds, 

and distributions of passenger demand for reservations and cancellations in each period, and on 

the bumping penalty function are given to ensure that a booking-limit policy is optimal. In other 

words, Chatwin stated “in each period the airline accepts reservation requests up to a booking 

limit if the number of initial reservations is less than that booking limit; it declines reservation 

requests otherwise.” The model is applied to the discount allocation problem in which lower fare 



classes book prior to higher fare classes. Karaesmen and van Ryzin (2004) modeled the 

overbooking problem as a two-period optimization problem. In the first period, given the 

probabilistic knowledge of cancellations, reservations are accepted. In the second period, 

cancellations are realized and surviving customers are assigned to the various inventory classes 

to minimize penalties.  

The drawback of the approaches in the literature is that they generally consider smaller 

simpler airline networks than the one in our computational experiments in Section 2. 

Consequently, implementing them on a network such as the on in Section 2 would require 

determining methods to simplify it, which is another topic of research. 

Contribution 

Our overbooking optimization seeks to determine the overbooking levels for the different flights 

that maximize the total profit of the flight network. Revenue is estimated using DACE, which 

generates data via a computer experiment then constructs a statistical model that will be 

employed to improve the performance of the system. Recent reviews of DACE methods are 

given by Chen, Tsui, Barton and Allen (2003) and Chen et al. (2006). The typical computer 

experiment is a simulation (Kleijnen 2005; Sacks et al. 1989); however in our approach, the 

computer experiment is an optimization model that solves for the seat allocation that maximizes 

expected revenue (Chen, Günther and Johnson 2003). For the “design” aspect, we use a strength 

two orthogonal array experimental design (Bose and Bush 1952; Chen 2001) to organize a set of 

overbooking levels that are input into the revenue optimization. For the “analysis” aspect, a 

multivariate adaptive regression splines (MARS, Friedman 1991; Tsai and Chen 2005) model is 

fit over the revenue data, as a function of the overbooking level. 



An oversold seat is a customer that cannot be accommodated on a flight because more 

customers show up than there is capacity (y > nc). Overbooking costs due to oversold seats are 

penalties paid by the airline to maintain good will with customers. In this paper, we 

conservatively estimate the penalty for each oversold seat as three times the bid price for that 

flight. A binomial distribution is used to model the number of customers that show up for the 

flight, and the cost function is the expected total penalty, as a function of the overbooking level. 

To conduct the profit optimization, an appropriate algorithm was needed for an objective 

function that involves a MARS function. Our approach develops a hybrid algorithm that 

combines Newton’s method and a steepest ascent method. Finally, we present a comparison to a 

simple approach that determines the overbooking levels based on the probability that the number 

of customers that show up for a flight exceeds the flight capacity. 

1 Overbooking Optimization Approach 

In this section, we describe the estimation of expected revenue and cost functions, followed by 

our hybrid Newton’s and steepest ascent optimization algorithm for determining the set of 

overbooking levels that maximize expected profit. For overbooking level y, let R(y) be the 

revenue function, and let O(y) be the overbooking cost function, where cost is assumed to 

increase, as y increases. Since the number of seats booked is finite, revenue always increases as y 

increases. Thus, the profit function is  

( )  ( ) ( ).Z y R y O y= −  

Figure 2 presents a conceptual diagram of the expected revenue, expected cost, and expected 

profit functions, with respect to overbooking level y. 

 
Figure 2 about here. 



Hence, the objective of our overbooking model is: 0max ( )y Z y≥ . 

1.1 DACE Concept 

A design and analysis of computer experiments (DACE) approach is useful when a computer 

experiment is the only means for representing a complex system (see recent reviews Chen, Tsui, 

Barton and Allen 2003; Chen et al. 2006). The purpose of DACE is to provide a computationally 

efficient method for conducting computer experiments with the objective of optimizing the 

performance of a complex system. In a typical setup, a simulation model is used to represent the 

complex system, but is too computationally intensive to directly imbed within an optimization. 

Instead, a metamodel, i.e., a statistical model of the simulation model, is constructed to predict 

the performance of the system, and the metamodel, which has a closed form and is quick to 

compute, is used within the optimization. Specifically, our DACE approach conducts the 

following: 

• An optimization model (computer experiment) of system performance is constructed 

based on knowledge of how the system operates. 

