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Statistical analyses of time-series or spatial data have been widely used to investigate the 

behavior of ambient air pollutants. Because air pollution data are generally collected in a 

wide area of interest over a relatively long period, such analyses should take into account 

both spatial and temporal characteristics. The objective of the present study is twofold: 

(1) To identify an efficient way to characterize the spatial variations of PM2.5 

concentrations based solely upon their temporal patterns, and (2) To analyze the temporal 

and seasonal patterns of PM2.5 concentrations in spatially homogenous regions. This 

study used 24-hour average PM2.5 concentrations measured every third day during the 

period between 2001 and 2005 at 522 monitoring sites in the continental United States. A 

k-means clustering algorithm using the correlation distance was employed to investigate 

the similarity in patterns between temporal profiles observed at the monitoring sites. A k-

means clustering analysis produced six clusters of sites with distinct temporal patterns 

which were able to identify and characterize spatially homogeneous regions of the United 

States. The study also presents a rotated principal component analysis (RPCA) that has 

been used for characterizing spatial patterns of air pollution and discusses the difference 

between the clustering algorithm and RPCA.   
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The problem of modeling spatial and temporal data is of great practical interest in many 

different fields. The approaches presented here provide an efficient and objective way to 

determine spatially homogenous regions of PM2.5 mass concentrations based on their 

temporal patterns over multiple years. The results imply that spatial and temporal patterns 

are strongly linked, in that spatially homogeneous regions can be characterized solely by 

their temporal patterns. Furthermore, information about spatial and temporal variations 

would be useful in improving and evaluating dynamic air quality models. 

 
 
INTRODUCTION 
 
Statistical analyses of time-series or spatial data have been widely used to investigate the 

behavior of ambient air pollutants. Because air pollution data are generally collected in a 

wide area of interest over a relatively long period, such analyses should take into account 

both spatial and temporal characteristics. In particular, a number of studies have been 

devoted to characterization of temporal and (or) spatial correlation(s) in air pollution data 

collected from a number of monitoring sites in an area of interest.  Temporal correlation 

or spatial correlation can be defined as a correlation between the same variables at 

different times and locations, respectively, and it measures the strength of the relationship 

of observations.  Sometimes, the term “autocorrelation” is used instead of “correlation” to 

emphasize its characteristic of self-correlation (i.e., correlation of the variable with itself). 

Therefore, high temporal or spatial correlation implies a strong relationship of 

observations (e.g., air pollution concentrations) in time or space.  
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This paper focuses on characterizing PM2.5, one of the six criteria pollutants 

identified by the U.S. Environmental Protection Agency under the federal Clean Air Act.1, 

2 The other five criteria pollutants include ozone, sulfur dioxide, nitrogen dioxides, 

carbon monoxide, and lead.1 PM2.5 has the potential to cause adverse health effects in 

humans, including premature mortality, nose and throat irritation, and lung damage.3, 4 

Furthermore, PM2.5 has been known to be associated with visibility impairment, acid 

deposition, and regional climate change.5  

A number of statistical models have been used to characterize the spatial 

correlation of PM2.5 concentrations. Descriptive statistical analyses that examined daily, 

seasonal, and spatial trends in mass, composition, and size distributions of 24-hour 

average PM2.5 concentrations at 16 specific sites in several counties over southeast Texas 

during the period from 2000 to 2001 showed that mass and composition were generally 

spatially homogeneous, while particle size distributions were not.6 A nonnegative factor 

analytic model was used to analyze the contribution of meteorology (e.g., temperature, 

humidity, pressure, and wind speed) and other ambient factors (e.g., ozone concentration) 

to PM2.5 concentrations at 300 monitoring sites in the eastern United States during 2000.7 

Temporal and spatial trends of sulfur dioxide (SO2), sulfate (SO4
=), nitrogen species, and 

all major components of PM2.5, were investigated from 1989 to 1995 at 34 rural clean air 

status and trends network (CASTNet) sites in the eastern United States.8 In their study, a 

clustering analysis was performed to group 30 sites adjusted for seasonal effects so that 

the sites within a cluster had a similar pattern of meteorological factors and ozone levels. 

