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Abstract

The renowned nursing shortage has attracted much attention from national level law makers, state legislatures,

commercial organizations, and researchers due to its direct impact on the quality of patient care. High workloads

and undesirable schedules are two major issues that cause nurses’ job dissatisfaction. The focus of this paper is to

find nondominated solutions to an integrated nurse staffing and assignment problem that minimize two criteria, which

are excess workload on nurses and nurse staffing cost. Initially, we present a stochastic integer programming model

with an objective to minimize excess workload subject to a hard budget constraint. Accordingly, we develop three

solution approaches, which are Benders’ decomposition, Lagrangian relaxation with Benders’ decomposition, and

nested Benders’ decomposition. We vary the maximum allowable staffing cost in the budget constraint in Benders’

decomposition and nested Benders’ decomposition, and we relax the budget constraint and penalize staffing cost in the

Lagrangian relaxation with Benders’ decomposition approach. We collect nondominated bicriteria solutions from the

algorithms. We demonstrate the effectiveness of the model and algorithms with a computational study based upon data

from two medical-surgical units at a Northeast Texas hospital. A float assignment policy is also evaluated. Finally,

areas of future research are discussed.

Keywords: nurse staffing, nurse rescheduling, nurse rerostering, nurse scheduling, nurse assignment, stochastic

programming, bicriteria, Benders’ decomposition, Lagrangian relaxation, nested Benders’ decomposition.
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1 Introduction

The renowned nursing shortage has attracted much attention from national level law makers, state legislatures, com-

mercial organizations, and researchers due to its direct impact on the quality of patient care [4, 12, 26, 36, 71]. The

decline in enrollments in registered nurse degree programs, the increasing average age of working registered nurses,

nurse burnout, and job discontentment have also intensified the nursing shortage problem [4]. High workloads and

undesirable schedules are two major issues that cause nurses’ job dissatisfaction [4, 27, 70]. Powers [61] observed

that excessive workload decreases the quality of patient care. Many states have taken actions to cope with the shortage

to ensure patient safety. For example, California has regulated mandatory nurse-to-patient ratios [23, 78]. To satisfy

patient care demands, hospital administrations are obligated to employ other expensive staffing resources, such as

part-time nurses, agency nurses, overtime nurses, etc. Since nurse staffing costs account for over 50% of a hospi-

tal expenditures [42], healthcare costs are continuously increasing driven by an ongoing severe shortage of nurses.

Consequently, nurse staffing has become one of the most attractive research areas.

A nurse scheduling problem involves creating a schedule for nurses. The schedule determines nursing staffs that

work for a shift on a given day subject to patient care demands, budget, nurses’ requirements, hospital policies,

and legal regulations. We refer to nurse scheduling or nurse rostering as a mid-term scheduling, which occurs 4-

6 weeks before a shift. A nurse supervisor forecasts patient demands over a time horizon. The supervisor uses a

census matrix to determine the number and level of nurses needed. Nurses are allowed to request their preferred

schedules. Then, the supervisor creates a schedule and posts it two weeks in advance to a shift. Cheang et al. [24]

distinguished three major models of nurse scheduling, which are scheduling a nurse to work on a certain shift on a

certain day, on a certain task, and on a certain shift pattern. Most nurse rostering literature can be found in Burke et

al. [20], Cheang et al. [24], and Sitompul and Randhawa [69]. They summarized the nurse rostering model and the

solution methodologies from the 1960’s until 2004. Nurse rostering models and solution approaches included linear

and integer programming [1, 32, 37, 40, 46, 47, 48, 65, 72, 74, 75, 76], goal programming/multi-criteria approaches

[6, 7, 13, 21, 25, 34, 39, 51, 59, 60], artificial intelligence methods [25, 45, 55, 56, 67], heuristics [5, 17, 43], and

metaheuristic, i.e., simulated annealing [18, 38], tabu search [19, 29, 30], genetic algorithms [2, 3, 22, 41].

We refer to nurse staffing, nurse rescheduling, or nurse rerostering as a short-term nurse scheduling that occurs

90-120 minutes prior to an upcoming shift. Given a mid-term nurse schedule, the nurse supervisor reviews the nurse

schedules based upon activities of the previous shift, activities in other units, and either a census matrix or a patient

classification system. When a unit is understaffed, the supervisor recruits additional nurses to cover patient care

demands. On the other hand, if the supervisor has surplus nurses, then they either float to other units or take the day

off without pay. Based upon nurse staffing, a charge nurse assigns each patient to a nurse at the beginning of a shift.

Workload balance is one important consideration for nurse assignment. We refer to a nurse’s workload as the amount

of time required to care for her patients over a time period, and excess workload is the difference between the workload

and the time available for care.

Nurse staffing has a direct impact on nurse-to-patient assignment, nurse workload, and the quality of care for

patients [4, 44]. Thus far, nurse staffing models have only considered nurse scheduling and ignored nurse-to-patient

assignment. Taking patient information into consideration, models will be able to meet patients’ needs while utilizing

nursing staffs efficiently. Furthermore, most of the existing models proposed in the optimization literature are deter-



ministic, which exclude uncertainty in patient care. Patient care is stochastic in nature due to its fluctuations during

the shift and its enormous variation. In this paper, we accommodate these issues that have been neglected in academic

literature within our model. We develop a new integrated nurse staffing and assignment model with a stochastic integer

programming method to capture randomness in patient care.

The structure of the remaining paper is organized as follows. In Section 2, we describe nurse staffing and assign-

ment with relevant literature. In Section 3, we present a stochastic programming formulation for the new integrated

nurse staffing and assignment model. The underlying assumptions, decision variables, and parameters, which are used

in the model are also described in Section 3. In Section 4, we present three alternative solution approaches, which

are Benders’ decomposition, Lagrangian relaxation with Benders’ decomposition, and nested Benders’ decomposi-

tion. As we focus on finding solutions that minimize both excess workload and staffing cost objectives, we vary the

maximum allowable staffing cost in the hard budget constraint in the Benders’ decomposition and the nested Benders’

decomposition approaches. In the Lagrangian relaxation with Benders’ decomposition approach, we relax the budget

constraint and penalize the staffing cost in the objective function. We use our algorithm approaches to find several bi-

criteria nondominated nurse staffing and assignment solutions. In Section 5, computational results are provided based

upon real data from a Northeast Texas hospital. Many solutions with different tradeoffs between staffing cost and

excess workload for nurses (or implicit quality of patient care) are presented to help the nurse supervisor determine

the right staffing policy for an upcoming shift. Moreover, we evaluate a floating nurses policy. Finally, we discuss

conclusions and directions for future research in Section 6.

2 Problem Description and Literature Review

Nurse staffing is an important issue for every hospital for several reasons. In addition to its direct effect on patient

care and hospital budgeting, nurse staffing is a routine performed daily by almost all units throughout a year. In

most hospitals, nurse staffing is performed on three shifts per weekday, and these shifts include a day shift (7:00-

15:00), an evening shift (15:00-23:00), and a night shift (23:00-7:00). Two shifts occur per weekend day, which

are a day shift (6:00-18:00), and a night shift (18:00-6:00). Nurse staffing typically occurs 90-120 minutes prior to

a shift. A nurse supervisor reevaluates a mid-term staffing based upon daily disruption from nurses, patients, and

hospital administrations. The nurse supervisor considers the activities of the previous shift, activities in other units,

activities in emergency rooms, activities in doctors’ offices, and either a census matrix or a patient classification

system. Uncertainty from nurses such as absenteeism, sick leave, or taking a personal day off is also taken into

consideration. A few hours before a shift, a nurse supervisor has most patient information including patient diagnoses,

patient acuities, census data, patient rooms, admission dates, estimated discharge dates, and special requirements for

specialty nurses.

We consider scheduled nurses, float nurses, PRN nurses, overtime nurses, and agency nurses in nurse staffing. We

refer to scheduled nurses or regular nurses as nurses who are scheduled to work for particular units in a given shift on

a given day. PRN nurses are called as needed to work when there is a shortage in a shift. They primarily work on one

unit. After the schedule is made, they can schedule themselves to work if there are holes needed to be filled. On-call

nurses cannot go further than about a 30-mile radius from a hospital. They must carry a pager, and be ready to go



to the hospital when they are called. If they are called to work, they will get paid the full amount for their services.

Given that on-call nurses usually work in gastrointestinal laboratories, operating rooms, or other special areas, and

they are not assigned to patients, we exclude on-call nurses from our model. Agency nurses are available to call in

from agency nurse services. Overtime nurses are nurses who work in the current shift and will work consecutively

in the next shift. Float nurses are nurses who are scheduled to work in their home units or to a float pool. When

help is needed, float nurses are reassigned to the unit that is short for a shift. Typically, they float from overstaffed

units to understaffed units to cover patient care demands. Float nurses are increasingly used to ensure patient safety in

hospital units. However, float nurses suffer from unfamiliarity with unit environments, unit routines, staffs, and patient

complications [66].

Based upon the mid-term schedule, the nurse supervisor reviews the scheduled nurses and up-to-date nurse infor-

mation. If there are more nurses than needed, she lets voluntary surplus scheduled nurses choose one of two following

options: float to other units or take that day off without pay. As a nurse takes a day off, one of the vacation, personal,

holiday, or unpaid leave days is used. Typically, a nurse prefers her shift canceled over being floated. When there is a

shortage of nurses for the upcoming shift, the nurse supervisor recruits additional nurses from the following priorities:

1. voluntary excess nurses from other units,

2. float nurses,

3. PRN nurses,

4. mandatory overtime nurse,

5. agency nurses.

Given that excess nurses volunteer to work in other units, it is reasonable to consider them as float nurses since

this information is known in advance. Patient classification systems are the most sophisticated technology for nurse

staffing. These systems group patients into one of several categories. They estimate how many times certain tasks will

be performed in caring for a patient in each category. Using these estimates and the expected time required to perform

each task, the systems determine the amount of time to care for a typical patient. As patients are admitted into the unit,

the system classifies these patients, and the nurse supervisor use the estimated patient care to determine how many

nurses are needed for the shift. As a patient’s condition changes, he may be given a new patient classification.

According to the optimization literature, most research on nurse staffing has emerged recently. Abernathy et

al. [1] integrated nurse scheduling and nurse staffing. Warner et al. [74] addressed a need for short-term staffing

when unexpected absences occur. Siferd and Benton [68] developed a stochastic model based upon the patients in

a unit to determine how many nurses are required for the shift. Nevertheless, the different sets of skills among the

nurses are ignored. Bard and Purnomo [8, 9, 10] presented deterministic integer programming models for daily nurse

rescheduling. Moz and Pato described nurse rerostering as a multi-commodity flow problem with an objective to

minimize the difference between the original and new schedules [48]. They also constructed a genetic algorithm to

solve this problem [49]. Walts and Kapadia [73] presented a patient classification system and optimization model while

Yankovic and Green [79] used a queueing model to determine the level of staffing to meet the required workload level.

