
 

A Dynamic Programming Approach to the Design of Composite Aircraft Wings1  
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Abstract. A light and reliable aircraft is a major goal of aircraft designers. Since a wing skin 

comprises more than fifty percent of the wing’s weight, it should be designed as efficiently as 

possible. The wing skin consists of many different types of material and thickness configurations 

at various locations. Selecting a thickness for each location is a significant design task. In this 

paper we formulate discrete models to determine optimal thicknesses for three different criteria: 

maximum reliability, minimum weight, and a tradeoff between the two. Since these formulations 

represent generalized discrete resource-allocation problems for which dynamic programming is 

well suited, we use this method to solve them. To reduce computations, a dynamic programming 

decomposition is applied. 
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1. Introduction 

 This paper presents a dynamic programming approach for optimizing aircraft wing design whose 

outline, both in platform and cross-sectional shape, is robust enough to house a structure capable of  
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doing its job. After aerodynamic analysis has determined a basic wing shape, this preliminary design 

should be modified to yield the lightest structure with sufficient strength and stiffness having a 

minimum of manufacturing problems (Ref. 1). A wing box is composed of skins (upper skin, lower skin, 

and substructure), spars, and ribs. Upper and lower skins play different roles in a wing box. The upper 

skin is loaded primarily in compression; therefore its design has to prevent buckling. The lower skin is 

loaded primarily in tension, so its material lay-up defined in Ref. 2 should ensure high tensile strength.  

 Wing skins of composite material consist of many different lay-ups and thickness configurations 

at locations determined typically by stress analysis. Such a location encounters high stress due to lift and 

drag forces on an aircraft wing. We discretize the region around the aerofoil using these analysis 

locations. There is no established procedure for breaking up the structure into panels for probabilistic 

analysis. In general, a probabilistic model panel within a structure is chosen to represent an area such 

that the internal stress and material strength are approximately constant over that area. There could be 

several hundred panels in a probabilistic analysis model, and a baseline thickness must be selected for 

each panel.  

 In general, the wing skins account for fifty to seventy percent of a wing’s structural weight. If 

the thickness is increased at a location, the weight of that location will increase. If the location thickness 

is decreased while the applied load is kept constant, the internal stress will increase and the reliability of 

that location will decrease. The choice of thickness for each location is essential for an optimum wing 

box design balancing weight and reliability requirements.  

 In this paper we develop mathematical programming models to solve the following problems: (1) 

minimization of wing weight for a given reliability by selecting a thickness for each panel, (2) 
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maximization of wing reliability for a given weight by selecting a thickness for each panel, and (3) 

investigation of tradeoffs between reliability and weight. 

Recent related work includes that of Luo (Ref. 3), Pettit (Ref. 4), and Padmanabhan (Ref. 5), 

who apply optimization methods to generate designs that are both more reliable and more robust to 

uncertainties than the conventional designs. Pettit further presents a framework for wing design 

integrating structural and load analysis, reliability analysis, and optimization with most-probable point 

estimation (Ref. 6). Sobieszczanski-Sobieski uses an optimization approach for the design of an aircraft 

wing structural box with hundreds of design variables and thousands of constraints (Ref. 7). 

Here we first formulate models for solving the above problems. Second, we present a solution 

approach that combines ideas from finite-element modeling, dynamic programming, and multi-objective 

programming. Third, we discuss the models. Finally, we offer future directions for research.   

2. Formulation of the optimization problem 

 To illustrate our approach, relationships among reliability, thickness, and weight will be 

developed from Lear Fan 2100 Jet data provided to Northrop Grumman Commercial Aircraft Division 

(NGCAD) by the Federal Aviation Administration (FAA). We first note that weight is a product of area, 

thickness, and density. For each wing location, weight increases linearly as thickness is increased since 

the area and density of a location are constant. Baseline thickness is the standard thickness determined 

by deterministic structural analysis for finding the actual thickness at a particular location of the wing. 