A more comprehensive study of spatial and temporal trends of SO4
= was performed over 

10 years for 70 monitoring sites in the continental United States.9 They characterized the 
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spatial trends of SO4
= concentrations in summer and winter and quantified the temporal 

change of the SO4
= level. A number of studies have been conducted to determine the 

spatial and temporal patterns of aerosol concentrations for impacting haze and visual 

effect.10-12  
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Analyses of spatial and temporal patterns of pollutants can be used to establish 

representative monitoring sites. A fixed-effect analysis of variance (ANOVA) model was 

developed to explore spatial and daily variations of pollutant levels and to identify the 

representativeness of PM2.5 monitoring sites in Seattle, Washington.13 Furthermore, a 

statistical model was used to quantify the representativeness of existing monitoring 

sites.14  Principal components analysis was applied to measure the spatial 

representativeness of ground level ozone concentrations.15  

An understanding of spatial correlations of pollutant concentrations would be 

useful in improving dynamic air quality models. McNair et al.16 evaluated the 

performance of the Carnegie/California Institute of Technology (CIT) model and found 

that spatial inhomogeneity needed to be taken into account in order to develop model 

performance guidelines. Jun and Stein17 compared daily SO4
= levels between observation 

data and the Community Multiscale Air Quality (CMAQ) model by space-time 

correlation. The CMAQ model matches the space-time correlation structure of the 

observed data; however, CMAQ partially captures time-lagged spatial variation of SO4
= 

concentrations. Recently, Park et al.18 investigated effects of spatial variability on the 

evaluation of the CMAQ model and observed that slight errors in the model were caused 

by uncertainties due to the different spatial scales between the point-observations and the 
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volume-averaged simulated concentrations. Their recommendation was to use data at 

spatially representative monitoring sites in model evaluation.  

 The present study seeks to characterize regions of homogenous PM2.5 

concentrations across the continental United States based solely upon their temporal 

patterns over multiple years. Each monitoring site provides a profile that represents the 

temporal pattern of PM2.5 concentrations. Combinations of multiple temporal profiles, 

each with 609 variables (days), lead to a large number of data points and a situation that 

poses a great challenge to analytical capabilities. Our first objective was to develop an 

efficient way to identify homogenous PM2.5 concentration regions using these temporal 

profiles. Our approach yielded groupings of the monitoring sites into spatially 

homogenous regions.  Thus, our second objective was to analyze the temporal and 

seasonal patterns of PM2.5 concentrations that characterize each of the identified spatially 

homogenous regions.   

DATA 

Monitoring data were obtained from the Aerometric Information System (AIRS) database 

in the Environmental Protection Agency’s Air Quality System (EPA-AQS)  

(http://www.epa.gov/ttn/airs/airsaqs/), which contains 24-hour average PM2.5 mass 

concentrations measured every third day from 2001 to 2005 at 522 monitoring sites in the 

continental United States.  At each 24-hour average PM2.5 mass monitoring site, 609 

measurements were recorded between 2001 and 2005. Thus, the PM2.5 concentration for 

monitoring site  at time can be represented as follows: iS jT

115 ,,1,,1),( JjIiforTSZ ji KK ==  
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where I  is the number of monitoring sites (here I=522) and J  is the number of time 

points (here J=609). The database contains a number of missing values.  Monitoring sites 

that had values missing for more than 50% of the observations or more than 10 

consecutive missing values were excluded from the study. The database originally 

contains 1,402 monitoring sites. After excluding those sites, 522 monitoring sites 

remained.  The remaining missing observations in the dataset were replaced with the 

interpolation of the nearby values, on the assumption that those were the result of 

measurement errors or instrument malfunctions. In addition, we found one observation 