Vericourt and Jennings [28] employed a queuing model to investigate nurse-to-patient ratios mandated by California,



and they proposed two heuristic staffing policies. They also described that hospitals with no nurse-to-patient ratio

policy can provide consistently good quality of care for every unit. Wright et al. [78] developed a bicriteria nonlinear

integer programming model to evaluate the impact of nurse-to-patient ratios on schedule cost and nurse desirability.

Recently, float nurses have been widely used due to the shortage of nurses. It involves allocation of nurses from

one unit or from a float pool of nurses to another unit to meet patient care demand. Trivedi and Warner [72] developed

a branch and bound algorithm for allocating nurses in a float pool. Wright et al. [77] presented nurse rescheduling and

their model also staffed cross-trained float pool nurses to an understaffed unit. The literature included only allocating

nurses from a float pool to one of several units in a hospital, none of which considered floating nurses from one unit

to other units.

Given a set of nurses from nurse staffing, a charge nurse assigns each patient to a nurse at the beginning of a

shift, which is referred as nurse assignment. In general, nurse assignment is performed approximately 30 minutes

prior to a shift. Modern patient classification systems partition the set of patients into groups, and each group is

assigned to a nurse [58]. Mullinax and Lawley [50] developed a deterministic integer programming model that assigns

patients to nurses in a neonatal intensive care unit. Rosenberger et al. [64] presented a deterministic model for patient

assignment. Punnakitikashem et al. [63] developed a stochastic programming to assign nurses to patients with an

objective to minimize excess workload on nurses. Nevertheless, no one has ever integrated the nurse staffing with the

nurse assignment.

2.1 Contributions

This paper focuses on integrating nurse staffing and assignment. Since short-term nurse staffing is considered, it

is unnecessary to account for nurse preferences, which are normally included in mid-term scheduling. We present

an extension of the stochastic programming model for patient assignment (SPA) from Punnaktikashem et al. [63]

by incorporating the nurse staffing decision into the assignment model. Our model determines a staff and patient

assignments for nurses that minimize their excess workload while satisfying a budget and considering uncertain patient

care. By varying the maximum allowable staffing cost, we can search for nondominated solutions that minimize both

excess workload and cost. The model can be viewed as either a general resource allocation model or a personnel

scheduling model, which can be employed in other applications.

The contribution of this paper includes the first model to integrate short-term nurse staffing and assignment. The

model provide good solutions for several units simultaneously. The model is also a stochastic program addressing

several important issues that are ignored in academic literature and patient classification systems.

• Patient Uncertainty: Traditional nurse assignment models ignore uncertainty. Because of the enormous variance

in patient care, the stochastic programming model that considers uncertainty provides more robust solutions.

• Fluctuations in Patient Care: Traditional models ignore fluctuations in patient care during the shift. Some

patients, such as expectant mothers, require minimal care for part of a shift but require significant care at other

times during the shift. The stochastic programming model considers when patients require care.

• Differences in Nurses: Traditional models ignore the different skills of the nurses. Many of them use a targeted

amount of time to perform certain tasks instead of an average time to complete the task. Some targets may be



realistic for some nurses but unrealistic for others. The stochastic programming model considers the skills of

each nurse individually.

• Patient Information: Traditional nurse staffing models ignore patients information. Most of them consider only

a number of nurses needed or patient care demand by hours. The stochastic programming model considers each

individual patient, and determines a patient’s required care from a patient’s diagnosis and location.

In addition to the formulation of a new integration of nurse staffing and assignment, this paper develops three algo-

rithmic approaches, which are (1) Benders’ decomposition, (2) Lagrangian relaxation with Benders’ decomposition,

and (3) nested Benders’ decomposition, to solve it. Unlike the traditional nurse staffing models with single objective

function, this paper focuses on finding solutions that minimize two criterias, which are excess workload on nurses and

staffing cost. Accordingly, we alter the right-hand side to the budget constraint in Benders’ decomposition and nested

Benders’ decomposition. We relax the budget constraint and penalize staffing cost in the objective function resulting

in the new Lagrangian relaxation and Benders’ decomposition approach. Moreover, instead of providing only a single

solution like the traditional models, this paper focuses on collecting nondominated solutions in the algorithms to pro-

vide a nurse supervisor several quality nurse staffing and assignment solutions. We demonstrate the efficiency of these

approaches with a computational study based upon real data from two medical-surgical units at the Northeast Texas

hospital. Lastly, the Lagrangian relaxation with Benders’ decomposition algorithm is used to evaluate a float nurse

assignment policy. Our model allows allocation of nurses from one unit to other units. We demonstrate how a nurse

administrator can use our model to assess float assignment policies between floating nurses from one unit to another

unit versus not floating them. In summary, this paper fulfills nurse staffing future directions pointed out by Burke et al.

[20] in the following issues: constructing a multi-criteria model, decomposing large problems into smaller problems,

and developing and evaluating a model based upon real world data.

3 Stochastic Programming Model

In this paper, we made the following reasonable assumptions:

Assumption 1: The number of nurses in each type who are available to provide services to each hospital unit is known.

Assumption 2: The qualifications and specialties of nurses in each type are known. A list of qualified nurses who can

provide care to each patient is known prior to staffing.

Assumption 3: The cost function is linear.

In the model, let J be the set of units and P be the set of patients. Based on a mid-term schedule, let N denote the

set scheduled nurses, including full-time nurses and float nurses assigned to work for a shift. Let R, O, and A be the

sets of PRN nurses, overtime nurses, and agency nurses for a shift, respectively. Let N be the set all nurses including

full-time nurses, float nurses, PRN nurses, overtime nurses, and agency nurses for a shift; that is, N = N ∪R∪O∪A.

For each unit j ∈ J , let P (j) be the set of patients who is in unit j. For each unit j ∈ J , let N(j) be the set of

full-time nurses and float nurses who are scheduled to work for a shift in unit j. Let R(j), O(j), and A(j) be the sets

of PRN nurses, overtime nurses, and agency nurses qualified to work in unit j, respectively. For each patient p ∈ P ,

let N(p), R(p), O(p), and A(p) be the sets of scheduled nurses, PRN nurses, overtime nurses, and agency nurses

who can be assigned to patient p, respectively. For each patient p ∈ P , let N(p) be the set of nurses which can be



assigned to patient p. For each nurse n ∈ N, let P (n) be the set of patients that can be assigned to nurse n; that is,

P (n) = {p ∈ P |n ∈ N(p)}.

For each unit j ∈ J , and nurse n ∈ N(j), let scheduled nurse variable

Ynj =





1 if a scheduled nurse n ∈ N(j) is assigned to work for a shift for unit j ∈ J ,

0 otherwise.

For each nurse n ∈ N , let cancellation variable

Y c
n =





1 if a scheduled nurse n ∈ N is canceled for her shift,

0 otherwise.

For each unit j ∈ J , and nurse n ∈ R(j), let PRN staffing variable

Y r
nj =





1 if a PRN nurse n ∈ R(j) is assigned to work for a shift in unit j ∈ J ,

0 otherwise.

For each unit j ∈ J , and nurse n ∈ O(j), let overtime staffing variable

Y o
nj =





1 if an overtime nurse n ∈ O(j) is assigned to work for a shift in unit j ∈ J ,

0 otherwise.

For each unit j ∈ J , and nurse n ∈ A(j), let agency staffing variable

Y a
nj =





1 if an agency nurse n ∈ A(j) is assigned to work for a shift in unit j ∈ J ,

0 otherwise.

There are costs associated with hiring nurses. For each unit j ∈ J and each nurse n ∈ N(j), let cs
nj be the cost

of staffing full-time nurse or float nurse n to work in unit j. For each nurse n ∈ N , let cc
n be the cost of canceling

scheduled nurse n. For each unit j ∈ J and each nurse n ∈ R(j), n ∈ O(j), and n ∈ A(j), let cr
nj , co

nj , and ca
nj

be the cost of hiring PRN nurses, overtime nurses, and agency nurses for unit j, respectively. Let B be a budget for

hiring nurses for all units on the shift. All costs and the budget are given as parameters to the model.

For each patient p ∈ P , and nurse n ∈ N(p), let assignment variable

Xpn =





1 if patient p ∈ P is assigned to nurse n ∈ N(p),

0 otherwise.

A shift is divided into a set of time periods T . Let Ξ be a set of random scenarios, and for each ξ ∈ Ξ, let φξ be the

probability that scenario ξ occurs. For each time period τ ∈ T and each nurse n ∈ N, let Aξ
τni be the total workload

variable representing the amount of workload assigned to nurse n between time durations mτni and mτn(i+1) in

scenario ξ ∈ Ξ.

We model the penalty for assigning workload to nurses as a monotonically nondecreasing piecewise linear convex

function with k pieces. Let ατni denote the marginal penalty of Aτni for 1 ≤ i ≤ k. Let mτn(k+1) be ∞. The

penalty is monotonically nondecreasing meaning that 0 = mτn1 < . . . < mτnk and 0 ≤ ατn1 < . . . < ατnk. Since



the penalty function is nondecreasing and piecewise linear convex, an overworked nurse receives more penalty than

a nurse with less workload. Thus, the penalty function balances the workload for all nurses. One special case of the

penalty function that we used in this paper has k = 2, ατn1 = 0, ατn2 = 1, and mτn2 equal to the duration of the

time period τ for each τ ∈ T and each n ∈ N. We refer to the value of variable Aξ
τn2 as the excess workload on nurse

n in time period τ and scenario ξ. The objective of our model in the computational results in Section 5 is to minimize

the expected excess workload on nurses.

Given that the patient care is stochastic in nature, the patient care may vary dramatically throughout the shift. For

each patient p ∈ P , each scenario ξ ∈ Ξ, and each t ∈ T , let dξ
tp denote the amount of direct care required by patient

p in time period t. For each patient p ∈ P , each scenario ξ ∈ Ξ, and each time period t ∈ T , let gξ
tp denote the amount

of indirect care required by patient p at the beginning of time period t until the end of the shift. For each pair of time

periods (t, τ) ∈ T × T , where t ≤ τ , and each nurse n ∈ N , let indirect workload variable Gξ
tτn be the total indirect

care that can be performed during or after time period t and is performed in time period τ by nurse n. The amount

of direct and indirect care the patients require in each time period under each scenario are given as parameters to the

model.

