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Abstract

A computer experiment-based optimization approach employs design of experi-
ments and statistical modeling to represent a complex objective function that can
only be evaluated pointwise by running a computer model. In large-scale applications,
the number of variables is huge, and direct use of computer experiments would require
an exceedingly large experimental design and, consequently, significant computational
effort. If a large portion of the variables have little impact on the objective, then there
is a need to eliminate these before performing the complete set of computer experi-
ments. This is a variable selection task. The ideal variable selection method for this
task should handle unknown nonlinear structure, should be computationally fast, and
would be conducted after a small number of computer experiment runs, likely fewer
runs (n) than the number of variables (p). Conventional variable selection techniques
are based on assumed linear model forms and cannot be applied in this “large p and
small n” problem. In this paper, we present a framework that adds a variable se-
lection step prior to computer experiment-based optimization, and we consider data
mining methods, using principal components analysis and multiple testing based on
false discovery rate, that are appropriate for our variable selection task. An airline
fleet assignment case study is used to illustrate our approach.

Keywords: Computer experiments, False discovery rate, Large-scale optimization, Regres-
sion trees, Variable selection.

1 Introduction

Complex systems are challenging to optimize. One practical approach is the design and
analysis of computer experiments (DACE, for a review see Chen et al. 2006). In DACE, an
experimental design is used to organize a set of computer experiment runs, so as to enable
fitting of a statistical “metamodel” that approximates the complex system’s output from
the computer experiment. A mathematical programming technique then determines the
system inputs that optimize the metamodel. In traditional DACE, the computer experiment
runs a simulation (Kleijnen 2005, Sacks et al. 1989). DACE-based optimization has been
used to solve multi-stage mathematical programming problems. This approach has been
successfully applied for value function approximation in stochastic dynamic programming
and Markov decision processes (Chen 1999, Chen et al. 1999, 2003, Tsai et al. 2004), where
the computer experiment runs an optimization computer model that provides a point on the
value function. More recently, a DACE-based approach has been developed for two-stage
stochastic programming (Pilla 2006, Pilla et al. 2008).

The research in this paper was motivated generally by the high-dimensionality of many
real world complex systems and, in particular, by the two-stage stochastic programming
problem studied by Pilla et al. (2008). The optimization runs provide the data to build
the metamodels, where a higher-dimensional input space requires more runs, and, conse-
quently, more computational effort. If, in fact, an accurate metamodel of the output of the
optimization requires all input dimensions, then there is nothing we can do to reduce the
number of runs. However, if an accurate metamodel can be constructed using a subset of the
input dimensions, then the experimental design can focus on this subset, and consequently



can require a smaller number of optimization runs. In the case of the Pilla (2006), only 42
out of 1264 input variables were included in a metamodel that achieved an R? of 99.459%.
To identify unimportant variables, this paper adds a Data Mining (DM) Phase to conduct
variable selection prior to DACE modeling.

The key is to identify a reasonable subset of the input variables. This is a variable
selection task. In recent years, variable selection has received considerable attention in
various areas for which data sets with tens thousands of variables are available, including
signal /image processing, bioinformatics, process monitoring, and text mining (Jain et al.
2000, Guyon and Elisseeff 2003, Kim et al. 2008, Temiyasathit et al. 2009). The main
objective of variable selection is to identify a subset of the variables that are most predictive
or informative of a given response (or output) variable. Further, successful implementation of
variable selection simplifies the entire modeling process and, thus, reduces computational and
analytical efforts. Variable selection is particularly of interest when the number of candidate
explanatory variables is large, and many redundant or irrelevant variables are thought to be
present.

Conducting variable selection prior to DACE modeling still requires some number of
optimization runs (n). In our approach, we severely limit n, so that our data set contains
fewer runs than input variables (p). The contribution of our paper is twofold: (1) a general
framework for large-scale optimization using data mining variable selection and DACE (DM-
DACE), and (2) two new methods for variable selection in the case of large p and small n.
Both variable selection methods employ a multiple testing procedure based on false discovery
rate (FDR, Benjamini and Hochberg 1995). Our first version uses regression trees as a pre-
processing step, prior to running the multiple testing procedure. The second version reverses
the roles of the variables in the original testing procedure. Since DACE-based approaches for
large-scale optimization already exist, this paper focuses on the DM Phase of the DM-DACE
framework.

The rest of this paper is organized as follows. In the next section, our DM-DACE
framework is presented, first with a gemeral description, and then followed by two exam-
ple implementations for large-scale optimization, one for stochastic programming and the
other for stochastic dynamic programming. In Section 3, we describe the airline fleet as-
signment application that motivated this study. Section 4 briefly introduces the concept of
principal component analysis, a widely used dimensionality reduction method. In Section
5, we present our new variable selection approaches using FDR. Section 6 describes the
experimental results, followed by concluding remarks in Section 7.

2 Data Mining and DACE (DM-DACE) Framework

For modeling a performance function in optimization, such as an objective function or a
value function, our DACE-based research has focused on the use of multivariate adaptive
regression splines (MARS, Friedman 1991, Tsai and Chen 2005, Shih et al. 2006). In
large-scale optimization applications, the number of variables in a DACE-based approach
can initially be very large. Although one could simply attempt a MARS approximation over
these high-dimensional spaces, typically, many variables have little effect on the performance
measure. Thus, a data mining step to conduct variable selection is essential to reduce the



number of runs in the optimization computer experiment. The study presented in this
paper tests the use of a multiple testing procedure based on false discovery rate for variable
selection.