(October 27, 2003 in California) that had a much higher concentration (239.2 μg/m3) than 

the values in its neighborhood. We considered this as an outlier and replaced it with an 

interpolated value.  The remaining 522 sites include both the urban and rural sites. In the 

present study, we combined the urban and rural sites in the analysis because we are more 

interested in analyzing an overall spatial and temporal pattern of PM2.5 concentration in 

the continental U.S. rather than addressing questions related to levels of pollutants around 

specific commercial, industrial, residential, or agricultural sites. Also, we should point 

out that PM2.5 speciation data can be useful for characterizing the patterns of components 

of total PM2.5 mass concentration. However, because the numbers of monitoring sites 

where speciation data are available are very limited and the present study seeks to 

characterize regions of homogenous PM2.5 concentrations across the entire continental 

United States (regional scale), we focused on the analysis of total PM2.5 mass 

concentrations.   
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ANALYTICAL APPROACHES 139 
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Interpolation Technique to Impute Missing Observations and Outliers 

Missing observations and outliers were replaced with interpolated values using an 

inverse-distance-squared weighted method.16 The interpolated value for site  at time , 

is computed as follows: 

iS jT
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and is Euclidean distance from site  to site at time . Thus,  in (1) is 

the weighted average PM2.5 concentration value observed in the surrounding m sites. The 

weights are determined by the way that observations in close spatial proximity are given 

more weight than those that are spatially separated. In this paper, d in (2) was set to 180 

km. Based upon our own analysis, using a different d did not lead to significantly 

different results for interpolation.  

kr iS kS jT ),( ji TSI

Other approaches for interpolating outliers and missing values include functional, 

maximum likelihood imputation schemes, and Bayesian modeling.  Polynomial functions 

and splines can be used to interpolate regularly-spaced data. Maximum likelihood or 

Bayesian modeling, which typically requires high computation, uses an iterative approach 
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based on model parameter estimation. Examples of this approach include Expectation-

Maximization,19 kriging,20 radial basis function,21 and Bayesian hierarchical model.22, 23  

 
k-means Clustering Analysis 

 
Clustering analysis systematically partitions the dataset by minimizing within-group 

variation and maximizing between-group variation, and then assigning a cluster label to 

each observation.24 Clustering analysis has been widely used to facilitate the extraction of 

implicit patterns and to test the validity of the groupings obtained by visualization 

methods such as principal components analysis. Variation can be measured based on a 

variety of distance metrics between observations in a dataset. The present study applied a 

k-means clustering algorithm to the set of PM2.5 concentrations from each monitoring site 

in 609 (days) dimensional space. The brief summary of the k-means clustering algorithm 

is as follows: Given k seed points, each observation is assigned to one of the k seed points 

close to the observation, which creates k clusters. Then, seed points are replaced with the 

mean of the currently assigned clusters. This procedure is repeated with updated seed 

points until the assignments do not change. The results of the k-means clustering 

algorithm depend on the distance metrics, the number of clusters (k), and the location of 

seed points.  

For the distance metric, the correlation distance that measures the similarity in 

patterns between the two temporal profiles from each monitoring site was used. More 

precisely, for the monitoring sites x and y, the correlation distance between two temporal 

profiles that consist of a series of J time points can be computed as follows: 
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In contrast to Euclidean distance that measures the difference of each time point over the 

monitoring period, the correlation distance allows us to measure the similarity in shape 

between the two temporal profiles observed at each monitoring site. In other words, the 

correlation distance focuses more on an overall pattern rather than scale-difference 

between the profiles.   

To determine the number k, a heuristic approach was used based on the 

assumption that we do not have explicit knowledge of expected PM2.5 concentration 

changes in the continental United States. To be specific, we applied the k-means 

clustering algorithm to our dataset with k values ranging from 5 to 15 for 20 replications. 

We then selected the final k so that the average value of the standard deviation of k 

groups (for k = 5, 6,…,15) reaches the first minimum. To determine the location of seed 

points, we used a “sample” method available in MATLAB (MathWorks Inc., Natick, 

MA).  