• An experimental design is used to select the set of sample points as input to the 

optimization model, which then provides the corresponding system performance outputs. 

• A statistical metamodel is to fit these data. 

The optimization model used in this paper is described in the next subsection. Several options are 

available for experimental designs and statistical metamodeling. In general, when the underlying 

form of the true relationship between system performance and system inputs is unknown, a 

“space-filling” design is chosen to select sample points that cover the input space. These include 

orthogonal arrays (Bose and Bush 1952; Hedayat et al. 1999, Chen 2001), Latin hypercubes 



(McKay et al. 1979, Tang 1993, Ye 1998), and number-theoretic methods (Niederreiter 1992, 

Fang and Wang 1994).  Orthogonal arrays, for example, are based on lattices in the input space.   

Choices for statistical metamodeling include spatial correlation models (Sacks et al. 1989, 

Koehler and Owen 1996), a.k.a., “kriging;” multivariate adaptive regression splines (MARS, 

Friedman 1991, Tsai and Chen 2005); and neural networks (Haykin 1999). Kriging assumes 

some form of spatial correlation between points in the multi-dimensional input space, and uses 

this correlation to predict values between observed points.  However, kriging can be very 

computational intensive and is often impractical for higher than ten dimensions.  MARS and 

neural networks have been successfully applied for high-dimensional DACE-based stochastic 

dynamic programming (20 dimensions: Tsai et al. 2004, 30 dimensions: Cervellera et al. 2006, 

25 dimensions: Yang et al. 2007).  A neural network requires significant effort to identify the 

appropriate model architecture while the MARS architecture is adaptively determined by the 

data.  Hence, for this paper, we employ MARS. 

MARS is a linear statistical model with a forward stepwise algorithm to select model terms 

followed by a backward procedure to prune the model. The approximation bends to model 

curvature at “knot” locations, and one of the objectives of the forward stepwise algorithm is to 

select appropriate knots. If appropriate, the model terms can be “smoothed” to achieve a desired 

degree of continuity, e.g., continuous first derivatives. A critical parameter of the forward 

stepwise algorithm is the maximum number of basis functions, which determines when to stop 

adding model terms.  Friedman’s original MARS algorithm requires the user to supply this 

parameter, but the version by Tsai and Chen implements an automatic stopping rule, based on 

model fit.  For stochastic dynamic programming applications, the automatic stopping rule 

enables higher flexibility in the use of MARS. 



1.2 DACE-Based Revenue Function 

A purchased ticket specifies an itinerary of connecting flight legs. Due to an airline’s complex 

fare structure, equivalent seats on the same flight are sold at different prices to different types of 

customers. Itinerary-fare classes define different customers by their chosen itinerary and fare 

class. The airline revenue management problem allocates seat capacity for all the flight legs to 

the itinerary-fare classes to maximize revenue.  

Chen, Günther and Johnson (2003) used a DACE-based statistical modeling approach to 

model the value functions of a revenue management Markov decision process. Specifically, they 

used a deterministic linear programming formulation as an upper bound on the value function 

and a stochastic network model as a lower bound. A statistical modeling module constructs 

MARS approximations for these upper and lower bounds, and then these are used on-line within 

the availability processor module that conducts the ticket bookings. Siddappa (2006) and 

Siddappa, Günther, Rosenberger and Chen (2007) revised the statistical modeling approach of 

Chen, Günther and Johnson (2003) to (i) derive more realistic remaining capacity state spaces 

and enable more accurate MARS approximations, and (ii) develop a more accurate algorithm for 

a modified version of the stochastic network model. Each value function approximation requires 

solving for the upper and lower bound values at each point of an experimental design and then 

fitting two MARS approximations, one for the upper bound and one for the lower bound. For a 

20-city, 31-leg network, computational effort per value function was less than 10 minutes on a 

Dual 2.8-GHz Intel Xeon Workstation. A similar, but far less computationally efficient approach, 

was presented by Bertsimas and de Boer (2005), where they reported a CPU effort of 50–60 

hours to estimate their value function for a 15-city hub-and-spoke network. 