Figure 1 diagrams our DM-DACE approach. This is a two-phase approach, first con-
ducting data mining for variable selection, and then conducting DACE for metamodeling.
To conduct the DM Phase:

1. We start in Figure 1 at the top with all possible input variables (x), where we require a
method that can identify a point as feasible or infeasible. The feasible region is defined
by the constraints of the optimization problem.

2. We then move to next box in Figure 1, where the feasibility checker is used in conjunc-
tion with design of experiments to select a small set of feasible design points. Here we
assume an extremely large set of possible inputs and a design with significantly fewer
points than inputs (i.e., large p and small n). The generation of a feasible design is in
itself a research problem that will depend on a specific application.

3. The (feasible) experimental design is then used to conduct the optimization computer
experiment, in which a computer model is run for each design point, and the output is
recorded. For the DM Phase, it is noted that the computer model employed here could
be representing functions that are related to the optimization, but do not directly re-
quire running the optimization. An example of this is discussed for stochastic dynamic
programming in Section 2.2. For the stochastic programming example in Section 2.1,
the computer model requires running the optimization for both the DM and DACE
Phases.

4. Finally, in the bottom box in Figure 1, the DM Phase conducts variable selection to
identify a subset of input variables for use in the DACE Phase.

Figure 1 about here.

Once the subset of important inputs has been identified, the process in Figure 1 repeats
for the DACE Phase, with some slight variations. In step 1, some modification of the
feasibility checker may be needed to handle the subset of input variables. In step 2, the
training sample size of the experimental design will likely have more points than the number
of input variables in the subset in order to obtain a sufficiently accurate metamodel. In step
3, an actual optimization computer model must be run, as opposed to the option of using
related modeling mentioned above. Finally, step 4 changes to the DACE goal of building an
accurate metamodel for the optimization computer model. This metamodel is then employed
in the objective function of a larger optimization problem. More specifics are given in the
next two subsections for stochastic programming and stochastic dynamic programming.

In the DACE Phase, because the set of design points must typically be larger than the
number of inputs in the subset, if the DM Phase is not conducted first, then a unneces-
sarily large design may be generated, wasting computational effort in the optimization. By
conducting the DM Phase prior to the DACE Phase, we can ensure the importance of the
inputs included in the design, and construct a size-appropriate design.



The methods in Section 5 focus on variable selection in the DM Phase. Given the general
setup in Figure 1, we require computationally efficient methods that can handle unknown
nonlinear structure and a data set with large p and small n, where the points are spread
over a feasible region, as opposed to the circular or rectangular regions of typical designs.
Specifically, we consider principal component analysis and two new versions of a multiple
testing procedure based on false discovery rate. The original version using false discovery
rate was introduced by Benjamini and Hochberg (1995). Our first version uses regression
trees as a pre-processing step, prior to running the multiple testing procedure. The second
version reverse the roles of the variables in the original testing procedure.

In particular, this research problem and the resulting methods emerged as a consequence
of an airline fleet assignment problem studied by Pilla (2006), Pilla et al. (2008) that uses
two-stage stochastic programming. This application is the case study for our methods and
is described in Section 3. While the fleet assignment problem is a specific application, the
optimization involves stochastic and integer programming methods which are applicable to
many real world decision-making problems. Thus, our methods additionally handle input
variables that are mostly binary (0 or 1), representing integer solutions, but also have values
in between, representing fractional solutions.

The results in Pilla (2006) state that the traditional Benders approach required about
3.26 days on a Dual 2.8-GHz Intel Xeon Workstation to solve the fleet assignment prob-
lem, while the DACE-based approach with 3562 design points for 1264 decision variables
required 3.10 days, where 2.5 days of that time was spent executing the optimization com-
puter experiment for all the experimental design points. The resulting optimal solution was
not degraded, demonstrating the promise of the DACE-based approach. However, the re-
quirement of several days to solve this optimization is not at all acceptable, which is why a
two-stage fleet assignment model is not optimized in practice. The work of Sherali and Zhu
(2008) which uses a traditional approach, corroborates this computational challenge, and it
should be noted that they did not solve the problem to optimality because of this challenge.
The traditional approach cannot easily overcome this computational intractability; however,
there are two basic ways to reduce the computation of the DACE-based approach: (1) use
parallel computing (which is not an option for the traditional approach) or (2) use a smaller
experimental design. Our current paper considers the second direction for reducing compu-
tation since a reduction in the number of important decision variables translates to an ability
to use a smaller experimental design. To justify the potential for dimension reduction, we
analyzed the MARS approximation of Pilla et al. (2008) and found that it employed only 42
of the 1264 decision variables. Hence, for this problem, the DACE approach could be much
more efficient without adversely affecting the solution.

A similar phenomenon was witnessed in a DACE-based study of precursor nitrogen ox-
ides that lead to ozone pollution (Yang et al. 2007). This study employed a stochastic
dynamic programming framework, and it was critical to reduce the state space dimensional-
ity. Many other potential applications arise in large-scale problems that can be modeled via
stochastic programming or stochastic dynamic programming, but cannot be solved due to
the computational intractability of traditional solution approaches. Included among these
are revenue management problems, environmental decision-making problems, large-scale lo-
gistics problems, airport operations, and health care. To motivate and elucidate our DM-
DACE framework, we provide below a brief overview of two-stage stochastic programming
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and continuous-state stochastic dynamic programming and describe the DM-DACE process
for these types of optimization problems.