A previous study applied the k-means clustering algorithm with Euclidean 

distance to SO2 data from 30 sites in the eastern United States.8 The study obtained six 

clusters in which the sites within the cluster had a similar pattern of meteorological 

factors and ozone levels. The study determined the number k based on geographical and 

climatological characteristics and estimated the location of seed points using the centroid 

values of each region. In contrast to Holland et al.,8 our study relied solely on statistical 

methods to determine the number k and the location of seed points.  This is a reasonable 

approach because one of the main purposes of this study is to examine the feasibility of 
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using only temporal patterns of PM2.5 concentrations for characterizing spatial 

correlations. To facilitate the interpretation of temporal patterns, we applied robust 

locally weighted polynomial regression (rloess).25 This basic idea of rloess is to define 

local subsets of data (within the span) and fit the model locally by giving weight to each 

data point in a robust manner that can reduce sensitivity to outliers. For more 

mathematical details, see Cleveland.26 

 
A Rotated Principal Components Analysis Technique 

A rotated principal components analysis (RPCA) approach has been used to characterize 

spatio-temporal patterns of air pollution and meteorological fields.27, 28 We begin with a 

brief introduction to a traditional PCA approach. PCA is a multivariate data analysis 

technique primarily for dimensional reduction and visualization. In the atmospheric 

sciences, PCA has been widely used for determining the important source regions of air 

pollution29, and in receptor modeling, which apportions source contributions to air 

pollution.30 PCA identifies a lower dimensional space that can explain most of the 

variability of the original dataset (X).  The lower dimensional space, represented by the 

principal components (PCs), is a linear combination of all the original variables. The 

most important PCs are obtained to maximize the variability of the entire dataset. For 

example, the ith PC can be expressed as follows:  

                             , i= 1, 2, … , p,                           (4)             iipNiii kkkPC kXxxx =+++= ...2211

where p is the total number of variables in the original dataset. A set of coefficients is 

given by the eigenvector with the corresponding ith largest eigenvalue of the covariance 

matrix of the original dataset. Because the contribution of each variable to form a PC can 

be represented by each component of the eigenvector, this vector is often called a 
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“loading vector.” For example, ki1 in (4) indicates the degree of importance of the first 

variable in the ith PC domain.   
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The basic idea of RPCA is to rotate the loading vectors of the traditional PCA 

approach to facilitate the spatial interpretation. Among the many options for rotation, a 

varimax rotation method has been widely used.28 The varimax rotation maximizes the 

sums of the variances of the squared components in each loading vector of the traditional 

PCA.28  

 
RESULTS 
 

Spatial Patterns of PM2.5 Concentrations 

The k-means clustering algorithm using the correlation distance was performed on the 

dataset of 522 monitoring sites, each of which had 609 time points. Based on the heuristic 

method described in previous section, the optimal number for k is six. The results of six-

means clustering analysis on temporal profiles are displayed on the U.S. map (Fig. 1). It 

is seen that the monitoring sites in close spatial proximity are grouped together, 

demonstrating the identification of spatially homogeneous regions solely based on the 

temporal patterns of PM2.5 concentrations. To further characterize the spatial regions, the 

clustered sites can be grouped according to the following ad-hoc categories chosen by 

geographical locations, with the number of monitoring sites in each cluster indicated in 

parentheses: (i) Central (68); (ii) Florida & Gulf Coast (44); (iii) Midwest (103); (iv) 

Northeast (104); (v) Southeast (111); and (vi) West (92). Table 1 shows a list of states in 

the United States in each clustered region.  