In this paper, we use the stochastic network model (STOCH) of Siddappa (2006) and 

Siddappa, Günther, Rosenberger and Chen (2007) as a computer experiment that maximizes the 

expected revenue over the entire booking period for a given set of overbooking levels. Let y be 

the vector of overbooking levels for all the flight legs, and let q be the corresponding vector of 

flight capacities. Let denote the leg-itinerary incidence matrix with ajf = 1 if leg j is 

utilized in itinerary-fare class f, and 0 otherwise; For itinerary-fare class f, let df be a random 

variable for its demand, rf be its fare, and uf be its seat allocation decision variable. Then for m 

itinerary-fare classes, the (STOCH) formulation in this paper is: 

   [ jfA a= ]

f
1

(STOCH) max [min( ,  )]
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The dual solution to (STOCH) provides an initial bid price for each flight leg (D’Sylvia 1982). In 

a bid price revenue management approach, if a customer’s booking request is greater than or 

equal to the sum of the bid prices along the desired itinerary, then the request is accepted; 

otherwise it is rejected. These bid prices are used in Section 1.2 to estimate the penalty for 

overbooking. Bid prices can be updated over time by updating the remaining capacities and re-

solving the stochastic network model.  

Our DACE-based approach uses a strength two orthogonal array experimental design, where 

each point in the design specifies a set of overbooking levels y. The (STOCH) model is solved 

for each design point, and a MARS model is fit over the expected revenue data to provide our 

metamodel revenue function R(y). Since our optimization algorithm uses a combination of 

Newton’s and steepest ascent, the profit function Z(y) in equation (1) must be continuous and 



have continuous first and second derivatives. Consequently, we utilize a smoothed version of 

MARS for R(y) (see Siddappa, Chen and Rosenberger 2006). 

1.3 Derivation of Overbooking Cost Function 

A simplified cost estimate is used and assumes: (1) the numbers of customers that show up are 

independent and identically distributed, (2) the probability that any customer shows up is a 

constant, and (3) the penalty per oversold seat is three times the bid price of the itinerary the 

customer is willing to travel. The penalty in assumption (3) is obtained by solving (STOCH) for 

the bid prices. Given the first two assumptions, we derive here the cost function for a single 

flight leg, and we denote its penalty by c. Let q be the capacity of the flight; let x be the sum of 

the flight capacity and the overbooking level,  (   )x q y= + ; let Y be a random variable for 

actual number of seats overbooked, realized on the day of departure; and let W be a random 

variable for the total number of customers that show up on the day of departure. The number of 

customers that show up is assumed to be binomially distributed, hence from the definition of the 

binomial distribution, we have 

[ ] (1 )w xx
P W w

w
α α .w−⎛ ⎞

= = −⎜ ⎟
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Thus, the discrete overbooking cost function is 
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As for the revenue function R(y), we must use an overbooking cost function O(y) that is 

continuous with continuous first and second derivatives. Hence, we approximate the inherently 

discrete random variable W as a continuous random variable using the normal approximation to 

the binomial distribution: 

1

1 1
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From the definition of the normal distribution, 
2( ) / 2( ) (1/ 2 ) w

Wh w e
2μ σσ −= Π , we have 
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To compute the integral, function int gsl integration qags(const gsl function * O(y), double q+1, 

double q+y, double epsabs, double epsrel, size sz limit, gsl integration workspace * workspace, 

double * res, double * abserr) from the GNU Scientific Library (GSL) was used. From GSL 

Team (2006): This function applies the Gauss-Kronrod 21-point integration rule adaptively until 

an estimate of the integral of O(y) over (q+1, q+y) is achieved within the desired absolute and 

relative error limits, epsabs and epsrel. The results are extrapolated using the epsilon-algorithm, 

which accelerates the convergence of the integral in the presence of discontinuities and 

integrable singularities. The final approximation is obtained from the extrapolation, res, and an 

estimate of the absolute error abserr. The subintervals and their results are stored in the memory 

provided by workspace. The maximum number of subintervals is given by the limit, which may 

not exceed the allocated size of the workspace. Differentiating O(y) with respect to y, we have 
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Finally, the overbooking cost function for the entire network O(y) is simply the sum of the 

overbooking costs over the flight legs. 

1.3 Hybrid Newton’s and Steepest Ascent Method 

In this section, we seek to find the maximum on the profit curve Z(y), which has been 

constructed to be continuous and have continuous first and second derivatives. Gradient methods 

are used for either minimization or maximization of a function. These methods use an iterative 

formula that contains the gradient of the function to find the minimum or maximum, hence, the 

name gradient methods. Newton’s method is said to be the fastest of all the gradient methods 

(Bertsekas 1999). Upon implementing Newton’s method, it was observed that the smoothed 

MARS revenue function R(y) is still mostly composed of linear or nearly linear components; thus, 

its second derivative and the determinant of the profit function’s Hessian matrix were frequently 

(near) zero. As a consequence, we developed a hybrid Newton’s and steepest ascent algorithm, 

shown in Figure 3 and specified in Algorithm 1. 