The extensive form of the Stochastic Integrated Nurse Staffing and Assignment Model (SINSA) can be formulated

as:



min
∑

ξ∈Ξ

∑

n∈N

∑

τ∈T

k∑

i=1

φξατniA
ξ
τni, (1)

subject to
∑

j∈J

∑

n∈N(j)

cs
njYnj +

∑

n∈N

cc
nY c

n+

∑

j∈J

∑

n∈R(j)

cr
njY

r
nj +

∑

j∈J

∑

n∈O(j)

co
njY

o
nj+

∑

j∈J

∑

n∈A(j)

ca
njY

a
nj ≤ B, (2)

∑

j∈J(n)

Ynj + Y c
n = 1 ∀n ∈ N, (3)

Ynj ≥ Xpn ∀n ∈ N(p), p ∈ P (j), j ∈ J, (4)

Y r
nj ≥ Xpn ∀n ∈ R(p), p ∈ P (j), j ∈ J, (5)

Y o
nj ≥ Xpn ∀n ∈ O(p), p ∈ P (j), j ∈ J, (6)

Y a
nj ≥ Xpn ∀n ∈ A(p), p ∈ P (j), j ∈ J, (7)

Ynj ∈ {0, 1} ∀n ∈ N(j), j ∈ J, (8)

Y c
n ∈ {0, 1} ∀n ∈ N, (9)

Y r
nj ∈ {0, 1} ∀n ∈ R(j), j ∈ J, (10)

Y o
nj ∈ {0, 1} ∀n ∈ O(j), j ∈ J, (11)

Y a
nj ∈ {0, 1} ∀n ∈ A(j), j ∈ J, (12)

∑

n∈N(p)

Xpn = 1 ∀p ∈ P, (13)

∑

p∈P (n)

gξ
tpnXpn =

|T |∑
τ=t

Gξ
tτn ∀t ∈ T, n ∈ N, ξ ∈ Ξ, (14)

∑

p∈P (n)

dξ
τpnXpn +

τ∑
t=1

Gξ
tτn =

k∑

i=1

Aξ
τni ∀τ ∈ T, n ∈ N, ξ ∈ Ξ, (15)

Xpn ∈ {0, 1} ∀p ∈ P (n), n ∈ N, (16)

Gξ
tτn ≥ 0 ∀t, τ ∈ T, t ≤ τ, n ∈ N, ξ ∈ Ξ, (17)

mτn(i+1) −mτni ≥ Aξ
τni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, n ∈ N, ξ ∈ Ξ. (18)

Objective function (1) is to minimize expected excess workload on nurses. Constraint (2) is the budget constraint,

which ensures that the cost of hiring and canceling nurses does not exceed the budget. For each scheduled nurse

n ∈ N , the cancelation constraints in set (3) indicate that either she is assigned to work or her shift is canceled.

Constraints (4)-(7) are linking constraints between staffing and assignment decision variables. If a nurse is assigned

to a patient, then she must be scheduled to work for a shift. Constraints (8)-(12) require the staffing variables be

binary. The nurse assignment constraints in set (13) ensure that every patient is assigned to a nurse. For each nurse



n ∈ N, the indirect care constraints in set (14) determine the total indirect care performed from the beginning of time

period t until the end of the shift. For each time period τ ∈ T , the total workload constraints in set (15) define the

total workload of nurse n ∈ N containing both direct care and indirect care. Constraint set (16) includes the binary

constraints for the assignment variables. The nonnegativity constraints in set (17) require the indirect care variables

be nonnegative. The upper and lower bounds on the marginal workload variables are provided by constraints (18).

For each τ ∈ T, n ∈ N, ξ ∈ Ξ, the total workload variable Aξ
τnk has no upper bound because mτn(k+1) = ∞. For

constraints (13)-(18) related to nurse assignment, the unit index j can be neglected because the unit is embedded in

the patient information.

The deterministic equivalent model for integrated nurse staffing and assignment can be written as follows:

min Q(X), (19)

subject to

(2)-(13) and (16). (20)

where Q(X) is the expected second-stage recourse function defined as:

Q(X) = EξQ(X, ξ), (21)

and Q(X, ξ) = min
∑

n∈N

∑

τ∈T

k∑

i=1

ατniA
ξ
τni (22)

subject to

∑

p∈P (n)

gξ
tpnXpn =

|T |∑
τ=t

Gξ
tτn ∀t ∈ T, n ∈ N, (23)

∑

p∈P (n)

dξ
τpnXpn +

τ∑
t=1

Gξ
tτn =

k∑

i=1

Aξ
τni ∀τ ∈ T, n ∈ N, (24)

Gξ
tτn ≥ 0 ∀t, τ ∈ T, t ≤ τ, n ∈ N, (25)

mτn(i+1) −mτni ≥ Aξ
τni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, n ∈ N. (26)

4 Algorithmic Approaches

In this section, we present decomposition approaches for solving SINSA, which are Benders’ decomposition, La-

grangian relaxation with Benders’ decomposition, and nested Benders’ decomposition. Among the three decom-

position approaches, only Benders’ decomposition is an exact approach while the other two approaches, which are

Lagrangian relaxation with Benders’ decomposition and nested Benders’ decomposition, are linear programming re-

laxations of the original problem. SINSA is viewed as a two-stage stochastic programming problem for the first two

approaches. We solve SINSA with Benders’ decomposition, which is a common method to solve two-stage stochastic

programming problems. In the second approach, we apply the Lagrangian relaxation with Benders’ decomposition to

solve SINSA, in which we relax a budget constraint (2). We describe how the Lagrangian relaxation with Benders’

decomposition can be applied as a search method for bicriteria programming problems. Lastly, SINSA is alterna-

tively considered as a multistage stochastic programming problem for which its nested Benders’ decomposition is



demonstrated.

Unlike the traditional approaches that provide a single solution, we collect a set of nondominated solutions. Here,

we refer to nondominated solutions as nurse staffs and assignments that are not dominated by any other staffs and

assignments found; either they require less excess workload or less staffing cost than the other solutions found. Each

solution represents staffs and assignments for nurses in an upcoming shift. We refer to the efficient frontier as a tradeoff

curve between excess workload and staffing cost of the set of nondominated solutions found. The focus of this paper

is to find many nondominated solutions to form the efficient frontier.

Algorithm 1 describes the algorithm for collecting the nondominated solutions. Let L be a list of nondominated

solutions. Let (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj , X) be a current solution obtained by solving SINSA with one of the three

proposed approaches. We compare the current solution (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj , X) with those in the list L. If

the current solution (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj , X) produces higher staffing cost or more excess workload than those

in the list L, we discard the current solution (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj , X). Otherwise, we add the current solution

(Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj , X) into the list L. Then, we update the list of nondominated solutions by deleting solutions

dominated by the current solution (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj , X).

Algorithm 1 Collecting Nondominated Solutions Algorithm
Let L be a list of nondominated solutions.

Input: Let (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj) be a nurse staff, X be an assignment, and Z(Y nj ,Y
c
n,Y

r
nj ,Y

o
nj ,Y

a
nj ,X) be their

objective function obtained by solving SINSA with one of the three algorithmic approaches.

if ∃(Ynj , Y
c
n , Y r

nj , Y
o
nj , Y

a
nj , X) ∈ L in which Z(Ynj ,Y c

n ,Y r
nj ,Y o

nj ,Y a
nj ,X) < Z(Y nj ,Y

c
n,Y

r
nj ,Y

o
nj ,Y

a
nj ,X) then

Delete the current solution (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj , X).

else

Add the current solution (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj , X) to a list L, L ← L ∪ (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj , X).

for all (Ynj , Y
c
n , Y r

nj , Y
o
nj , Y

a
nj , X) ∈ L do

if Z(Y nj ,Y
c
n,Y

r
nj ,Y

o
nj ,Y

a
nj ,X) < Z(Ynj ,Y c

n ,Y r
nj ,Y o

nj ,Y a
nj ,X) then

Delete a solution (Ynj , Y
c
n , Y r

nj , Y
o
nj , Y

a
nj , X) in a list L, L ← L\(Ynj , Y

c
n , Y r

nj , Y
o
nj , Y

a
nj , X).

end if

end for

end if

4.1 Benders’ Decomposition

In this section, we consider SINSA as a two-stage stochastic integer programming problem. We solve SINSA using

the L-shaped method based on Benders’ decomposition with integer first-stage variables [11, 16]. The Benders’

decomposition separates the original problem given by (1)-(18) into the master problem and the subproblems. The

master problem determines scheduled nurses, PRN nurses, over-time nurses, and agency nurses working for a shift, and

it assigns those nurses to patients with an objective of minimizing excess workload on nurses. Given the nurse staffing

and their assignments, the recourse problems penalize the excess workload from the assignment. The subproblems

decompose by the number of nurses and the number of scenarios into |N| × |ξ| linear programming subproblems.



Let (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj) be a given nurse staffing, and let X be a given assignment. For each t ∈ T , let

gξ
tn =

∑
p∈P (n) gξ

tpnXpn, and let d
ξ

tn =
∑

p∈P (n) dξ
tpnXpn. Our recourse subproblems are reduced to ones similar

to those primal subproblems and dual subproblems of SPA described by Punnakitikashem et al. [63]. For each nurse

n ∈ N and each scenario ξ ∈ Ξ, the primal subproblem is the following linear program (PS ξ
n):

min
∑

τ∈T

k∑

i=1

ατniA
ξ
τni (27)

|T |∑
τ=t

Gξ
tτn = gξ

tn ∀t ∈ T, (28)

k∑

i=1

Aξ
τni −

τ∑
t=1

Gξ
tτn = d

ξ

τn ∀τ ∈ T, (29)

(Aξ
n, Gξ

n) satisfy (17), and (18).

Punnakitikashem et al. [63] demonstrated that (PS ξ
n) is a network flow problem, which can be efficiently optimally

solved by using a greedy algorithm (GAPS) [63]. GAPS determines the total workload variables Aξ
τni and total

indirect care variables Gξ
tτn performed by nurse n from the beginning of time period t until the end of the shift. This

problem always has a feasible solution (Ã, G̃) that is G̃ξ
ttn = gξ

tn and Ãξ
tnk = G̃ξ

ttn + d
ξ

tn for all t ∈ T , and all other

variables are zero. Let πξ
tn, µξ

τn, and ρξ
τni be the dual variables associated with constraint sets (28) and (29) and the

upper bounds in set (18), respectively. For each nurse n ∈ N and each scenario ξ ∈ Ξ, the dual subproblem (DS ξ
n) is

given by:

max
∑

t∈T

[
k∑

i=1

(mti −mt(i+1))ρ
ξ
tni

]
+ gtπ

ξ
t + dtµ

ξ
tn (30)

µξ
τn − ρξ

τni ≤ ατi ∀τ ∈ T, 1 ≤ i ≤ k, (31)

πξ
tn ≤ µξ

τn ∀t, τ ∈ T, t ≤ τ, (32)

ρξ
τni ≥ 0 ∀τ ∈ T, 1 ≤ i ≤ k, (33)

πξ
tn, µξ

τn free ∀t, τ ∈ T. (34)

The dual subproblem has a feasible solution in which all variables are zero. Consequently, the primal and dual

subproblems have optimal solutions. Let DS denote the combination of all dual subproblems DSξ
n over all nurses

and scenarios. Let ∆ denote set of extreme points for the dual subproblem DS. The SINSA reformulation problem

(SINSAR) can be written as follows:

min η (35)

subject to

η ≥
∑

n∈N

∑

ξ∈Ξ

∑

t∈T

φξ


 ∑

p∈P (n)

(
π̃ξ

tngtpn + µ̃ξ
tndtpn

)
Xpn +

k∑

i=1

(mtni −mtn(i+1))ρ̃
ξ
tni


 (36)

∀(π̃, µ̃, ρ̃) ∈ ∆,

where (Ynj , Y
c
n , Y r

nj , Y
o
nj , Y

a
nj) satisfy (2)-(12),

Xpn satisfy (13) and (16).