Actual thickness is the actual measurement of the thickness at a particular location. For example, the 

baseline thickness of the first location for the Lear Fan 2100 is 0.2 inches. Therefore, the actual 

thickness corresponding to the ratio 0.95 is 0.2 times 0.95, or 0.19 inches. 
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  Figure 1 represents a typical thick box beam wing structure, containing three spars and 

numerous ribs. This wing box structure usually serves as a fuel tank as well. A wing is divided into three 

major components upper skin, lower skin and substructure. The wing model for the upper skin is 

illustrated in Figure 2.  
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Figure 1. Typical wing structure 
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Figure 2. Configuration of a wing skin 
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Next we assume that internal stress decreases with an increase in thickness. It follows that 

reliability increases with a decrease in internal stress, which implies an increase in thickness and weight. 

In particular, wing reliability can approach 1.0 when the thickness of a wing panel is extremely thick 

and heavy. However, reliability grows nonlinearly with increasing thickness as depicted in Figure 3 for 

panel 1 of the Lear Fan 2100 Jet. The reasons for this nonlinear relationship are that the reliability is 

determined from the joint probability of two nonlinear functions and that the failure mode of this 

location is buckling, which is a nonlinear function of thickness.  
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Figure 3. Relationship between reliability and thickness 
 

Now for panel i = 1,2,3,...,n, let  denote its thickness, with a resulting reliability it ( )r ti and 

weight . Then for a sufficiently large n determined by the deterministic structural analysis the total 

reliability and weight for the upper skin can be estimated by the expressions  

( )w ti

                                                    total weight =     (1) ( )∑
=

n

i
itw
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                                                total reliability = ,                (2) ( )r ti
i

n

=
∏
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where ti is associated with the panel i. Assuming the ti are assumed to be independent of each other, we 

arrive at following problem formulations. 

2.1 Weight minimization problem (W): Our first objective is to minimize the total weight of a 

wing within a specified minimum reliability level 0 < r0 < 1 by selecting a thickness for each wing 

panel. From equations (1) and (2), the weight problem (W) can be formulated as the mathematical 

program 
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2.2 Reliability maximization problem (R): The second objective is to maximize wing 

reliability for a specified upper weight limit w  > 0 by selecting a thickness for each wing panel. The 

reliability problem (R) is                                                                 

0
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2.3 Tradeoff between weight and reliability (P): The third objective is a tradeoff between 

reliability and weight requirements. Aircraft engineers try to build both reliable and light aircraft. 

Unfortunately, the goals of maximizing reliability and minimizing weight conflict with each other since 

increasing reliability increases thickness thereby increasing weight as opposed to decreasing weight, 

which decreases thickness thereby decreasing reliability. We formulate a multi-objective problem (P) 

that yields a tradeoff known as a Pareto optimal solution illustrated in Winston (Ref. 8), which is a 

nondominated feasible point. More precisely, a feasible point  to (P) is nondominated if and )t,...,(t *
n

*
1
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only if there does not exist another feasible point )t,...,t( n1  such that )t,...,t( n1  is at least as good as 

 for every objective function of (P) and is strictly better than  for at least one objective 

function. We write this multiple-objective Pareto optimization problem (P) as  
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3. Dynamic programming solution approach 

In our problems, each major component upper skin, lower skin and substructure has ten different 

panels totaling to thirty panels across the wing structure. Figures 4, 5, and 6 illustrate the panels to be 

analyzed for these three components of aircraft wing. 
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Figure 4. Upper skin 
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Figure 5. Lower skin. 
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Figure 6. Substructure 
 

For each panel, fourteen different thicknesses were chosen after a thorough investigation 

regarding their significance to achieving a reliable aircraft wing design. These fourteen different 

thicknesses are assumed to represent adequately an entire panel for the design purposes. Material 

strength, operational damage, manufacturing defects, moisture absorption, and gust were incorporated 
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into the NGCAD probabilistic design program to give a predicted structural reliability of the wing box, 

per thickness, for each panel. Table 1 shows the resulting reliability and weight associated with 

different thicknesses for panel one with baseline thickness of 0.2 inches. 