2.1 Two-Stage Stochastic Programming
A two-stage stochastic linear program can be generally formulated as:
. T T
min ¢ :B—{—E{rr:lymg y}
s.t. Ax =0b,

Te +Wy=h,
x>0,y=>0,

where € R™ is the first-stage decision vector with linear costs ¢ € R™, y € R" is the
second-stage decision vector with linear costs g € R", A is the my x n; first-stage linear
constraint matrix with right-hand-side b € R™, and T and W are, respectively, my X n
and my X ny matrices specifying the second-stage linear constraints on @ and y with right-
hand-side h € R™2. The expectation is taken over stochastic variables that may appear in
g, T, W, or h. For a given realization of the stochastic variables, call it w, we can write the
second-stage recourse function as

Qzr,w) = min {9(w)"y | W(w)y = h(w) — T(w)z,y >0} . (1)

Here we can see that the second-stage decision depends directly on the first-stage decision.
Then the expected second-stage recourse function is

Q(x) = ElQ(z, w)],

where the expectation is taken over scenario realizations w. Finally, the first-stage decision
is found by solving the deterministic linear program:

ma%n c'z+Q(x)

s.t. Ax =g, (2)
x > 0.

The difficulty lies in determining Q(x). If the stochastic variables are continuous, then a
large number of scenarios may be needed to estimate the expectation. The second-stage
recourse function in equation (1) must be solved individually for each scenario w. Thus,
there is a high computational cost for “evaluating” Q(x) at just one x.

Traditional two-stage stochastic programming algorithms, such as Benders’ approach or
the L-shaped method (Birge and Louveaux 1997), use the following approach:

Restricted Master Problem (RMP) Step: Optimize the first-stage decisions (x) based
upon a relaxed representation of the second-stage recourse problem in equation (1).

Subproblem Step: Based upon the first-stage solution, optimize the second-stage recourse
decisions (y) over the scenarios. If the relaxed representation of the second-stage
recourse problem is consistent with the second-stage solution, terminate the algorithm.
Otherwise, revise the relaxed representation of the second-stage recourse problem and
return to the RMP Step.



In solving the minimization in equation (2), each evaluation of Q(:) is computationally
expensive. Consequently, the traditional iterative approximation methods can be very slow
to converge for large-scale problems.

As an alternative to the traditional approach, a DACE-based algorithm for two-stage
stochastic programming uses the following steps (Pilla 2006, Pilla et al. 2008):

DACE Step: Use design of experiments to represent potential first-stage solutions (x points).
Pilla et al. (2008) describes a method for identifying feasible first-stage solutions for
the airline fleet assignment case. For each experimental design point (which speci-
fies a potential first-stage solution x), optimize the second-stage recourse problem in
equation (1) over the scenarios. Use a statistical model to approximate the expected
second-stage recourse function Q(x).

Optimization Step: Optimize the first-stage using the statistical model to represent the
optimized second-stage recourse problem.

For the commercial airline fleet assignment case study in Pilla et al. (2008), the set of
6537 first-stage decision variables was first reduced to 1264 by eliminating clearly redundant
variables via various constraints. Then 3562 feasible design points were used to conduct
the optimization computer experiment over a 1264-dimensional decision space, and a MARS
approximation was fit to approximate the expected second-stage recourse function Q(x) of a
commercial airline fleet assignment problem. As mentioned earlier, it was observed that the
MARS function included only a small subset of the 1264 first-stage decision variables. If it
was known in advance that, for example, 800 of the 1264 variables were not important, then
the experimental design created over the 464-dimensional space of the remaining variables
could use one-third as many design points and correspondingly reduce the computational
effort. However, since it is not possible to know in advance which variables to eliminate,
the DM Phase of our DM-DACE process uses a small (n < p) experimental design and
conducts data mining for variable selection to identify which variables to eliminate prior to
implementing the DACE Phase as developed by Pilla et al. (2008).

2.2 Continuous-State Stochastic Dynamic Programming

Dynamic programming is used to optimize decisions for a system that is changing over time
(Bellman 1957). State variables represent the state of the system as it moves through time,
and decision variables are controlled to optimize the system. Problems can involve discrete
time stages or continuous time, finite or infinite time horizons, discrete and/or continuous
state (or decision) variables, and stochasticity; and modern numerical solution methods fall
under the research area of approximate dynamic programming (Powell 2007). For small-
scale discrete-state problems, the optimal solution can be tabulated for all possible states.
For large-scale or continuous-state problems, this is not possible. Chen et al. (1999) first
introduced a statistical perspective of finite-horizon, continuous-state stochastic dynamic



programming, which seeks to minimize expected costs over T' time stages, i.e., to solve

T
min FE E Ci\ L, Uy, €
Us,... U ( ’ ’ )

t=1
s.t. T = fi(xy, ug, €), fort=1,..., T —1 and

(mt,ut) GFt, fOI'tzl,...,T

where &, € R" is the state vector, u; € R™ is the decision vector, ¢; : R"*"* — R!
is a known cost function for period ¢, I'y C R"™"™ is the set of constraints on u; which
depend on x;, and the expectation is taken over the random vector € € R', with known
probability distribution. The known function f; defines the state transition from x; to a; 4
by @1 = f(@, u, €). The future value function at time ¢ is

Uy,... U

Vi(x;) = min E{ZCT(wT,uT,eT)}

T=t
s.t. T = fi(@r,ur€,), forT=1¢,...,T —1 and
(xr,u,) el forr=t,....,T—1,

fort =1,...,T, and can be written recursively as

V;f(wt) = H,lein E{Ct(wbuta Et) + Vt+1($t+1>}a t=1,...,T, (3)

where V1 = 0. If the expected value cannot be computed exactly, then a set of scenarios,
as discussed for stochastic programming, may be used to estimate the expected value. In
theory, a backward solution approach can be used, where the future value functions are
obtained in backwards order from Vy(x7) to Vi(x;) using the recursion.