Constraint set (36) associating with the extreme points of the optimal dual solutions is termed optimality cuts.

The L-shaped method is described as Algorithm 2. On each iteration, we consider a subset of dual extreme

points ∆ ⊆ ∆, and let constraint set (36’) be the subset of (36) over ∆. We solve a restricted master problem (2)-

(13), (16), (35), and (36’) to find a nurse staffing (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj), an assignment X , and an anticipated

objective value η. Using the assignment X , we solve the dual subproblems over all of the nurses and scenarios to

obtain (π̃, µ̃, ρ̃). Then, we collect all nondominated solutions in the algorithm by inputing a current nurse staffing

(Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj), an assignment X into Algorithm 1. If the anticipated objective value η is less than the

objective value of the dual solution (π̃, µ̃, ρ̃), then we add a Benders’ optimality cut to (36’). Otherwise, the algorithm

terminates and we obtain a set of nondominated solutions in the list L.

Algorithm 2 Stochastic Integrated Nurse Staffing and Assignment Benders’ Decomposition Algorithm (SINSA-BD).

∆ ← ∅, STOP ← FALSE .

while STOP = FALSE do

Solve the restricted master problem (2)-(13), (16), (35), and (36’) to obtain a nurse staffing

(Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj), an assignment X and an anticipated objective value η. (On the first iteration, let

η ← −∞, and let (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj) be a feasible nurse staffing, X be a feasible assignment.)

for all n ∈ N, ξ ∈ Ξ do

Solve the dual subproblem (DSξ
n) to obtain extreme point (π̃ξ

n, µ̃ξ
n, ρ̃ξ

n).

end for

Keep a set of nondominated solutions by using Algorithm 1.

if η <
∑

p∈P

∑
n∈N(p)

∑
ξ∈Ξ

∑
t∈T φξ

[(
π̃ξ

tngtpn + µ̃ξ
tndtpn

)
Xpn +

∑k
i=1(mtni −mtn(i+1))ρ̃

ξ
tni

]
then

∆ ← ∆ ∪ {(π̃, µ̃, ρ̃)}, where (π̃, µ̃, ρ̃) is the combination of the vectors (π̃ξ
n, µ̃ξ

n, ρ̃ξ
n).

else

STOP ← TRUE .

end if

end while

return the list of nondominated solutions L.

4.2 Lagrangian Relaxation with Benders’ Decomposition

In this section, we describe Lagrangian relaxation with Benders’ decomposition for solving SINSA, and we use the

subgradient method to determine the value of the Lagrange multiplier. Then, we describe how Lagrangian relaxation

with Benders’ decomposition can be viewed as a search method for bicriteria programming problems.

Lagrangian relaxation methods have been widely used to solve integer programming problems that contain sets of

hard constraints and easy constraints. By dualizing hard constraints, we construct a Lagrangian problem that is relative

easy to solve compared to the original problem. An optimal value of the Lagrangian problem is a lower bound on the

optimal value of the original problem. Lagrangian relaxation efficiently solves integer programming problems since

it provides better lower bounds than those from linear programming relaxation in a branch and bound algorithm. A

review paper for Lagrangian relaxation for solving integer programming problems can be found in Fisher [33]. The



subgradient method is a common technique that uses the Lagrangian dual problem, and it usually provides promising

results. More information about the subgradient method is in Bertsekas [14] and Nemhauser and Wolsey [53]. Held

et al. [35] described theoretical convergence properties and computational performance of subgradient optimization.

We propose to solve the SINSA by using Benders’ decomposition, in which Lagrangian relaxation is employed

to relax the budget constraint. We dualize the budget constraint (2) to the objective function and obtain the following

Lagrangian problem:

L(λ) = min
∑

ξ∈Ξ

∑

n∈N

∑

τ∈T

k∑

i=1

φξατniA
ξ
τni + λ

{∑

j∈J

∑

n∈N(j)

cs
njYnj+

∑

n∈N

cc
nY c

n +
∑

j∈J

∑

n∈R(j)

cr
njY

r
nj +

∑

j∈J

∑

n∈O(j)

co
njY

o
nj+

∑

j∈J

∑

n∈A(j)

ca
njY

a
nj −B

}
(37)

subject to (3)− (18),

where λ is a Lagrange multiplier. L(λ) is a piecewise linear function. For any λ ≥ 0, L(λ) forms a lower

bound on SINSA, as λ(
∑

j∈J

∑
n∈N(j) cs

njYnj +
∑

n∈N cc
nY c

n +
∑

j∈J

∑
n∈R(j) cr

njY
r
nj +

∑
j∈J

∑
n∈O(j) co

njY
o
nj+∑

j∈J

∑
n∈A(j) ca

njY
a
nj − B) < 0 for any feasible solutions to SINSA. The Lagrangian problem (3)-(18), (37) can

be alternatively viewed as a bicriteria stochastic integer programming problem with objectives that minimize average

excess workload on nurses and total nurse staffing cost. Given a nurse staffing (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj) and an

assignment X , the subproblems are separated by the total number of nurses and the total number of scenarios into

|N| × |ξ| linear programming subproblems. With the same fashion as the Benders’ decomposition approach, for each

nurse n ∈ N and each scenario ξ ∈ Ξ, the primal subproblem (PS ξ
n) can be written by (17), (18), and (27)-(29), and

the dual subproblem (DS ξ
n) is given by (30)-(34).

We use the subgradient method to determine the Lagrange multiplier λ. The subgradient method for SINSA is

described as Algorithm 3. Let r and α denote an iteration number and a step-size, respectively. For each iteration r, let

θr be a parameter for the subgradient algorithm. On each iteration, we solve the Lagrangian problem by (3)-(18), (37)

using the Benders’ decomposition described in Algorithm 2 to obtain the nurse staffing (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj), the

assignment X . According to a given staffing and assignment, we update the step-size α and the Lagrange multiplier

λ. If an absolute difference between the previous and current Lagrange multipliers are less than a positively small

number ε, then we terminate the algorithm and obtain the list of nondominated solutions L. Otherwise, we update the

parameter θ if the objective value does not improve. The iteration number is also updated. We repeat this iterative

procedure until the termination criteria is met.

Typically, scheduling problems are difficult because of large solution search spaces. Many search methods have

been developed for nurse scheduling problems, such as Tabu search, simulated annealing, genetic algorithm, etc. In this

paper, we provided a novel search approach for a bicriteria stochastic integer program by using Lagrangian relaxation

as a framework. A Lagrange multiplier acts as a penalty for violating the second objective and Benders’ decomposition

handles stochasticity in the model. According to our model, we penalize a staff that violates the budget for a shift.

We find the nurse staffing and assignment that minimize both excess workload on nurses and budget violation in the

Lagrangian problem. During the searching process, the Lagrangian relaxation with Benders’ decomposition searches



Algorithm 3 Stochastic Integrated Nurse Staffing and Assignment Subgradient Algorithm (SINSA-SA).
Let r be an iteration number, α be step size, θ0 ← 2, initial Lagrange multiplier λ0 ≥ 0, STOP ← FALSE .

while STOP = FALSE do

Solve the Lagrangian problem (3)-(18), (37) by the SINSA-BD described in Algorithm 2 to obtain the lower

bound Z̃LB .

α ← θ(Z̃UB − Z̃LB)/ (
∑

j∈J

∑
n∈N(j) cs

njYnj +
∑

n∈N cc
nY c

n +
∑

j∈J

∑
n∈R(j) cr

njY
r
nj +

∑
j∈J

∑
n∈O(j) co

njY
o
nj +

∑
j∈J

∑
n∈A(j) ca

njY
a
nj −B)2.

λr+1 ← max{0, λr + α(
∑

j∈J

∑
n∈N(j) cs

njYnj +
∑

n∈N cc
nY c

n +
∑

j∈J

∑
n∈R(j) cr

njY
r
nj +

∑
j∈J

∑
n∈O(j) co

njY
o
nj +

∑
j∈J

∑
n∈A(j) ca

njY
a
nj −B).

if |λr+1 − λr| < ε then

STOP ← TRUE

end if

if |Z̃r+1
LB − Z̃r

LB | < ε then

θr+1 ← θr/2

else

θr+1 ← θr

end if

r ← r + 1

end while

return the list of nondominated solutions L.



for solutions with different weights between average excess workload on nurses and budget violation.

4.3 Nested Benders’ Decomposition

The nested Benders’ decomposition method is a common solution method for multistage stochastic programming

problems [16]. It is appropriate to use when the subproblems have block angular structure and involve further de-

composition. In addition to multistage stochastic programs, the decomposition has been used successfully to solve the

multistage convex programs [57]. More details about nested Benders’ decomposition can be found in Birge [15] and

Birge and Louveaux [16].

We develop a solution approach based on nested Benders’ decomposition of SINSA. SINSA can be considered

as a three-stage stochastic programming problem. The first-stage problem proposes a nurse staffing that determines

nurses who work for the shift. Given a nurse staffing, the second-stage subproblem assigns nurses to a set of patients.

Based upon an assignment, the third stage problems are decomposed into subproblems associated with each nurse at

each scenario, and they evaluate assignments.

Given a nurse staffing (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj) and assignment X , the subproblems can be reduced to ones

similar to those from the two-stage stochastic program with Benders’ decomposition. For each nurse n ∈ N and

each scenario ξ ∈ Ξ, the third stage primal subproblem (PN3ξ
n ) is given by (17), (18), (27)-(29) and the third stage

dual subproblem (DN3ξ
n ) is given by (30)-(34). Let (DN 3 ) be the combination of all dual subproblems (DN 3ξ

n ) over

all nurses and scenarios. Let Λ be the set of extreme points for the dual subproblem (DN 3 ). Note that the binary

constraint (16) is relaxed to the upper bound constraint (44). Given a schedule of nurses, the second-stage restricted

master problem (RMP 2) can be formulated as:

min η2 (38)

subject to

η2 ≥
∑

n∈N

∑

ξ∈Ξ

∑

t∈T

φξ{
∑

p∈P (n)

(π̃ξ
tngtpn+

µ̃ξ
tndtpn)Xpn +

k∑

i=1

(mtni −mtn(i+1))ρ̃
ξ
tni} ∀(π̃, µ̃, ρ̃) ∈ Λ, (39)

Xpn ≤ Y nj ∀n ∈ N(p), p ∈ P (j), j ∈ J, (40)

Xpn ≤ Y
r

nj ∀n ∈ R(p), p ∈ P (j), j ∈ J, (41)

Xpn ≤ Y
o

nj ∀n ∈ O(p), p ∈ P (j), j ∈ J, (42)

Xpn ≤ Y
a

nj ∀n ∈ A(p), p ∈ P (j), j ∈ J, (43)

0 ≤ Xpn ≤ 1 ∀p ∈ P, n ∈ N(p), (44)

where Xpn satisfy (13).