 
Table 1. Reliability and weight of panel 1 for different thicknesses 

 

# Thickness ratio Reliability Weight (lbs.) 

 1 1.20 0.999999995672 5.06 

 2 1.15 0.999999984471 4.85 

 3 1.10 0.999999937039 4.64 

 4 1.05 0.999999759895 4.43 

 5 1.00 0.999998691860 4.22 

6 0.95 0.999992878710 4.01 

 7 0.90 0.999956177500 3.80 

 8 0.87 0.999847181000 3.67 

 9 0.85 0.999757110000 3.59 

10 0.84 0.999648429000 3.54 

11 0.83 0.999522932000 3.50 

12 0.82 0.999318171000 3.46 

13 0.81 0.998962640000 3.41 

14 0.80 0.998571180000 3.38 
 

Problems (W) and (R) are generalized resource allocation problems with a single constraint. 

Such problems can be efficiently solved by dynamic programming when the variables are discrete (Ref. 

9). Therefore, we use this method to find approximate solutions to these problems by limiting ourselves 
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to a finite number of thickness ratios for each panel as illustrated in Table 1 for panel 1. We then 

illustrate our approach by solving problem (W). The dynamic programming formulation corresponding 

(W) is shown in Table 2. 

 

Table 2. Features of dynamic programming formulation corresponding (W) 

Number of stages 30 

States per stage Unallocated reliability  

Decision variables Thickness, t 

Return variables Weight, w 

 

Since our example has thirty stages, with each stage having fourteen possible thicknesses, to 

make problem (W) computationally tractable we decompose it into the following M subproblems for 

suitably chosen M and n1, …, nM-1, nM = n: 
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Similarly we decompose problem (R) into  
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                        Subproblem (R1) Subproblem (R2) … Subproblem (RM) 
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The above decompositions are established in the following two results proved in Chung (Ref. 10).  
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solves (R). 

4. 

0.99999, n = 30, and M = 6. We solve (W) by decomposing 

it as shown in Table 3. Thus (W) becomes  

(E1)   + + + + + ] 

           s.t.  

Example  

Result 1 is now used to solve the minimizing weight problem with thirty locations and fourteen 

different thicknesses per location. Let r0  = 
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Table 3. Decomposition of example 

Subproblems Locations 

r0 . 

(W1) locations 1 to 5 

(W2) locations 6 to 10 

(W3) locations 11 to 15 

(W4) locations 16 to 20 

(W5) locations 21 to 25 

(W6) locations 26 to 30 
  

The minimum weights for each subproblem will be calculated for various reliability levels.  

Table 4 and Table 5 show partial data for subproblem (W1) and (W2) respectively, where the reliability 

varies from 0.999 to 0.9999999. After each subproblem is solved, the minimum weights for 

subproblems (W1) & (W2) is used to compute the minimum weights for the combined problems by 
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varying the reliability levels. In other words, the minimum weight for locations 1 - 10 is obtained for 

various reliabilities. Table 6 shows some of these minimum weights. This logic is also applied to (W3) & 

(W4), as well as (W5) & (W6). For subproblems (W1) & (W2), (W3) & (W4), and (W5) & (W6), 290, 255, 

and 80 

roblem ( ) for locations 1 – 30 becomes   

                                     (E2)    ] 

                                                     s.t.  

minimum weights are calculated, respectively.  

Finally, the complete p E1

0jr ≥
minimize [ ( )3 *

1 jj
w r

=
∑

3

1
j

j
r

=
∏ ≥ r0 , where r0 = 0.99999.    

We have only three stages associated with subproblems (W1) & (W2), (W3) & (W4), and (W5) & 

(W6). Dynamic programming will be applied to these three subproblems. To illustrate, we give the data 

for (W1) & (W2). 

Table 4. Choices of subproblem (W1) 

Choices Reliability level Optim lbs.) al weight (

 1 0.9999054 30.70230 

 2 0.9999109 30.80540 

 3 0.9999130 30.82888 

... ... ... 