Main factor analysis that compares the mean PM2.5 concentrations for each 

clustered region showed that mean PM2.5 concentrations vary regionally from year to year 
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although the degree of difference was not significant (Fig. 2). In general the highest mean 

PM2.5 concentrations occurred at sites in the Midwest, followed by the Southeast and the 

Northeast (Fig. 2). This may be because of the high SO2 emissions generated within the 

Ohio River Valley in the Midwest region.9, 31 The mean PM2.5 concentration in the 

Midwest in 2001 (15.02 μg/m3) and 2005 (15.56 μg/m3), in particular, exceeds the annual 

federal standard of 15 μg/m3 (Fig. 2). Lower mean concentrations are observed in the 

West, Florida & Gulf Coast, and Central.  It appears from Fig. 2 that the mean PM2.5 

concentrations have a downward trend from 2001 to 2004 but increase in 2005, except 

for the West, which exhibits a decreasing trend over the time period from 2001 to 2005.  

 

Comparison with Rotated Principal Components Analysis 

A RPCA approach was applied to the same dataset used in k-means clustering analysis. A 

set of ordered eigenvalue-eigenvector pairs was computed from a 522 by 522 covariance 

matrix containing the pair-wise covariance of the 522 monitoring sites. Usually, only a 

small number of PCs is needed to explain the variability in the original dataset. There is 

no definitive answer to determine an appropriate number of PCs to retain.32 One popular 

method is to use the property that the proportion of variability explained by each PC can 

be expressed by the eigenvalues.  For example, the proportion of variability explained by 

the ith  PC (V(PCi) ) can be calculated from the following equation: 

                                                       
∑
=

= p

j
j

i
iPCV

1

)(
λ

λ ,                                                        (5) 271 

where iλ  is the ith eigenvalue, and p is the total number of original variables. The idea of 

this method is to plot the ordered V(PC) against its rank and determine an appropriate 
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273 
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number of PCs. This graphical method is rather subjective since the decision involves a 

visual inspection. The general recommendation is to find an elbow in the plot. In the 

present study, we found that the elbow point was observed around five, six, and seven 

PCs. Of these, we decided to retain the six PCs in order to ensure the comparability to the 

six clusters obtained from the clustering analysis in previous section. Note that six PCs 

accounted for 65% of the variability of the entire dataset.  A varimax rotation of the six 

PCs was performed. The components in the loading vectors of each of the six rotated PCs 

were displayed by contour plots on U.S. maps (Fig 3). The regions with higher loading 

values were highlighted. The first RPCA loading contour plot identified the monitoring 

sites in the Midwest. The second, third, fourth, fifth, and sixth RPCA loading contour 

plots identified the monitoring sites in the Northeast, Southern California, Southeast, 

West, and Central, respectively.  

It is somewhat difficult to make a direct comparison between RPCA and k-means 

clustering analysis because of their different ways of determining the spatial groups of 

homogeneous PM2.5 concentrations.  RPCA relies on a graphical interpretation of the 

contour plot of RPCA loadings, while k-means clustering analysis assigns a group label 

to each monitoring site. Note that Fig. 1 is a plot of group labels from k-means clustering 

analysis. Nevertheless, identified homogeneous regions from RPCA and k-means 

clustering analysis seem similar. The main difference is that RPCA did not identify the 

sites in the Florida & Gulf Coast as a separate group but identified sites in Southern 

California. 

Both the RPCA and k-means clustering analysis are unsupervised learning 

techniques, in that they depend only on input variables (explanatory variables) but do not 
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take into account the information from the response variable. However, from the 

mathematical point of view, RPCA and k-means clustering are different.  RPCA 

identifies a new coordinate system that maximizes the variability of the original dataset 

through an orthogonal linear transformation, while k-means clustering analysis does not 

use any transformation processes but iteratively partitions the observations by minimizing 

within-group distances and maximizing between-group distances, then assigning a cluster 

label to each observation.  

RPCA renders a graphical result, efficient in facilitating the visualization of a 

high-dimensional space. However, similar to other graphical methods, the interpretation 

of RPCA results can be subjective, with different analyzers drawing different conclusions. 