 
Figure 3 about here. 

Our steepest ascent implementation estimates the stepsize k using the Armijo Rule (Bertsekas 

1999), so the next point is given by 

1 ( ).k k k x kx x Z xγ+ = − ∇  

 



 

Algorithm 1 Hybrid Newton’s and steepest ascent algorithm. 

Initialize , 0, 1.k kx q k γ= = =  

Step 1: Find Z(xk), ( )x kZ x∇  and 2 ( )xx kZ x∇ . 

Step 2 

if norm of  then ( ) 0.0x kZ x∇ =

 Stop. Maximum profit is obtained at xk. 

else 

 Step 3: Find the determinant (det) of 2 ( )xx kZ x∇ . 

 if det=0 then 

  Use the steepest ascent method to find the next point. 

  1 ( ).k k k x kx x Z xγ+ = − ∇  

  Update step size using the Armijo Rule. 

  Go to Step 1. 

 else 

  Use Newton’s method. 

  2 1
1 ( ){ ( )}k k x k xx kx x Z x Z x −
+ = −∇ ∇ . 

  Go to Step 1. 

 end if 

end if 

2 Computational Results 

Our methodology was tested on the 31-leg airline hub application used by Chen, Günther and 

Johnson (2003), Siddappa (2006), and Siddappa, Günther, Rosenberger and Chen (2007). Their 

work applied statistical modeling approaches for revenue management, which use the value 

functions from a Markov decision process to estimate the fair market value of a seat over time; 

thus, fares will change over time depending on the remaining capacities. Their application used 

fifteen reading dates, included 123 itineraries, and had a maximum demand of 50. Data on flight 



capacities and demand distribution parameters were provided by a domestic airline carrier. To 

determine the revenue function R(y), we conducted DACE using a strength two orthogonal array 

experimental design with 312 points, and we fit a version of MARS that uses an automatic 

stopping rule (Tsai and Chen 2005). The experimental design covered overbooking levels from 0 

to 20% capacity (0.2∗q). 

We compared our optimized overbooking approach to two variants of a simple probabilistic 

approach. The probabilistic approach considers the probability that the number of customers that 

show up is greater than capacity (P[W>q]). Anecdotal evidence suggests that this approach is 

prevalent in the airline industry. The two variants set the overbooking levels, so that this 

probability is less than 0.05 and 0.01, respectively. Table 1 shows the overbooking levels (OL) 

from the three approaches. Since the revenue function R(y) depends on the load factor (LF), 

defined to be the quotient of total requested capacity over available capacity, our optimized 

approach is presented for two load factors. Airlines use nominal load factors of up to 150% to 

test revenue management methods. 

The overbooking levels from the three approaches were all tested using the statistical 

modeling approach of Siddappa (2006) and Siddappa, Günther, Rosenberger and Chen (2007) 

and compared to the case of no overbooking. Table 2 presents the average profit (revenue − 

overbooking costs) from 2000 simulation runs for different load factors (LF) and coefficients of 

variation (CV). The standard errors and percent increases from no overbooking are given below 

each average profit. It can be seen that overbooking generally provides higher profit than no 

overbooking, and that our optimized approach provides higher profit than all other cases. It 

should be noted that the run times for fitting the MARS approximation and conducting the 



hybrid optimization were about 1.2 minutes and one minute, respectively, on a Dual 2.8-GHz 

Xeon Workstation. 

3 Concluding Remarks 

The presented DACE-based optimized overbooking approach provides a computationally 

practical method for achieving higher profit through overbooking than a simple probabilistic 

approach. Siddappa (2006) and Siddappa, Günther, Rosenberger and Chen (2007) demonstrated 

that their statistical modeling approach for revenue management, based on a Markov decision 

process, is computationally tractable and provides higher revenue than state-of-the art bid pricing 

approaches. The overbooking optimization presented in this paper was implemented as an 

overbooking module within the statistical modeling approach. For future work in the derivation 

of the cost function, a more realistic customer show-up pattern and different estimates of 

overbooking penalties can be considered.  
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Table Captions 

Table: 1 Overbooking levels (OL) obtained from our optimized approach at load factors (LF) 

120% and 150%, and the two variants of the simple probabilistic approach. 