Constraints (39) are optimality cuts, which represent a successive linear approximation of the third stage problem.

Let (ψ(π̃,µ̃,ρ̃), σnpj , βnpj , γnpj , νnpj , χpn, ωp) be the dual variables associated with constraints (39)-(44), and (13)

respectively. Let (ψr
(π̃,µ̃,ρ̃), σ

r
npj , β

r
npj , γ

r
npj , ν

r
npj , χ

r
pn, ωr

p) be extreme rays of the dual polyhedron. The second-stage



dual problem (DRMP 2) can be written as the following:

max
∑

(π̃,µ̃,ρ̃)∈Λ

(
∑

n∈N

∑

ξ∈Ξ

∑

t∈T

φξ
k∑

i=1

(mtni −mtn(i+1))ρ̃
ξ
tni)ψ(π̃,µ̃,ρ̃)

−
∑

j∈J

∑

p∈P (j)

{
∑

n∈N(p)

Y njσnpj +
∑

n∈R(p)

Y
r

njβnpj

+
∑

n∈O(p)

Y
o

njγnpj +
∑

n∈A(p)

Y
a

njνnpj} −
∑

p∈P

∑

n∈N(p)

χpn +
∑

p∈P

ωp (45)

subject to

−
∑

(π̃,µ̃,ρ̃)∈Λ

∑

ξ∈Ξ

∑

t∈T

φξ(π̃ξ
tngtpn + µ̃ξ

tndtpn)ψ(π̃,µ̃,ρ̃) − σnpj − χpn + ωp ≤ 0

∀j ∈ J, p ∈ P (j), n ∈ N(p), (46)

−
∑

(π̃,µ̃,ρ̃)∈Λ

∑

ξ∈Ξ

∑

t∈T

φξ(π̃ξ
tngtpn + µ̃ξ

tndtpn)ψ(π̃,µ̃,ρ̃) − βnpj − χpn + ωp ≤ 0

∀j ∈ J, p ∈ P (j), n ∈ R(p), (47)

−
∑

(π̃,µ̃,ρ̃)∈Λ

∑

ξ∈Ξ

∑

t∈T

φξ(π̃ξ
tngtpn + µ̃ξ

tndtpn)ψ(π̃,µ̃,ρ̃) − γnpj − χpn + ωp ≤ 0

∀j ∈ J, p ∈ P (j), n ∈ O(p), (48)

−
∑

(π̃,µ̃,ρ̃)∈Λ

∑

ξ∈Ξ

∑

t∈T

φξ(π̃ξ
tngtpn + µ̃ξ

tndtpn)ψ(π̃,µ̃,ρ̃) − νnpj − χpn + ωp ≤ 0

∀j ∈ J, p ∈ P (j), n ∈ A(p), (49)
∑

(π̃,µ̃,ρ̃)∈Λ

ψ(π̃,µ̃,ρ̃) = 1, (50)

ψ(π̃,µ̃,ρ̃) ≥ 0 ∀(π̃, µ̃, ρ̃) ∈ Λ, (51)

σnpj ≥ 0 ∀j ∈ J, p ∈ P (j), n ∈ N(p), (52)

βnpj ≥ 0 ∀j ∈ J, p ∈ P (j), n ∈ R(p), (53)

γnpj ≥ 0 ∀j ∈ J, p ∈ P (j), n ∈ O(p), (54)

νnpj ≥ 0 ∀j ∈ J, p ∈ P (j), n ∈ A(p), (55)

χpn ≥ 0 ∀p ∈ P, n ∈ N(p), (56)

ωp free ∀p ∈ P. (57)

Let Ψ (Γ) be the set of extreme points (extreme rays) of the second-stage dual problem (45)-(57). The restricted



master problem (RMP 1) for the nested Benders’ decomposition is reformulated as follows:

min η1 (58)

subject to

η1 ≥−
∑

j∈J

∑

p∈P (j)

{
∑

n∈N(p)

σ̃npjYnj +
∑

n∈R(p)

β̃npjY
r
nj

+
∑

n∈O(p)

γ̃npjY
o
nj +

∑

n∈A(p)

ν̃npjY
a
nj}+ ψ − χ + ω ∀(ψ̃, σ̃, β̃, γ̃, ν̃, χ̃, ω̃) ∈ Ψ, (59)

−
∑

j∈J

∑

p∈P (j)

{
∑

n∈N(p)

σ̃r
npjYnj +

∑

n∈R(p)

β̃r
npjY

r
nj

+
∑

n∈O(p)

γ̃r
npjY

o
nj +

∑

n∈A(p)

ν̃r
npjY

a
nj}+ ψ

r − χr + ωr ≤ 0 ∀(ψ̃r, σ̃r, β̃r, γ̃r, ν̃r, χ̃r, ω̃r) ∈ Γ, (60)

where (Ynj , Y
c
n , Y r

nj , Y
o
nj , Y

a
nj) satisfy (2), (3), (8)-(12).

where ψ =
∑

(π̃,µ̃,ρ̃)∈Λ

(
∑

n∈N

∑

ξ∈Ξ

∑

t∈T

φξ
k∑

i=1

(mtni −mtn(i+1))ρ̃
ξ
tni)ψ̃(π̃,µ̃,ρ̃),

ω =
∑

p∈P

ω̃p,

χ =
∑

p∈P

∑

n∈N(p)

χ̃pn,

ψ
r

=
∑

(π̃,µ̃,ρ̃)∈Λ

(
∑

n∈N

∑

ξ∈Ξ

∑

t∈T

φξ
k∑

i=1

(mtni −mtn(i+1))ρ̃
ξ
tni)ψ̃

r
(π̃,µ̃,ρ̃),

ωr =
∑

p∈P

ω̃r
p,

χr =
∑

p∈P

∑

n∈N(p)

χ̃r
pn

Constraints (59) are the optimality cuts passing information from the second-stage dual problem (DRMP 2) to

the restricted master problem (RMP 1). When the second-stage problem (RMP 2) is infeasible, the feasibility cuts in

constraints (60) are added to the restricted master problem (RMP 1) to induce a feasible solution.

Figure 1 illustrates the flow chart of nested Benders’ decomposition method for SINSA. Note that our third stage

subproblems (PN3ξ
n ) for all of the nurses and scenarios are always feasible. The nested Benders’ decomposition algo-

rithm for the three-stage integrated nurse staffing and assignment problem (SINSA-NBD) is described as Algorithm

4.

The nested L-shaped method proceeds as follows. Let SolveRMP1 denote a boolean variable which is true

when we need to solve the restricted master problem (RMP 1). Let CheckRMP1 and CheckRMP2 be boolean

variables. If CheckRMP1 is true, then the current restricted master problem (RMP 1) is checked whether it is

optimal with respect to the first-stage optimality cut. If CheckRMP2 is true, then the current second-stage restricted

master problem (RMP 2) is checked whether it is optimal with respect to the second-stage optimality cut. On each

iteration, we consider a subset of dual extreme points of (DS3) Λ ⊆ Λ, and let constraint set (39’) be the subset of



(39) over Λ. We consider a subset of dual extreme points of (DRMP 2) Ψ ⊆ Ψ, and let constraint set (59’) be the

subset of (59) over Ψ. We also consider a subset of dual extreme rays of (DRMP 2) Γ ⊆ Γ, and let constraint set (60’)

be the subset of (60) over Γ. We solve a restricted master problem (2), (3), (8)-(12), (58), (59’), and (60’) to find a

nurse staffing (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj). Give a nurse staffing (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj), we solve the second-stage

restricted master problem (13), (38), (39’), (40)-(44) and obtain a nurse assignment X and anticipated penalty η2. If

a current assignment is infeasible, then we add a set of feasibility cuts (60) to the restricted master problem (RMP 1)

and update the variable solveRMP1 to resolve the restricted master problem (RMP 1) until a feasible assignment is

obtained. Otherwise, we update the variables CheckRMP1 and CheckRMP2 to check whether the restricted master

problem (RMP 1) and the second-stage restricted master problem (RMP 2) are optimal with respect to the optimality

cuts. If the variable CheckRMP2 is true, we solve the dual subproblems (DS3) over all of the nurses n ∈ N and

scenarios ξ ∈ Ξ to obtain the optimal dual solutions (π̃, µ̃, ρ̃). If constraints (39) with these dual solutions (π̃, µ̃, ρ̃)

are violated by the current assignment X and anticipated objective value η2, then we add a Benders’ optimality cut to

(39’) and update the variable CheckRMP2 to resolve and check the second-stage restricted master problem (RMP 2).

Otherwise, we adjust the variable CheckRMP1 to check an optimality cut for the restricted master problem (RMP 1).

If the CheckRMP1 is true, then we perform the following. We collect all nondominated solutions in the algorithm

by inputing a current nurse staffing (Y nj , Y
c

n, Y
r

nj , Y
o

nj , Y
a

nj), an assignment X into Algorithm 1. If the anticipated

objective value η1 is less than the objective value of the dual solution (ψ̃(π̃,µ̃,ρ̃), σ̃npj , β̃npj , γ̃npj , ν̃npj , χ̃pn, ω̃p), then

we add a Benders’ optimality cut to (59’) and all boolean variables are adjusted to resolve and check both restricted

master problem (RMP 1) and second-stage restricted master problem (RMP 2). Then, another iteration is performed.

Otherwise, the algorithm terminates and we obtain a set of nondominated solutions in the list L.

5 Computational Study

We report a computational study on integrated nurse staffing and assignment in this section. We tested the three

solution approaches on four problem instances generated from data from a Northeast Texas hospital. The problem

instances and parameters for our model are described in Section 5.1. Because of the complexity of the model, these

problem instances cannot be solved optimally within 30 minutes. However, finding the optimal solutions may be

meaningless since the nurse supervisor wants to quickly obtain a high-quality schedule and assignment that satisfy

all requirements. Accordingly, the focus of the computational study is to find good nondominated solutions within

a 30-minute time limit. In Section 5.2, we select the appropriate parameters for the solution approaches, and then

the algorithmic efficiencies of the three approaches are compared. In Section 5.2.5, we study the effects of requiring

nurses to work on their primary work units versus allowing nurses to float to other units. Results are stated in the same

section.