On the other hand, k-means clustering analysis provides a group label for each 

observation, and thus, the interpretation of results is more objective than RPCA. However, 

the k-means clustering results may vary with different choices of the starting means. No 

consensus exists about which is the better method (RPCA or clustering analysis) to 

satisfy all conditions. We believe that visualization methods, such as RPCA, can elicit the 

natural groupings of the observations, and clustering analysis can test the validity of the 

groupings obtained by RPCA. The following section discusses temporal and seasonal 

patterns of PM2.5 concentrations according to k-means clustering results.  

   

Temporal and Seasonal Patterns of PM2.5 Concentrations 

The smoothed temporal pattern of each spatially homogeneous region identified via six-

means clustering analysis over a time period from 2001 to 2005 is summarized using 

mean, median, 25th percentile, and 75th percentile profiles (Fig. 4). The rloess method 

with a span of 0.05 was used for smoothing the original time patterns. The similarity 
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between the 25th- and 75th- percentile profiles confirms that there are no significant 

outliers in the dataset. A distinct temporal pattern was observed in each region. For ease 

of interpretation of temporal patterns and to explore seasonal variations, we defined the 

four seasons in a standard way: spring (March, April, May), summer (June, July, August), 

fall (September, October, November), and winter (December, January, February).  Fig. 2 

shows the comparison of mean PM2.5 concentrations for the four seasons. It can be seen 

that the highest mean concentration value was observed in summer, followed by winter 

for the period between 2001 and 2005. In particular, in 2002 and 2003, the mean 

concentrations in summer exceed the annual federal standard of 15 μg/m3. The lowest 

mean concentration was observed in spring, except 2001. The results from Tukey’s pair-

wise comparisons test showed that the mean concentrations in every season were 

significantly different from each other (p-value < 0.01).  
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It is important to observe from the box plots shown in Fig. 5 that PM2.5 

concentrations between regions and seasons have interaction effects in that each clustered 

region differs in each of the four seasons (Fig. 5). In the box plots, the lines in the middle 

of the boxes represent the median, and the distance between the top and bottom of the 

boxes represents the range from the 25th to the 75th percentiles (i.e., interquartile range). 

The plus sign at the top of the plot is an observation that is more than 1.5 times the 

interquartile range away from the top or from the bottom of the box. 

According to Fig. 5, the West region has the highest level of PM2.5 in winter, 

likely because of the increase in NO3
- and organic carbon during winter months. Major 

sources of NOx include transportation, industrial operations, electricity production, and 

non-industrial fuel burning. Quasi-equilibrium favors the particulate species under cool, 
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moist conditions.33, 34  This significant increase in the level of NO3
- in the western United 

States in winter likely offsets the slight seasonal reduction of SO4
=.  A major source of 

organic carbon during wintertime in the western United States includes fireplace 

burning.35  
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PM2.5 concentrations tend to be higher in summer in many parts of the nation’s 

northeastern and southeastern sections (Fig. 5). Sulfate is produced from sulfur dioxide, 

which is prevalent in the East because of the relatively abundant coal-fired power 

plants.35 Higher insolation and humidity during summer months enhance both 

homogeneous and heterogeneous reactions that produce secondary sulfate particles, one 

of the major components in PM2.5 mass concentrations.36, 37  

Midwest, Central, and Florida & Gulf Coast show comparable PM2.5 levels during 

the four seasons, although the Midwest tends to show higher within-season variability 

than the Central and Florida & Gulf Coast regions.  

 To be able to predict PM2.5 concentration as a function of time in each clustered 

region, time-series models were developed using the mean of smoothed time-series data 

(see Fig. 4). The original time series shows a yearly or seasonal trend that causes a non-

stationary time series. We subtracted the mean of each time series and used differencing 

to remove these trends and make the series stationary.  To determine the time-series 

model, we used the Box-Jenkins graphical approach,38 which relies on the patterns of the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) plots.  Fig. 6 

shows ACF and PACF of the time-series data in each spatially homogeneous region. 