Table: 2 Average revenues from 2000 simulations of the 31-leg hub using the statistical 

modeling approach of Siddappa (2006) and Siddappa, Günther, Rosenberger and Chen (2007) 

for the case of no overbooking (OL = 0) and cases using the overbooking levels obtained in 

Table 1. Various coefficients of variation (CV) are tested for two different load factors (LF). 

Standard errors are given in parentheses and percent increases compared to no overbooking are 

shown. 



Figure Captions 

Figure: 1 Illustration of the three possible outcomes under overbooking, where y is the allowable 

number of overbooked seats, nc is the number of cancellations and no-shows, and OD is the 

origin-destination of the flight. 

Figure: 2 Theoretical representation of the profit curve. 

Figure: 3 Flow Chart illustrating the generation of the optimal overbooking level y*. 



Table 1: Overbooking levels (OL) obtained from our optimized approach at load factors (LF) 

120% and 150%, and the two variants of the simple probabilistic approach. 

Flight 
Leg Capacity 

Optimized 
OL for LF 

120% 

Optimized 
OL for LF 

150% 
P[W > q]< 

0.05 
P[W > q]< 

0.05 
1 113 8 9 20 17 
2 152 7 7 28 24 
3 164 3 5 30 26 
4 208 11 12 40 35 
5 151 4 5 28 24 
6 107 8 9 18 15 
7 152 4 5 28 24 
8 154 2 4 28 24 
9 153 6 7 28 24 
10 179 2 4 34 29 
11 155 8 8 28 25 
12 166 1 2 31 27 
13 168 1 2 31 27 
14 167 8 8 31 27 
15 150 2 2 27 24 
16 156 9 10 29 25 
17 221 13 13 43 38 
18 159 3 5 29 25 
19 168 13 14 31 27 
20 166 16 22 31 27 
21 160 12 12 26 34 
22 201 1 5 38 34 
23 155 1 3 28 25 
24 188 14 14 35 31 
25 157 2 5 29 25 
26 156 18 20 29 25 
27 165 8 12 30 27 
28 150 8 10 27 24 
29 155 2 5 28 25 
30 149 19 24 27 24 
31 193 19 20 37 32 

 



Table 2: Average revenues from 2000 simulations of the 31-leg hub using the statistical 

modeling approach of Siddappa (2006) and Siddappa, Günther, Rosenberger and Chen (2007) 

for the case of no overbooking (OL = 0) and cases using the overbooking levels obtained in 

Table 1. Various coefficients of variation (CV) are tested for two different load factors (LF). 

Standard errors are given in parentheses and percent increases compared to no overbooking are 

shown.  

LF CV OL = 0 Optimized P[W > q] < 0.05 P[W > q] < 0.01 
120 0.32 820075 836917.1 825483.3 829761.5 

  (467.5) (345.4) (414.7) (827.4) 
   2.05% 0.66% 1.18% 

120 0.45 817417 829462.9 823840.7 825728.2 
  (428.4) (536.8) (722.2) (638.4) 
   1.47% 0.79% 1.02% 

120 0.6 739939 753143.4 726422.5 736193.6 
  (632.7) (747.5) (683.3) (638.4) 
   1.78% −1.83% −0.51% 

150 0.48 799575 825714.5 818534.1 820472.7 
  (425.7) (625.7) (535.2) (637.4) 
   3.27% 2.37% 2.61% 

150 0.56 794365 818648.7 805242.1 813274.5 
  (700.6) (725.5) (833.2) (683.5) 
   3.06% 1.37% 2.38% 

150 0.70 753298 773779.5 756328.4 765982.7 
  (737.8) (764.2) (628.4) (759.2) 
   2.72% 0.40% 1.68% 

 



 

Figure 1: Illustration of the three possible outcomes under overbooking, where y is the allowable 

number of overbooked seats, nc is the number of cancellations and no-shows, and OD is the 

origin-destination of the flight. 



 

Figure 2: Theoretical representation of the profit curve. 



 

Figure 3: Flow Chart illustrating the generation of the optimal overbooking level y*. 