5.1 Problem Instances

The Northeast Texas hospital provided encrypted data from two medical-surgical units, namely, Med-Surg1 and Med-

Surg2, for this study, and the data was from March 2004-December 2004. We obtained encrypted patient data including

a patient’s primary diagnosis, room location, admission date, discharge date, and units in which the patient stayed. In



Figure 1: The nested Benders’ decomposition algorithm for the three-stage integrated nurse staffing and assignment

problem flow chart



Algorithm 4 Nested Benders’ Decomposition Algorithm for the Three-Stage Integrated Nurse Staffing and Assign-

ment Problem (SINSA-NBD).
Initialization: Θ ← ∅, Λ ← ∅, Ψ ← ∅, Γ ← ∅, solveRMP1 ← TRUE , CheckRMP1 ← TRUE , CheckRMP2 ← TRUE .

while solveRMP1 = TRUE ||CheckRMP1 = TRUE ||CheckRMP2 = TRUE do

if solveRMP1 = TRUE then

Solve the restricted master problem (RMP 1) to obtain a nurse staffing (Y nj , Y
c
n, Y

r
nj , Y

o
nj , Y

a
nj) and an anticipated

objective value η1. (On the first iteration, let η1 ← −∞).

end if

Solve the second-stage restricted master problem (RMP 2) to obtain a nurse assignment X and an anticipated objective value

η2. (On the first iteration, let η2 ← −∞).

if the second-stage restricted master problem (RMP 2) is infeasible then

Γ ← Γ ∪
{

(ψ̃r, σ̃r, β̃r, γ̃r, ν̃r, χ̃r, ω̃r)
}

, where (ψ̃r, σ̃r, β̃r, γ̃r, ν̃r, χ̃r, ω̃r) is the combination of the extreme rays

(ψ̃r
(π̃,µ̃,ρ̃), σ̃

r
npj , β̃

r
npj , γ̃

r
npj , ν̃

r
npj , χ̃

r
pn, ω̃r

p).

solveRMP1 ← TRUE , CheckRMP1 ← FALSE , and CheckRMP2 ← FALSE .

else

solveRMP1 ← FALSE , CheckRMP1 ← TRUE , and CheckRMP2 ← TRUE .

end if

if CheckRMP2 = TRUE then

for all n ∈ N, ξ ∈ Ξ do

Solve the third stage dual subproblem (DN3ξ
n ) to obtain the extreme points (π̃ξ

n, µ̃ξ
n, ρ̃ξ

n).

end for

if η2 <
∑

p∈P

∑
n∈N(p)

∑
ξ∈Ξ

∑
t∈T φξ

[(
π̃ξ

tngtpn + µ̃ξ
tndtpn

)
Xpn +

∑k
i=1(mtni −mtn(i+1))ρ̃

ξ
tni

]
then

Λ ← Λ ∪ {(π̃, µ̃, ρ̃)}, where (π̃, µ̃, ρ̃) is the combination of the vectors (π̃ξ
n, µ̃ξ

n, ρ̃ξ
n).

solveRMP1 ← FALSE , CheckRMP1 ← FALSE , and CheckRMP2 ← TRUE .

else

solveRMP1 ← TRUE , CheckRMP1 ← TRUE , and CheckRMP2 ← FALSE .

end if

end if

if CheckRMP1 = TRUE then

Keep a set of nondominated solutions by using Algorithm 1.

if η1 <
∑

(π̃,µ̃,ρ̃)∈Λ(
∑

n∈N
∑

ξ∈Ξ

∑
t∈T φξ ∑k

i=1(mtni − mtn(i+1))ρ̃
ξ
tni)ψ̃(π̃,µ̃,ρ̃) −

∑
j∈J

∑
p∈P (j)

{∑
n∈N(p) Y nj σ̃npj +

∑
n∈R(p) Y

r
nj β̃npj +

∑
n∈O(p) Y

o
nj γ̃npj +

∑
n∈A(p) Y

a
nj ν̃npj

}
+

∑
p∈P ω̃p−

∑
p∈P

∑
n∈N(p) χ̃pn then

Ψ ← Ψ ∪
{

(ψ̃, σ̃, β̃, γ̃, ν̃, χ̃, ω̃)
}

, where (ψ̃, σ̃, β̃, γ̃, ν̃, χ̃, ω̃) is the combination of the vectors

(ψ̃(π̃,µ̃,ρ̃), σ̃npj , β̃npj , γ̃npj , ν̃npj , χ̃pn, ω̃p).

solveRMP1 ← TRUE , CheckRMP1 ← TRUE , and CheckRMP2 ← TRUE .

else

solveRMP1 ← FALSE , CheckRMP1 ← FALSE , and CheckRMP2 ← FALSE .

end if

end if

end while

return the list of nondominated solutions L.



Med-Surg1 unit Med-Surg2 unit

Instance Shift No. of patients No. of nurses No. of patients No. of nurses

1 Day 23 2-1 23 2-1

2 Day 18 4-0 18 4-0

3 Evening 18 2-1 18 2-1

4 Night 13 1-1 13 1-1

Table 1: Instances generated from the Northeast Texas hospital data over ten months.

Nurse Type $/Shift Total no. of nurses

Regular Nurse 160 6-8-6-4

Overtime Nurse 240 4

PRN Nurse 256 4

Agency Nurse 320 4

Table 2: Salary of different types of nurses.

addition to patient data, the Northeast Texas hospital gave nurse data as well. Each nurse at the hospital wears a badge

that locates nurses in the hospital unit, so that a charge nurse can reach a nurse immediately when her patient calls the

nurses’ station. Given that the Northeast Texas hospital has a nurse locator device with RFID technology, they can

track the nurses’ locations from their badges and collect location data for nurses over months.

Problem instances were generated based upon encrypted patient data and nurse data. We used the Med-Surg1

unit instances created by Punnakitkashem et al. [63]. The Med-Surg2 unit instances were generated with the same

fashion as those from Med-Surg1. We sampled a random set of patients from an empirical distribution of patients

with similar diagnoses and patient rooms. Then, the number of nurses and type of nurses required for a shift was

determined by a census matrix from a medical-surgical unit. We randomly generated 500 and 5000 scenarios for Ξ.

The probability of each scenario is equally likely. We estimated patient admissions and discharges to the units as

Poisson processes with mean equal to the number of patients in a shift divided by the average length of stay. Our

data indicates that the average length of stay of patients in Med-Surg1 and Med-Surg2 unit were 2.725 and 1.936 days

per patient, respectively. Besides patient information, individual nurse skills of regular nurses were also taken into

consideration. However, the Northeast Texas hospital does not have PRN nurses, overtime nurses, and agency nurses

data, therefore we assume they are identical. Table 1 represents characteristics of the four problem instances from

two medical-surgical units. The column labeled “Instance” is the random instance, “Shift” is the time of the shift, and

“No. of Pat” is the number of patients in the instance. The column labeled “No. of Nurses” is in the format of a-b,

where a and b represent the number of registered nurses and licensed vocational nurses on duty, respectively. Table

2 displays salary for each type of nurses. The column labeled “Nurse Type” represents types of nurses. The column

labeled “$/shift” displays the salary of a nurse per shift, and “Total No. of Nurses” shows the total number of nurses.

The row labeled “Regular Nurse” is in the format of c-d-e-f, where c, d, e, and f represent the number of regular nurses

in Instances 1-4, respectively.



5.2 Computational Results

In this section, we present computational results based upon instances created from real data from the Northeast Texas

hospital described in Section 5.1. We begin with determining appropriate parameters for the Lagrangian relaxation

with Benders’ decomposition and the nested Benders’ decomposition methods in Section 5.2.1. In Section 5.2.4, we

compare expected excess workload and staffing cost from three different solution methods. The tradeoff between

average excess workload and staffing cost are shown. Finally, we perform a computational comparison between two

policies, which are with and without a reasonable assumption that nurses should be restricted to work on their primary

work units in Section 5.2.5.

We implemented three different solution approaches in the C programming language on a Dell Precision Work-

station with dual 3.06-Gz Intel Xeon processors using CPLEX 9.1 callable library. We solved SINSA with Benders’

decomposition, Lagrangian relaxation with Benders’ decomposition, and nested Benders’ decomposition approaches,

denoted as SINSA-BD, SINSA-LRBD, SINSA-NBD, respectively. We solved the mean value problem, which is a

deterministic integer programming replaced direct care and indirect care random variables with their mean, for less

than one minute to find an initial solution for all methods. Then, the problem was solved by each solution method for

the remaining time. Punnakitikashem et at. [63] demonstrated that the primal subproblems (PS ξ
n) are network flow

problems, which can be efficiently solved by using the greedy algorithm (GAPS) [63]. They reported that the recourse

function converged by evaluating it with 5000 scenarios. They showed that optimizing the problem with 500 scenarios

and evaluating solutions by 5000 scenarios with GAPS provided the best results, which are minimal excess workload

for nurses. Therefore, we optimize SINSA-BD, SINSA-LRBD, and SINSA-NBD with 500 scenarios and evaluate the

recourse subproblems by using the greedy algorithm (GAPS) with 5000 scenarios to obtain the excess workload of

each staff and assignment. In addition, we solved SINSA-BD and SINSA-NBD with a budget of $3000 for the first 10

minutes, $2000 for another 10 minutes, and $1000 for the last 10 minutes. We solved SINSA-LRBD with a starting

budget of $2000.

According to the staffing policy from the Northeast Texas hospital, the staffing happens per unit with different

managers. Med-Surg1 and Med-Surg2 nurses are assigned to their primary work units. Nevertheless, two medical-

surgical units use the same nurse pool of PRN nurses, overtime nurses, and agency nurses. Therefore, we apply the

following assumption:

Assumption 4: Scheduled nurses must be assigned to their primary work units. PRN nurses, overtime nurses, and

agency nurses can be staffed to any unit needing help.

5.2.1 Parameter Tuning

In this section, we determine appropriate parameters for solving SINSA-LRBD and SINSA-NBD.

5.2.2 Parameters for SINSA-LRBD

We find proper parameters for the SINSA-LRBD approach in this section. Table 3 depicts parameters for SINSA-SA,

which are initial step-size α, initial Lagrange multiplier λ, parameter θ, small positive number ε, and the iteration

limit.



Parameter Value

Initial step size α 2.0

Initial Lagrange multiplier λ 0.0

Initial LRBD parameter θ 2

ε 0.00005

Iteration number 2000

Table 3: Parameters for the SINSA-LRBD approach.

The termination criteria for SINSA-SA algorithm are the following:

1. The Lagrange multiplier converges within the small positive number ε. The difference between the previous and

the current Lagrange multiplier is less than the small positive number ε.