The statistical perspective of Chen et al. (1999) views the future value functions V()
as unknown relationships with the state variables (x;). Following a DACE process in each
time stage ¢, an experimental design is used to “discretize” the state space, the optimization
is solved at the design points, and then a statistical model approximates the future value
function for that stage. They studied applications with up to 9 state variables (which were
the largest at that time). Cervellera et al. (2006) later used this same statistical concept
to solve a 30-dimensional problem. Yang et al. (2007) and Yang et al. (2009) were first
to utilize variable selection to reduce the state space dimensionality. Their air quality case
study employed a highly computational air quality simulation model and involved over 500
state variables, but their solution method only required up to 25 state variables in each time
stage. The computer model in their DM Phase did not directly conduct the optimizations
to yield the future value functions V;(-). Instead, they used the air quality simulation model
to study relationships for the costs ¢;(-) and state transitions f;(-) as a function of state
variables x; and decision variables u; with error variation €;. Their DM Phase used least-
squares regression, which requires more observations than unknown parameters (n > p), to
conduct variable selection. The variable selection methods for n < p developed in this paper
could reduce the number of expensive computer simulation runs and optimization runs, and
consequently reduce the total computational effort of the DM-DACE process.



3 Airline Fleet Assignment Application

Optimization plays an important role in airline planning and operations, including revenue
management (McGill and van Ryzin 1999), crew-scheduling (Gopalakrishnan and Johnson
2005), and fleet assignment (Sherali et al. 2006). Given the financial difficulties of airlines
in recent years, further approaches to decrease costs and increase revenues are needed. The
complexity of airline planning (crew, fleet, maintenance) requires airlines to fix their sched-
ules far in advance of actual flight departures. Specifically, these plans must be locked down
at least 45-60 days prior to departure, and many airlines publish their schedule 90 days
prior. Since most travelers do not purchase their airline tickets that far in advance, there
is large uncertainty in this planning. Ideally, an airline would like to match their capacities
with their demands, and the significant body of airline optimization research continues to
seek solutions. Most domestic airlines use a hub-and-spoke network in which nearly all flight
legs either depart from or arrive at a small subset of stations. Consequently, planes can be
rerouted relatively easily allowing for smooth transitions into new fleet assignments.

In this paper, we consider a formulation of the fleet assignment model that uses a two-
stage stochastic programming framework along with the Boeing concept of demand driven
dispatch. The complete optimization formulation from Pilla et al. (2008) is presented in
the appendix. Airline fleet assignment models are used to assign aircraft to the scheduled
flights in order to maximize profit (revenue — cost). Demand driven dispatch, introduced
by Berge and Hopperstad (1993), relies on the concept of crew-compatible aircraft that have
identical cockpits. This allows an airline to swap aircraft without swapping crews, so as
to capture more revenue by matching capacities more closely with demands while avoiding
disruption of the already complex problem of crew scheduling. For example, Boeing 757
and 767 models are crew-compatible, but a 767 can fly more passengers than a 757, so we
can use these different capacities to better match demand. A family of crew-compatible
aircraft consists of all aircraft types with a particular cockpit. The two-stage stochastic
programming approach was studied by Sherali and Zhu (2008) and Pilla (2006), where the
first stage occurs when the flight schedule is published (e.g., 90 days prior to departure) and
the second stage occurs closer to departure (e.g., one to two weeks prior) when most of the
demand has been realized. In the first stage, crew-compatible families are assigned to flights,
and in the second stage the actual aircraft within the families are assigned to best match
demand. The goal of the two-stage formulation is to assign crew-compatible families in the
first stage, so as to maximize the demand capturing potential in the second stage, given
a specific crew-compatible family assignment from the first stage, the stochastic program
considers several demand realizations (scenarios) in the second stage, and the average over
these realizations estimates the expected profit for that first-stage assignment. This expected
profit function is known to be concave over the space of first-stage assignments.

Instead of employing a Benders” approach, Pilla (2006) and Pilla et al. (2008) developed
a DACE approach to reduce the computation involved in conducting the optimization. Their
DACE Phase uses first-stage constraints in a multi-step process to construct an experimental
design within the feasible region, then builds a statistical model that approximates the
expected profit function in the first stage of the stochastic program. An Optimization Phase
then solves the two-stage problem using the DACE expected profit approximation instead
of solving many second-stage subproblems in every iteration. This greatly speeds up the



optimization, compared to Benders’, because the computation of the subproblems is shifted
to the DACE Phase. Overall, Pilla (2006) found that the total computational effort, including
the DACE Phase, was lower for his approach compared to a Benders’ approach. However,
further speedup may be achieved by conducting a DM Phase prior to the DACE Phase.