83 0.99999996 39.21233 

84 0.99999997 39.62026 
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Table 5. Choices of subproblem (W2) 

Choices Reliability level Optim (lbs.) al weight 

 1 0.99994428 51.7205 

 2 0.9999456 51.7567 

 3 0.9999462 51.8049 

... ... ... 

211 0.99999999993 71.1159 

212 1.00000000000 74.3483 
 

Table 6. Results of subproblems (W1) and (W2) 

Choices Reliability Weighlevel r1  t ( )w r*
1  (lbs.) 

  1 0.999999980 114.59 

  2 0.999999979 108.33 

  3 0.999999976 108.12 

... ... ... 

289 0.999851000 82.46 

290 0.999849000 82.42 
 

ly select 

this design. The maximum reliability problem (R) can be similarly solved utilizing Result 3.2.  

The resulting total minimal weight is 249.93 lbs. Table 7 shows the choices for each panel. 

Three different designs yield a minimum wing weight without violating the reliability constraint. The 

maximum reliability among these three selections is 0.9999905. An engineer would undoubted
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Table 7. Choices for each panel 

 Choice 1 Choice 2 Choice 3 

Panel Thickness (inches) Thickness (inches) Thickness (inches) 

1 1.10 1.05 1.05 

2 1.05 1.05 1.10 

3 0.90 0.95 0.90 

4 0.90 0.90 0.90 

5 0.95 0.95 0.95 

6 0.87 0.87 0.87 

7 0.87 0.87 0.87 

8 0.87 0.87 0.87 

9 0.85 0.85 0.85 

10 0.87 0.87 0.87 

11 0.80 0.80 0.80 

12 0.80 0.80 0.80 

13 0.80 0.80 0.80 

14 0.80 0.80 0.80 

15 0.80 0.80 0.80 

16 0.80 0.80 0.80 

17 0.80 0.80 0.80 

18 0.80 0.80 0.80 
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19 0.80 0.80 0.80 

20 0.80 0.80 0.80 

21 0.80 0.80 0.80 

22 0.80 0.80 0.80 

23 0.80 0.80 0.80 

24 0.80 0.80 0.80 

25 0.80 0.80 0.80 

26 0.80 0.80 0.80 

27 0.80 0.80 0.80 

28 0.80 0.80 0.80 

29 0.80 0.80 0.80 

30 0.80 0.80 0.80 
 

5. 

o o e o

ir ), um as discussed in Winston (Ref. 8). 

The pa

Tradeoffs 

T  s lve problem (P), we solv (W) f r various r0  as in the above section to give a minimum 

weight 0w ( r0 ). Then each such pa ( 0w ( r0 r0 ) is a Pareto optim

rameterized set of problems 0 0{P( ):0 1}r r< <  is thus  

                                       ] 

                                                               s.t. , 0 1 .r r r≥ < <∏  

shown in Figure 7, which is called the tradeoff curve in that reliability region. Any point on the curve is 

0
         0

{P( )}  minimize
jr

r
≥

 [ ( )3 *

1 jj
w r

=
∑

3
0 0

1
j

j =

Solving 0{P( )}r  for values of r0  in [0.9999, 0.99999999] yields the Pareto optimal solutions 

 16



 

nondominated for (P). Among these possible solutions, one could be selected according to further 

relevant criteria besides minimum weight and maximum reliability. 
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Figure 7. Tradeoff curve 
 

6. Conclusions 

A discrete dynamic programming approach was presented for obtaining the optimal thickness of 

aircraft wings. The criteria were (1) minimizing a total wing’s weight while satisfying the FAA safety 

regulations (reliability requirements), (2) maximizing a wing’s reliability within weight limitations, and 

(3) determining tradeoff designs between these two criteria. An example was presented to illustrate our 

method. There are two principle directions for further research. First, a precise analytical approach for 

determining the number and position of the wing locations could be developed. Second, despite Results 

3.1 and 3.2, the memory requirements and number of calculations are extremely large. Therefore, one 

should consider implementing the dynamic programming approach in a parallel processing environment. 
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