2. The time limit is met. We use a 30-minute time limit in our computational results.

3. The iteration number limit is reached. The limitation for solving SINSA-SA is 2000 iterations.

We solved SINSA-LRBD by employing the subgradient algorithm for stochastic integrated nurse staffing and

assignment (SINSA-SA) in Algorithm 3. According to SINSA-SA, we solve SINSA-BD described in Algorithm 2

and update the Lagrange multiplier and the step-size. Then, we perform another iteration until the termination criteria

is met. One problem with SINSA-SA is that we cannot optimally solve SINSA-BD within 30 minutes, therefore not

enough solutions are generated to form the efficient frontier. One way to overcome this problem is to set time limit

for solving SINSA-BD. Accordingly, we examined time duration for solving SINSA-BD embedded in SINSA-SA

that yields the best results. We solved SINSA-BD for 30, 60, 120, and 300 seconds, and then updated the step-size,

Lagrange multiplier, and parameter θ. Tables 13-16 in an appendix show excess workload and staffing cost of solving

SINSA-BD with different time limits embedded in SINSA-SA for all four instances, respectively. Figure 2 displays

the efficient frontiers of solving SINSA-BD with different time limits embedded in SINSA-SA, and they indicate that

solving SINSA-BD with 300 seconds within SINSA-SA provided the best results. Thus, we solved SINSA-BD for

300 seconds before updating the subgradient parameters in SINSA-SA in the remainder of this computational study.

5.2.3 SINSA-NBD Algorithm Enhancement

SINSA-NBD confronted the same situation as SINSA-LRBD that not many solutions were produced when we tried to

solve the restricted master problem (RMP 1) optimally within 30 minutes. Hence, we enforced a different time limit

and solved the restricted master problem (RMP 1) in SINSA-NBD described in Algorithm 1. Only one nondominated

solution was obtained leading us to incorporate the following minimum nurses constraint to the restricted master

problem (RMP 1) along with time limit to enhance the algorithmic performance.

∑

j∈J





∑

n∈N(j)

Ynj +
∑

n∈R(j)

Y r
nj +

∑

n∈O(j)

Y o
nj +

∑

n∈A(j)

Y a
nj



 ≥ lb + brand ∗ (ub− lb + 1)c . (61)
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Figure 2: Selecting time limit (in seconds) for the SINSA-LRBD approach



where

rand = random number, (62)

lb = 1, (63)

ub =
⌊ |N|
|J |

⌋
− {|R|+ |O|+ |A|} /|J |. (64)

The minimum nurses constraint (61) randomly changes the number of nurses required to be staffed for a shift. As

the algorithm was forced to explore many nurse staffs with different numbers of nurses, more quality nondominated

solutions were generated.

With constraint (61), we investigated the time limit for solving the restricted master problem (RMP 1) within

SINSA-NBD that gave the best staffing and assignments. We solved the restricted master problem (RMP 1) with 30,

60, 120, and 300 seconds. Tables in an appendix (17)-(20) display excess workload and staffing cost for solving the

restricted master problem (RMP 1) with different time limits in SINSA-NBD for all four instances, respectively, and

Figure 3 displays their efficient frontiers. Results illustrate that solving the restricted master problem (RMP 1) with

300 seconds gave minimum excess workload and staffing cost, therefore we included the minimum nurses constraint

(61) and solved the restricted master problem (RMP 1) with 300 seconds in SINSA-NBD in the remainder of this

computational study.

5.2.4 Algorithmic Approaches Comparison

In this section, we evaluated the algorithmic performance of three solution methods, which were SINSA-BD, SINSA-

LRBD, and SINSA-NBD. We optimized SINSA with 500 scenarios with all three methods and evaluated the staffing

and assignment decision with 5000 scenarios. Tables 4-7 summarize the average excess workload in minutes, the

staffing costs, and the total number of nurses scheduled for a shift with different solution methods for all four instances,

respectively. The breakdown to the number of each type of nurses, i.e., PRN nurses, overtime nurses, and agency

nurses, scheduled to work for a shift is displayed in Table 21-24 in the Appendix. Note that solutions shown in Tables

4-7 and Tables 21-24 are the nondominated solutions. Each approach generated more solutions than those shown

in tables, and we display the total number of solutions in Table 8. Figure 4 shows the efficient frontiers comparing

average excess workload and staffing cost from solving SINSA with three different approaches.

In general, SINSA-BD is a good choice when the nurse supervisor has a certain amount of budget, because it

provides several good solutions around the budget. SINSA-LRBD performs well with a flexible budget, as it generates

more nondominated solutions on the efficient frontiers. We observed that many nondominated solutions showed

up around $2000 with the SINSA-BD approach because nurse staffs that cost around $2000 have almost no excess

workload.

Results also suggested that simultaneously staffing and assigning nurses provided better solutions than sequentially

considering them. Moreover, the nurse staffing and assignments found by these methods can be used in a nurse staffing

decision supporting system for the nurse supervisor. Not only can the nurse supervisor make a revised nurse schedule

based on the tradeoff between staffing cost and excess workload on nurses, but she also obtains assignments of nurses

to patients.
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Figure 3: Selecting time limit (in seconds) for the SINSA-NBD approach.



SINSA-BD SINSA-LRBD SINSA-NBD

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($)

32.68 2912 13 32.83 3968 17 37.89 2992 13

35.37 2784 12 35.48 3728 16 620.64 800 4

56.00 1936 9 42.12 3648 16 675.24 560 3

59.64 1872 9 45.09 3328 15

68.07 1856 9 54.60 2912 13

261.57 976 5 125.21 2768 13

284.13 960 5 168.12 2576 12

337.62 880 4 172.93 1152 6

1132.64 720 3 311.06 976 5

1680.28 576 2 337.68 880 4

366.12 736 4

372.15 720 4

701.54 640 4

1065.57 560 3

1127.59 400 2

1273.56 320 2

Table 4: Instance 1 results comparing average excess workload and staffing cost from solving SINSA with three

different approaches.

A solution selected by the nurse supervisor has a direct effect on nurses and patients for the entire shift. Rather

than theoractically selecting a solution which is closest to the origin, we suggest the nurse supervisor to select the

solution that provides the least amount of expected excess workload while satisfying a daily budget.

5.2.5 Working in Primary Work Units only vs. Floating to Other Units

In this section, we performed a computational experiment to evaluate two staffing policies:

Policy 1: Regular nurses are restricted to work in their primary work units only.

Policy 2: Regular nurses are allowed to float to other units in which they are qualified.

In both policies, PRN nurses, overtime nurses, and agency nurses can be staffed to any units in which they are qualified

to work. Given that SINSA-LRBD provided reasonable results among three approaches, we employed SINSA-LRBD

to compare these two policies. Tables 9-12 show the average excess workload and staffing cost of the nondominated

schedules and assignments from the two policies for all four instances. Figure 5 illustrates the efficient frontiers from

the two policies. Results indicated that working only in primary work units provided less excess workload with less

staffing cost in Instances 2 and 3. The explanation is that the solution space was reduced by enforcing regular nurses to



SINSA-BD SINSA-LRBD SINSA-NBD

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($)

14.14 1936 9 16.51 1040 5 12.86 2832 13

24.26 1872 9 24.35 720 4 44.22 1456 7

33.39 1760 9 26.92 576 3

43.87 976 5 42.25 560 3

60.48 880 5 90.17 480 3

707.45 800 3 481.57 320 2

750.17 416 2

Table 5: Instance 2 results comparing average excess workload and staffing cost from solving SINSA with three

different approaches.
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Figure 4: Efficient frontiers comparing average excess workload and staffing cost from solving SINSA with three

different approaches for all four instances.



SINSA-BD SINSA-LRBD SINSA-NBD

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($)

21.71 2944 13 20.42 3984 17 24.81 2864 11

24.60 2848 12 22.57 3968 17 138.96 896 4

30.53 1936 9 25.22 3648 16 218.17 640 3

41.63 1872 9 27.07 3488 15

57.16 1776 9 28.19 3472 15

63.94 1616 8 30.81 3408 15

67.67 976 5 32.82 3392 15

77.65 960 5 33.54 2912 13

85.88 896 5 34.25 2848 13

837.54 640 3 38.23 2832 13

2137.82 400 2 38.72 1216 6

58.43 1136 6

59.73 992 5

61.97 960 5

77.76 880 5

132.52 800 4

133.69 720 4

242.50 640 4

577.38 560 3

Table 6: Instance 3 results comparing average excess workload and staffing cost from solving SINSA with three

different approaches.



SINSA-BD SINSA-LRBD SINSA-NBD

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($)

8.43 1952 8 8.82 3664 15 2.55 2096 9

9.00 1856 8 8.93 3648 15 128.76 640 3

12.53 1792 8 9.26 3584 15

13.53 1712 8 9.45 3072 13

16.36 992 5 9.89 1552 7

16.88 896 4 14.02 1056 5

20.77 816 4 19.04 816 4

31.67 672 3 28.46 560 3

162.13 640 3 56.79 480 3

159.01 400 2

Table 7: Instance 4 results comparing average excess workload and staffing cost from solving SINSA with three

different approaches.

SINSA-BD SINSA-LRBD SINSA-NBD

Instance Total Nondominated Total Nondominated Total Nondominated

1 83 10 79 16 99 3

2 200 7 77 6 66 2

3 118 11 112 19 112 3

4 209 9 96 10 57 2

Table 8: Total number of solutions and number of nondominated solutions.



Policy 1 Policy 2

Excess workload Staffing cost No. of Excess workload Staffing cost No. of

(min) ($) nurses (min) ($) nurses

32.35 2912 13 29.50 2912 12

35.37 2784 12 42.23 2512 11

56.00 1936 9 66.60 1952 9

59.64 1872 9 67.01 1872 9

68.07 1856 9 93.73 992 5

261.57 976 5 99.32 896 5

284.13 960 5 444.13 800 3

337.62 880 4 798.49 720 4

1132.64 720 3

1680.28 576 2

Table 9: Instance 1 comparison of Policy 1 vs. Policy 2.

work in the primary units resulting in better solutions. Thus, the algorithm quickly finds better solutions. In addition,

regular nurses were knowledgable about patients’ dignoses and more familiar with facilities and other procedures

in their primary work units causing smaller excess workload for nurses. These results are consistent with academic

literature [66]; nurses spend more time working in non-originally assigned units, since they spend much more time

performing unit routines, searching for medical supplies, and caring for patients with unfamiliar diagnoses. A unit

orientation, including unit routine introduction, patient care documentation overview, and assistants’ phone numbers

can help float nurses to reduce nervous tension, time, and workload, as well as increase quality of patient care [54, 66].

Instances 1 and 4 revealed the opposite results, floating regular nurses became helpful. The nurse supervisor can use

this model along with her judgment to evaluate a float assignment policy based upon nurses’ workload and staffing

cost. As hospital administrations follow the right policy, they would reduce workload for nurses, increase care for

patients, and reduce hospital costs.