The input variables in the DM and DACE Phases for the fleet assignment application
are the first-stage assignment variables, and there is one variable for every possible crew-
compatible family and flight combination. For example, there is one variable that considers
the assignment of crew-compatible family ¢ with flight f, and this variable is 1 if family ¢
is assigned to flight f, otherwise, it is 0. An optimal solution yields assignment variables
that are only 0 or 1; however, most solution procedures make use of fractional solutions in
continuous relaxations of the assignment problem. These fractional solutions can have a
practical interpretation: if the assignment variable for family ¢ and flight f is 0.4, then the
airline would be assigning family g to flight f 40% of the time. The challenge for the DM
Phase is to conduct meaningful variable selection for this unusual type of input variable that
is quite common in real world optimization problems.

4 Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical method that extracts new
variables, called principal components (PCs) through an orthogonal transformation of the
original variables (Jolliffe 2002). PCA has been widely used in a variety of applications for di-
mensionality reduction (for example, Yeung and Ruzzo 2001, Jackson 1991, Wise et al. 1990).
Let the random vector X = [X, Xy, -, Xp]T. PCA relies on the eigenvalue-eigenvector
decomposition of the covariance matrix of X, C x. Denote the pairs of eigenvalues and
eigenvectors of C x be (A1, Ey), (A2, E3), -, (Ap, Ep), where Ay > Ay > --- > Ap. The
transformation process extracts the first PC that maximizes the variance of Z; = af X
subject to |a;| = 1. Using some properties of linear algebra, a projection vector a; is E.
Thus, the first PC is a linear combination of X, Z; = E{X and captures the maximum
variance of X. Likewise, the second PC is obtained by the maximization of Z, = al X
subject to |as| = 1 and Cov(Z;,Z5)=0. This process is repeated P times to extract P PCs.
The extracted PCs are uncorrelated to each other.

PCA is efficient for reducing high-dimensional data if only the first few PCs are needed to
represent most of the variability in the entire data. Moreover, the PCA process depends solely
upon the covariance matrix of X and thus, does not require any distributional assumptions.
However, PCA has several limitations. First, the extracted PCs cannot be readily interpreted
because they are linear combinations of a large number of original variables. Second, the PCs
may not produce the best predictability on the response variable (Y") since the transformation
process of PCA relies solely on X and ignores Y information. Third, there is no objective
way to determine the number of PCs to retain.

We would like to clarify the distinction between variable extraction and variable selection,
although much of the literature fails to make a clear distinction. PCA is an example of
variable extraction, while FDR-based multiple testing procedures are examples of variable
selection. Variable extraction techniques create new variables based on transformations of
the original variables to extract useful information for the model. Variable selection methods,



on the other hand, find the best subset of the given original variables that leads to the best
prediction. Variable extraction tends to reduce more dimensionality than variable selection,
but suffers from the lack of interpretability with respect to the original variables. The choice
between the two depends upon the purpose of the application problem. For the airline fleet
assignment problem, maintaining the physical interpretation of the original variables is as
important as aggressive dimensionality reduction.

5 Proposed Approaches for Variable Selection

5.1 Multiple testing procedure controlling false discovery rate

In this paper, we propose to use a multiple testing procedure that controls false discovery rate
(FDR) to reduce the dimensionality of the original data. We begin with a brief introduction
of the multiple testing procedure. Suppose through some statistical modeling processes, we
have a collection of hypothesis tests and the corresponding p-values {p;}1_,, where p; is the
p-value of testing the null hypothesis, and P is the number of variables. In the literature,
it is standard to choose a p-value threshold 7 and declare the variable X; significant if and
only if the corresponding p-value p; < 7. A common approach in multiple testing nowadays
is the false discovery rate (FDR) procedure (Benjamini and Hochberg 1995) because it is
well-known that we need to adjust the significance level when conducting multiple tests and
that the conventional procedures that control family-wise error rate (FWER; e.g., Bonfer-
roni) are too conservative to detect true significant variables. The FDR is defined as the
expected proportion of false positives (falsely rejected hypotheses) among all the hypotheses
rejected (Benjamini and Hochberg 1995). Many FDR studies have revealed that FDR-based
procedures find as many significant hypotheses as possible while keeping a relatively small
number of false positives (for example, Kim et al. 2006, Efron 2004, Storey and Tibshirani
2003).

The FDR-based procedure to identify significant variables is as follows: Consider a series
of hypotheses, p-values, and ordered p-values, denoted H;, p;, and p(;), respectively.

e Step 1: Choose a fixed a, where 0 < o < 1.

e Step 2: Find ¢ = max [@ Dy < % . 7%0], where 7y(= 72) denote the proportion of true

H;, mq is the number of true H;, and m is the total number of hypotheses.
e Step 3: If 1 > 1, Q = {All rejected H; with p; < p(;)} with FDR(Q2) < «v .
If 2 = 0, do not reject any hypothesis since Q = (.

In general, my = 1 is the most conservative possible choice. Thus, we use my = 1 in this
paper. For more details of the choice of 7y, refer to Efron (2004) and Storey and Tibshirani
(2003).

Th original FDR procedure proposed by Benjamini and Hochberg (1995) assumes that
all hypotheses are independent. However, later work by Benjamini and Yekutieli (2001)
revealed that the procedure still holds when the hypotheses are positively correlated. In
their paper, they also proved that the procedure can handle any correlation structure by
replacing o in step 2 with 327 1~ log(P) +0.5.
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5.2 FDR-based variable selection from regression trees

Generally, a conventional FDR procedure for variable selection requires a categorical response
variable that separates the data into ¢ groups, where c is the number of categories. For each
input variable, we test for differences in the ¢ samples, using a t-test or F-test. However,
because the response variable generated by a computer experiment is continuous in most
cases, we need to categorize the original response. A mean or median value of the response
variable can be used to separate the response variable into two groups, high and low, if
the response surface is monotonic. However, if the relationship between the response and
the inputs is not monotonic, such that the separation by high and low values does not
make sense, then alternate grouping strategies are needed. Many methods are available to
categorize the continuous values (for example, Elomma and Rousu 2002, Fayyad and Irani
1992). However, no consensus exists about which of them best satisfies all conditions. In
the present study, we propose a new and simple strategy that uses binary regression trees to
partition the response observations into meaningful groups.