ACF slowly decays with either an exponential curve or sine waves, while PACF has a 

large value for the first or second lag and becomes small (close to zero) for higher order 
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lags. These patterns suggest that a first-order or second-order autoregressive (AR) model 

might be a good choice.38  Table 2 summarizes time-series models with the estimated 

parameters for each clustered region. AR models consider a linear combination of past 

values and a Gaussian white noise term. AR(1) and AR(2) models are of the forms 

367 

368 

369 

370 

ttt ZYY += −11φ  and tttt ZYYY ++= −− 2211 φφ , respectively.  is the PM2.5 concentration at 

time t, 

tY371 

φ s are the parameters of the model, and  is a Gaussian white noise series with 

mean zero and variance .  The parameters of the AR models can be estimated by the 

maximum likelihood estimation technique, available in many standard computer 

packages. In the present study, we used S-PLUS 6 (Insightful Corporation, Seattle, WA). 

To test the adequacy of the time-series model derived, the autocorrelation functions of the 

estimated residual values (e.g., or ) were generated (Fig. 7).  

Results show that only a few points out of 40 fall outside the bound, indicating that our 

derived time-series models fit the data well. 
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391 

2
WNσ

11̂ −− tt YY φ 21 −− −tt YY 2̂ tYφ

 
Comparison of Annual PM2.5 Level of Each Spatially Homogeneous Region with the 

Federal Standard 
 
Annual mean PM2.5 concentrations for each clustered region were compared with the 

annual federal standard of 15.0 μg/m3 (Fig. 8). The x-axis shows the percent reduction in 

total PM2.5 required to meet the standard. For example, in 2005, in the Central region, 61 

of 68 sites (89.7 percent) satisfied the federal standard, which corresponds to the y-axis 

value when the x-axis value of the plot is zero (Fig. 8). It also shows that all sites in the 

Central region will satisfy the federal standard if an 18 percent reduction in total PM2.5 is 

achieved for all sites in the region. The same analysis was performed for the other five 

clustered regions. The results showed that in 2005, 97.7 percent (Florida & Gulf Coast), 
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39.8 percent (Midwest), 65.4 percent (Northeast), 64.9 percent (Southeast), and 87.0 

percent (West) of sites met the federal standard. To achieve the federal standard for all 

sites in each clustered region in 2005 would require pollutant (total PM2.5) reductions, by 

region, of 1 percent (Florida & Gulf Coast), 24 percent (Midwest), 31 percent (Northeast), 

26 percent (Southeast), and 22 percent (West).   

An overall pattern of pollutant reductions required in each clustered region seems 

similar over a period from 2001 to 2005. One clear pattern that emerged is that there were 

a relatively large proportion of nonattainment sites in 2001 and 2005 compared to 2002, 

2003, and 2004.    

Interestingly, the regions with a large proportion of nonattainment sites did not 

always require large amounts of pollutant reduction to satisfy the federal standard. A 

comparison of the Midwest and Northeast regions in 2005 provides a good example. In 

the Midwest region, only 39.82 percent of sites met the federal standard, but 65.38 

percent in the Northeast met the standard. However, more efforts seemed to be required 

in order to achieve the federal standard for all sites in the Northeast than in the Midwest 

region. This implies that the number of sites exceeding the federal standard does not 

correlate directly with the percent of pollutant reduction required. These results indicate 

that different pollutant management programs should be applied to specific times and 

regions.  Overall, this analysis discusses percent reductions in total PM2.5 required to 

meet the federal standard based on the clustering results. However, the current analysis 

does not provide clear recommendations about how to achieve those reductions in PM2.5. 
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CONCLUSIONS  
 
The present study examines the temporal patterns of PM2.5 concentrations over the period 

from 2001 to 2005 across the continental U.S., so as to characterize spatially 

homogeneous regions. The k-means clustering algorithm using the correlation distance 

enabled us to measure the similarity of overall temporal patterns among 522 monitoring 

sites.  We believe k-means clustering analysis can be useful as an alternate approach to 

test the validity of the groupings obtained by visualization methods, such as RPCA, 

which has been used for characterizing spatial patterns in air pollution and meteorological 

fields.   The k-means clustering analysis grouped the sites in close spatial proximity. 