An algorithm constructing binary regression trees partitions the input space into two
regions using the input variable and a splitting-point to fit a piecewise-constant model that
achieves the best fit (Mitchell 1997). This partitioning process is repeated to one or both of
these regions until a termination criterion has been reached. Based on the terminal nodes of
regression trees, the response values can be separated into a certain number of disjoint groups.
Then, an FDR procedure can be applied for variable selection using grouping indices. Note
that for three or more groups, an analysis of variance (ANOVA) table is constructed for each
input variable and its significance is tested using an F-test. This approach simultaneously
takes advantage of regression trees and an FDR procedure. The possible drawback of this
approach is that we may lose the original characteristics of a continuous response by grouping
its values.

5.3 Reverse FDR

In order to maintain the continuous characteristic of a response variable in an FDR pro-
cedure, we propose a new FDR approach for variable selection, called reverse FDR. Each
input variable now serves as a categorical variable to group the response values for testing
(by a t-test or an ANOVA F-test). The main idea is to create a set of new variables, one
corresponding to each original input, by grouping the response variable based on the cate-
gories of each input variable and conducting an FDR procedure on these new variables. This
is analogous to the resampling technique because each new variable is re-sampled from the
set of original response values based on the categories of each input variable. Our proposed
approach is similar to the original FDR procedure, except that the hypothesis test is con-
ducted on the continuous response grouped by each input variable, as opposed to testing the
continuous input variables grouped by the response values. This process explains why the
proposed approach is called reverse FDR.
The setting and procedure for reverse FDR is as follows:

e Step 1: For each input variable, divide the response variable into ¢ groups based on
the categories of the input variable.
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e Step 2: For each input variable, conduct a statistical test (e.g., two-sample t test,
ANOVA F-test) on its corresponding set of response variable groups, and record the
p-value.

e Step 3: Use the p-values to conduct an original FDR procedure (Benjamini and
Hochberg 1995) or a correlated version of the FDR procedure (Benjamini and Yekutieli
2001) that identifies which input variables are statistically significant.

If the response surface is known to be convex or concave, a common occurrence in optimiza-
tion, then reverse FDR with ¢ = 3 groups should be sufficient. Our motivating example,
the fleet assignment application has concave nonlinearity, and the decision variables fall into
one of three categories, 0, 1, or between 0 and 1. The reverse FDR approach is particularly
appropriate for this case since the input variables are easily categorized and the response
variable is continuous.

6 Experimental Results

For a real airline network with 50 stations and 2358 legs, the initial decision space involved
6537 decision variables across the aircraft types. Pilla et al. (2008) was able to reduce this to
1264 dimensions by combining aircraft types into crew-compatible families and using implicit
equalities specified by the constraints (where a combination of constraints leads to perfect
correlation between some decision variables). In their DACE Phase, the multi-step design of
experiments process derived 141 initial extreme points, which were then expanded into 3562
design points in the feasible region. The second-stage subproblem is then solved for each
of these design points. Among the 1264 decision variables, there are still many useless ones
that could be identified via a DM Phase, enabling a much smaller set of design points. It
should be noted that 1264 variables were reduced to 1061 prior to implementation of variable
selection approaches. Those 203 (=1264-1061) were dropped because they possess uniform
values for almost all 141 observations (i.e., at least 140 values out of 141 are the same).

Using only the subproblem solutions for the 141 initial extreme points, we studied five
cases of variable selection: (1) none, (2) PCA,(3) FDR on three groups identified by regres-
sion trees (FDR level=0.01), (4) Reverse FDR (FDR level=0.01), and (5) Correlated version
of reverse FDR (FDR level=0.01). The resulting numbers of variables selected are given in
Table 1.

’Table 1 about here.\

For PCA, we utilized MATLAB (www.mathworks.com), and 140 PCs were identified whose
eigenvalues were greater than zero. In other words, the extracted 140 PCs explain 100% of
the variability of the entire data.

We used regression trees to group the response variables. Here we forced the regression
tree to make three terminal nodes (Mitchell 1997). Although “three” is not the optimal
number of terminal nodes in terms of a regression tree fit, the objective here is simply to
categorize a non-monotonic response. Having found grouping information from the regression
tree, we used the FDR procedure (FDR=0.01) and found 454 significant variables. Finally,
the reverse FDR and the correlated version of reverse FDR methods with ¢ = 3 groups
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selected 326 and 256 significant variables, respectively. It should be noted that all three
methods are computationally efficient, requiring only about 3 minutes.

Interpretation of the FDR results can be made as follows: For example, 326 variables were
identified by reverse FDR, implying that there are, on average, 3 to 4 (3.26 = 326 x 0.01)
variables falsely identified as significant (false discoveries) out of the 326 variables identified
as significant. A similar interpretation can be applied for the results from FDR with three
groups from regression trees and the correlated version of reverse FDR. Note that all methods
achieved significant dimensionality reduction.

Ideally, the next step in the DM-DACE framework is to conduct the DACE Phase with
a reduced set of decision variables. This would require a feasible experimental design that
focuses on the reduced set of variables, running the second-stage optimization for all the
design points, then fitting a MARS approximation. The current paper studies the DM
Phase, but the DACE Phase and the subsequent first-stage optimization tasks are topics
for future work. It should be noted here that the optimization computer experiment will
still require specification of all input variables, even though the experimental design is only
specifying the reduced subset of variables. There is more than one way to handle this, and
our future work will study this. In theory, since the eliminated variables are unimportant, it
should be not matter how they are set; however, their values can still affect the important
variables through the constraints.

For model fit comparison purposes, MARS using an automatic stopping rule (Tsai and
Chen 2005) was fit over the 3562 design points from Pilla et al. (2008) using the variable sets
identified by each of the five methods. MARS is a linear statistical model with a forward
stepwise procedure that adds basis functions based on the fit to the data, and the automatic
stopping rule terminates the forward procedure when the quality of fit no longer improves.
Table 2 displays the resulting number of basis functions and coefficient of determination (R?)
for each of the five methods.

’Table 2 about here.‘

A validation data set of 1600 points was generated to test the MARS approximations,
and relative errors were computed using the formula @, where y and f are the actual and
fitted response values, respectively. In terms of accuracy, boxplots in Figure 2 show that the
maximum relative errors of all methods are less than 1.75 x 107%, where the plus signs at
the top of the boxplots indicate observations that are more than 1.5 times the interquartile
range (the difference between the 75th percentile and 25th percentile of the sample) away
from the top of the box. The MARS model constructed with 140 PCs produces a relatively
wide interquartile range (box) compared to other methods. This indicates that the extracted
140 PCs do not necessarily lead to good prediction accuracy although they explain 100% of
the variability of the entire input data. The models constructed with the variables selected
from the two reverse FDR approaches give more compact interquartile ranges with fewer plus
signs, and the tree/FDR result, although with many plus signs, is not significantly different
from the two reverse FDR methods. Overall, we judge the two reverse FDR methods as
providing a MARS approximation that is nearly as good as using all 1061 variables.

Figure 2 about here.
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With regard to computational effort, reductions can be easily estimated without complet-
ing the DACE Phase and subsequent first-stage optimization. It was mentioned in Section 2
that the DACE-based approach of Pilla (2006) required 3.10 days of computation, where 2.5
days were spent conducting the optimization computer experiments. In our current study,
only n = 141 of the original 3562 design points (4%) were employed for the DM Phase; hence,
the computational effort for the DM Phase computer experiment runs can be estimated as
4% of 2.5 days, which is 2.4 hours. It should be noted that the data from these runs are
also used in the DACE Phase, so these runs do not officially add to the total computational
effort. The dimension reduction achieved by the correlated version of Reverse FDR was 76%;
hence the computational effort for all computer experiment runs can be estimated as 24%
of 2.5 days, which is 14.4 hours. This is a reduction of 1.9 days. Additional reduction will
also be achieved in the generation of the design points, which originally required 4.5 hours in
the DACE Phase. Since only 24% of the points need to be generated, this reduction can be
estimated as 76% of 4.5 hours, which is 3.4 hours. The run times for the variable selection
methods were about 3 minutes for the FDR based approaches and 19 minutes for PCA, and
the run time for building the MARS model in the DACE Phase was about 11 minutes on
a Dual 2.6-Ghz Athlon Workstation. These additional computations are cancelled out by
other reductions in the DACE Phase due to the smaller experimental design, such as fewer
feasibility checks. In summary, we can estimate the total reduction in computation to be
more than 2 days.

A few additional remarks on the methods are given below.

Remark 1: A different choice of FDR level leads to a different number of variables selected.
A higher level of FDR increases the number of selected variables, which yields larger
power but produces more false positives. Similarly, a lower level of FDR decreases the
number of false positives but deteriorates power.

Remark 2: For tree/FDR, different groupings from the regression tree can be explored. As
mentioned we do not seek an optimal tree in this task; we merely want a data-driven
grouping of the response values.

7 Conclusion

We have proposed computationally-efficient variable selection methods within a DM-DACE
framework to expedite solving some large-scale complex optimization problems. The main
contributions of the present study are the general DM-DACE framework and two new vari-
able selection methods for the DM Phase that use a multiple testing procedure for controlling
FDR. The first approach is a simple extension that uses regression trees to group the re-
sponse values for the FDR-based variable selection procedure. This tree/FDR approach
allows a more general representation of continuous response variable values than a mean or
median. The second approach, called reverse FDR, is devised to fully utilize the original
continuous response variable by switching the roles of the response and input variables. Re-
verse FDR was additionally developed with a version to handle correlated variables. Both
approaches are designed to handle the “large p and small n” problem with an unknown
nonlinear response structure.
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To test the adequacy of selected variables from our proposed approaches, we applied
them to a real airline fleet assignment problem. For comparison, we used relative errors
from MARS models fit to the selected variable sets from the different methods. The re-
sults demonstrated that the variables selected by our proposed approaches yield nearly as
good models as using all variables. Moreover, compared with PCA, one of the most widely
used dimensionality reduction techniques, our proposed approaches provide more accurate
and robust prediction results. This implies that our approaches adequately select the im-
portant variables (i.e., eliminate unnecessary variables). To the best of our knowledge, the
present study is the first attempt to reduce computational effort in large-scale DACE-based
optimization through appropriate variable selection approaches. Future work will study the
impact of the DM Phase on the DACE Phase and subsequent Optimization Phase to solve
the larger optimization.