More precisely, the analysis resulted in six spatial regions that exhibit homogenous 

temporal PM2.5 concentration patterns over multiple years: Central, Florida & Gulf Coast, 

Midwest, Northeast, Southeast, and West. In each spatially homogenous region, distinct 

temporal patterns were observed.  In general, higher PM2.5 concentrations occur in winter 

in the western part of the United States, but in summer in the northeastern and 

southeastern regions. These results are generally consistent with other existing studies 

indicating the higher levels of NO3
- and organic carbon in the west during winter and 

SO4
= in the east during summer. The results also indicate that PM2.5 concentrations vary 

from year to year. This may due to meteorological variations or consequences of major 

human- or nature-related activities.  To obtain more understanding of the observed time-

series patterns, we fit time-series models based on the Box-Jenkins’ graphical approach. 

Time-series models with mean-centered and differenced data provided AR(1) or AR(2) 

model for each of six clustered (homogenous) regions. Residual analysis confirmed the 

adequacy of the derived models. These time series models can be used to predict the 
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future PM2.5 mass concentrations in a regional scale. Finally, we showed the amounts of 

pollutant reduction required to meet the federal standard for all sites in each clustered 

region from 2001 to 2005.  
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List of Figure Captions 

1. Figure 1. k-means clustering results for the continental United States. 

 

2. Figure 2. A design plot to compare the yearly mean values of PM2.5 concentrations by 

region and season from 2001 to 2005. 

 
3. Figure 3. Contour plots of loadings from each of six RPCA. 
 

4. Figure 4. Smoothed mean, median, 25th percentile, and 75th percentile temporal 

profiles for each clustered region. 

 

5. Figure 5. Box plots of the seasonal mean PM2.5 concentrations in each region over the 

four seasons from 2001 to 2005. 

 

6. Figure 6. Autocorrelation and partial autocorrelation functions of the mean of 

smoothed time-series data (from 2001 to 2005) for each clustered region.  

 

7. Figure 7. Autocorrelation of the residuals from time-series models. 

 

8. Figure 8. Percentage of sites meeting the federal standard for annual PM2.5 levels.



Table 1. A list of states in the United States in each clustered region. 

Clustered Region Number 
of states States 

Central 12 
North Dakota, South Dakota*, Nebraska*, Kansas, 
Oklahoma, New Mexico*, Texas*, Minnesota, Iowa*, 
Missouri, Arkansas*, Illinois*

Florida & Gulf Coast 6 Texas*, Louisiana*, Alabama*, Georgia*, South 
Carolina*, Florida 

Midwest 9 Iowa*, Wisconsin, Illinois*, Indiana, Michigan, Ohio*, 
New York*, Pennsylvania*, Maine 

Northeast 15 
Ohio*, West Virginia*, Virginia*, Pennsylvania*, New 
Jersey, Delaware, Maryland, Connecticut, New York*, 
Massachusetts, Rhode Island, Vermont, New Hampshire, 
Maine, Montana* 

Southeast 11 
Arkansas*, Louisiana*, Tennessee, Mississippi , 
Alabama*,  Georgia*, South Carolina*, Virginia*, West 
Virginia*, Kentucky, California* 

West  14 
Washington, Oregon, California*, Nevada, Idaho, 
Montana*, Wyoming, Utah, Arizona, Colorado, New 
Mexico*, Texas*, South Dakota*, Nebraska* 

 
* Sites in these states are split into more than one clustered region. 
 
 
Table 2. Time-series models with the estimated parameters in each clustered region. 

Clustered Region Time-Series Model 1̂φ  2̂φ  

Central AR(2) 1.750 -0.775 

Florida & Gulf Coast AR(1) 0.783 - 

Midwest AR(2) 1.733 -0.757 

Northeast AR(2) 1.749 -0.777 

Southeast AR(2) 1.271 -0.434 

West AR(2) 1.796 -0.829 
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