8 Appendix: Airline Fleet Assignment Model Formu-
lation

The optimization formulation from Pilla et al. (2008) is reproduced here for the readers’
reference.

Let L be the set of flight legs (indexed by [). Let F' denote the set of fleet types (indexed
by f), and G be the set of crew-compatible families (indexed by g¢), which can be used for
each of the legs [ € L. Since we assign crew-compatible families in the first stage, for each leg
[ € L and for each crew-compatible family type g € G, let a binary variable x, be defined
such that

S { 1 if crew-compatible family ¢ is assigned to flight leg [,
97 0 otherwise.

In the second stage, we assign specific aircraft within the crew-compatible family. As such,
for each leg | € L, for each aircraft type f € F, and for each scenario ¢ € =, let a binary
variable val be defined such that

£ 1 if aircraft type f is assigned to the leg [ in scenario &,
fl 0 otherwise.

Since a combined FAM and PMM model is used, let the decision variable zf represent the
number of booked passengers for itinerary-fare class ¢ in scenario &.

For combined FAM and PMM, consider the following additional parameters:
e S = set of stations, indexed by s,
e | = set of itinerary-fare classes, indexed by 1,
e IV = set of nodes in the entire network, indexed by v,

e f(v) = fleet type associated with node v,

A, = set of flights arriving at node v,
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e D, = set of flights departing at node v,
e VM = number of aircraft of type f,
e f; = fare for itinerary-fare class 1,

e (Y = cost if aircraft type f is assigned to flight leg [,

° af} , = value of ground arc leaving node v for scenario &,
) af}, = value of ground arc entering node v for scenario &,

e Oy = set of arcs that include the plane count hour for fleet type f, indexed by o,
e [, = set of flight legs in air at the plane count hour,
e Cap; = capacity of aircraft type f,

° Df = demand for itinerary-fare class 7 in scenario .

The two-stage formulation can be represented as:

max 0 = E —chﬂ(qu)+2fiz§

leL feF el
s.t. ai, + Z mi(v)l — Z I?(v)l - a§+ =0 YVoeV,Ee= (4)
leAy, leD,
> ab =1y VieLgeG, ez (5)
fe€g
> al+ > af <M VfEFteE (6)
0€0; €Ly
> =) Capyaf <0 VieL &€= (7)
= fer
0<2t<Df Viel,£c€E (8)
%, € {0,1} VieL¢eXE (9)
rg € {0,1} VieLgeG
aS, >0 Yo eV, e

The objective is to maximize profit (revenue — cost) in the second stage by assigning aircraft
within the crew-compatible allocation made in the first stage. The block time of a flight leg
[ is defined as the length of time from the moment the plane leaves the origin station until it
arrives at the destination station. Let b; be the scheduled block time for flight leg . The cost
for each flight leg is calculated as a function of block time and operating cost of a particular
fleet type per block hour, and is given by:

Cri = by * (Operating cost per block hour);.
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Constraints in set (4) represent the balance constraints needed to maintain the circulation
of aircraft throughout the network. Cover constraints (5) guarantee that aircraft within the
crew-compatible family (assigned in the first stage) are allocated. For formulating the plane
count constraints (6), we need to count the number of aircraft of each fleet being used at a
particular point of the day (generally when there are fewer planes in the air). As such the
ground arcs that cross the time line at the plane count hour and the flights in air during
that time are summed to assure that the total number of aircraft of a particular fleet type
do not exceed the number available. Constraints (7) impose the seat capacity limits, i.e.,
the sum of all the booked passengers on different itineraries for a flight [ should not exceed
the capacity of the aircraft assigned and constraint (8) to meet the forecasted demand.
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Table 1: Variable selection results for the fleet assignment application using n = 141.

Variable Selection Method # of Variables Selected Reduction Rate
None 1061 N/A
PCA 140 87%
FDR with three groups from regression trees 454 5%
Reverse FDR 326 69%
Correlated version of reverse FDR 256 76%

Table 2: MARS approximation results for the five cases in Table 1.

Variable Selection Method # of Basis Functions R?
None 84 99.459%
PCA 118 99.013%
FDR with three groups from regression trees 78 99.230%
Reverse FDR 78 99.053%
Correlated version of reverse FDR 76 99.052%
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1. Use the constraints of the OPTIMIZATION

to develop a Feasibility Checker for the input variables x.
(a) DM Phase: Use all possible input variables.

(b) DACE Phase: Use Subset following DM Phase.

!

2. Use the Feasibility Checker in the construction of

an Experimental Design of feasible x points.

(a) DM Phase: # points < total # input variables.

(b) DACE Phase: # points > # input variables in Subset.

!

3. Conduct the OPTIMIZATION computer experiment:
For each (feasible) design point, run the computer model.
(a) DM Phase: The computer model can represent related
functions that do not require OPTIMIZATION.

(b) DACE Phase: The computer model should require
running the OPTIMIZATION.

!

4. Analyze the computer model input and output data.

(a) DM Phase: Conduct variable selection to get a Subset.
(b) DACE Phase: Estimate the OPTIMIZATION output
function for subsequent use in a larger OPTIMIZATION.

Figure 1: Flow chart for the DM-DACE framework.
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Figure 2: Boxplots of the relative errors from the five variable selection cases for the fleet
assignment application.
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