6 Conclusions and Future Research

We described short-term nurse staffing and nurse-to-patient assignment. We integrated these two problems within a

stochastic programming model with an objective to minimize an expected excess workload on nurses taking patient

care uncertainty into consideration subject to the hard budget constraint. We provided three SINSA decompositions

and solution algorithms based on the L-shaped method, which are (1) Benders’ decomposition, (2) Lagrangian relax-

ation with Benders’ decomposition, and (3) nested Benders’ decomposition. We demonstrated that our model can be

considered as a two-stage stochastic program for the first two approaches and a three-stage stochastic program for the

last approach. As we intend to search for nondominated bicriteria solutions with the tradeoff between excess workload

and staffing cost, we varied the right-hand side of the hard budget constraint in the Benders’ decomposition and the



Policy 1 Policy 2

Excess workload Staffing cost No. of Excess workload Staffing cost No. of

(min) ($) nurses (min) ($) nurses

14.14 1936 9 7.44 1776 9

24.26 1872 9 11.68 1376 7

33.39 1760 9 12.04 816 4

43.87 976 5 72.28 800 4

60.48 880 5

707.45 800 3

750.17 416 2

Table 10: Instance 2 comparison of Policy 1 vs. Policy 2.

Policy 1 Policy 2

Excess workload Staffing cost No. of Excess workload Staffing cost No. of

(min) ($) nurses (min) ($) nurses

21.71 2944 13 22.51 2848 13

24.60 2848 12 23.67 1936 9

30.53 1936 9 40.66 1888 9

41.63 1872 9 60.36 1872 9

57.16 1776 9 63.25 992 5

63.94 1616 8 68.35 976 5

67.67 976 5 76.50 896 5

77.65 960 5 165.09 880 4

85.88 896 5 851.04 816 3

837.54 640 3 1506.12 720 3

2137.82 400 2

Table 11: Instance 3 comparison of Policy 1 vs. Policy 2.



Policy 1 Policy 2

Excess workload Staffing cost No. of Excess workload Staffing cost No. of

(min) ($) nurses (min) ($) nurses

8.43 1952 8 3.95 1936 8

9.00 1856 8 6.55 1856 8

12.53 1792 8 6.77 1584 7

13.53 1712 8 10.58 976 5

16.36 992 5 12.54 960 5

16.88 896 4 17.43 880 4

20.77 816 4 22.77 832 4

31.67 672 3 47.94 800 3

162.13 640 3 134.16 416 2

Table 12: Instance 4 comparison of Policy 1 vs. Policy 2.
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Figure 5: Efficient frontiers comparing average excess workload and staffing cost of Policy 1 vs. Policy 2 for all four

instances.



nested Benders’ decomposition approaches. In the Lagrangian relaxation with Benders’ decomposition approach, we

relaxed the budget constraint and penalized the staffing cost in the objective function. We use our algorithm approaches

to find several nondominated nurse staffing and assignment solutions that minimize bicriteria objectives. We tested our

model with four instances generated from real data from two medical-surgical units from the Northeast Texas hospital.

Since the subproblems of these three solution approaches are similar to those from Punnakitikashem et al. [63], we

employed their greedy algorithm to solve the subproblems. Instead of solving the problem optimally, we presented

alternative non-optimal ways to obtain good staffing and assignment solutions. We solved our model with three solu-

tion methodologies, and we collected the nondominated solutions within 30 minutes. Computational results showed

that SINSA-BD provided promising results with a predetermined budget, while SINSA-LRBD generated more and

better nondominated solutions than the other two approaches with a flexible budget. Simultaneously considering nurse

staffing and assignment is more desirable than doing them sequentially. We also provided efficient frontiers between

excess workload and staffing cost of three solution approaches, which allow decision makers to select the right staffing

policy. Moreover, we demonstrated that our model can be used to evaluate a float assignment policy based upon

patients, available nurses of each type, and the budget for a shift.

Incorporating a nurse assignment within staffing decisions would likely provide better care for patients as well

as balance workload for nurses. Hospitals also benefit from having better budget control, providing quality care to

patients, and reducing liability cost. An integrated nurse staffing and assignment decision-support system that used

our model would reduce the burden of the nursing shortage.

There are several interesting possibilities for future research. Because of the dynamic nature of the shift, patients

are often admitted and discharged during a shift. One interesting topic is to consider how to assign newly admitted

patients to nurses. Furthermore, our data included only primary diagnoses of patients, nurse types, and individual

nursing skills. An extension to consider the following factors will likely to provide more accurate results.

• Multiple diagnoses. It is common for a patient to have multiple diagnoses during his/her stay in a hospital unit.

• Dynamic acuity. As the progress of a patient’s condition changes over time, the acuity level is changed. Patients

with different levels of acuity require different amounts of required care from nurses.

• Education levels of nurses. Education levels of nurses have an inverse relationship with mortality rates as well

as adverse patient outcomes [31, 52].

Finally, incorporating the mid-term nurse scheduling into our model allowing feedback of a current shift for future

corrections is another challenging area of research.
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30 sec. 60 sec. 120 sec. 300 sec.

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($) (min) ($)

58.90 3152 14 49.17 3168 14 37.05 3904 17 32.83 3968 17

102.11 3088 14 67.66 2032 9 38.94 3728 16 35.48 3728 16

185.30 2768 13 93.05 1440 7 39.99 3648 16 42.12 3648 16

309.24 928 4 104.78 1392 7 42.41 3232 14 45.09 3328 15

311.24 800 4 117.56 1360 6 75.96 3088 14 54.60 2912 14

545.67 720 4 126.23 1200 6 117.67 1200 6 125.21 2768 14

659.46 656 3 195.67 1120 6 133.87 1120 6 168.12 2576 12

688.15 560 3 221.31 1072 5 218.26 1056 6 172.93 1152 6

890.41 480 3 308.52 912 4 255.22 976 5 311.06 976 5

1094.86 400 2 336.74 816 4 326.56 896 4 337.68 880 4

1273.56 320 2 375.79 720 4 359.56 720 4 366.12 736 4

761.68 560 3 1048.90 560 3 372.15 720 4

1127.59 400 2 1094.86 400 2 701.54 640 4

1273.56 320 2 1273.56 320 2 1065.57 560 3

1127.59 400 2

1273.56 320 2

Table 13: Instance 1: solving SINSA-BD with different time limits within SINSA-LRBD.

[79] N. Yankovic and L. V. Green. A queueing model for nurse staffing. Technical Report DRO-2007-09, Columbia

University, New York, NY, August 2007.

8 Appendix

In the appendix, we state additional tables from parameter tuning in Section 5.2.1 and from solving SINSA with three

different approaches in Section 5.2.



30 sec. 60 sec. 120 sec. 300 sec.

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($) (min) ($)

234.34 2400 12 18.40 480 3 34.12 3536 16 16.51 1040 5

607.06 2240 11 105.81 320 2 44.77 3216 15 24.35 720 4

730.01 1520 9 50.16 2976 14 26.92 576 3

59.06 2656 13 42.25 560 3

71.59 2640 13 90.17 480 3

91.40 2480 12 481.57 320 2

107.13 320 2

Table 14: Instance 2: solving SINSA-BD with different time limits within SINSA-LRBD.

30 sec. 60 sec. 120 sec. 300 sec.

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($) (min) ($)

39.79 3152 14 28.46 3168 14 33.54 2912 13 20.42 3984 17

73.98 896 5 44.80 2272 10 54.22 2608 12 22.57 3968 17

94.04 880 5 56.13 1952 9 57.53 2592 12 25.22 3648 16

152.28 720 4 60.97 1472 7 85.76 2336 11 27.07 3488 15

259.58 576 3 76.47 1456 7 286.35 2096 10 28.19 3472 15

310.57 560 3 79.55 1280 7 366.15 1696 9 30.81 3408 15

335.70 480 3 86.05 1200 6 941.84 416 2 32.82 3392 15

818.26 416 2 117.92 1136 6 33.54 2912 13

941.84 400 2 146.25 720 4 34.25 2848 13

251.79 560 3 38.23 2832 13

391.33 480 3 38.72 1216 6

818.26 400 2 58.43 1136 6

1886.86 320 2 59.73 992 5

61.97 960 5

77.76 880 5

132.52 800 4

133.69 720 4

242.50 640 4

577.38 560 3

Table 15: Instance 3: solving SINSA-BD with different time limits within SINSA-LRBD.



30 sec. 60 sec. 120 sec. 300 sec.

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($) (min) ($)

19.82 2128 10 17.39 2096 9 11.63 3072 13 8.82 3664 15

32.77 1136 6 19.80 1936 9 13.12 1712 8 8.93 3648 15

74.81 960 5 32.77 1136 6 21.34 1632 8 9.26 3584 15

134.09 896 5 74.81 960 5 32.77 1136 6 9.45 3072 13

159.01 880 5 134.09 896 5 74.81 960 5 9.89 1552 7

159.01 880 5 134.09 896 5 14.02 1056 5

159.01 880 5 19.04 816 4

28.46 560 3

56.79 480 3

159.01 400 2

Table 16: Instance 4: solving SINSA-BD with different time limits within SINSA-LRBD.

30 sec. 60 sec. 120 sec. 300 sec.

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($) (min) ($)

428.37 2992 13 149.33 2992 13 75.98 2992 13 37.89 2992 13

825.08 480 3 785.97 720 4 758.97 720 4 620.64 800 4

817.76 480 3 815.15 480 3 675.24 560 3

Table 17: Instance 1: solving the retricted master problem (RMP 1) with different time limits within SINSA-NBD.

30 sec. 60 sec. 120 sec. 300 sec.

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($) (min) ($)

56.24 2832 13 12.86 2832 13 12.86 2832 13 12.86 2832 13

58.54 1200 6 38.57 1376 6 21.27 1280 6 44.22 1456 7

1203.30 880 4 1195.89 896 4 1195.45 800 4

Table 18: Instance 2: solving the retricted master problem (RMP 1) with different time limits within SINSA-NBD.



30 sec. 60 sec. 120 sec. 300 sec.

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($) (min) ($)

137.90 2864 11 53.13 2864 11 50.29 2864 11 24.81 2864 11

171.37 880 4 156.21 880 4 149.22 880 4 138.96 896 4

228.54 640 3 601.31 720 3 224.79 640 3 218.17 640 3

Table 19: Instance 3: solving the retricted master problem (RMP 1) with different time limits within SINSA-NBD.

30 sec. 60 sec. 120 sec. 300 sec.

Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of Excess Staffing No. of

workload cost nurses workload cost nurses workload cost nurses workload cost nurses

(min) ($) (min) ($) (min) ($) (min) ($)

18.63 2096 9 9.16 2096 9 6.40 2096 9 2.55 2096 9

128.89 640 3 128.76 640 3 128.76 640 3 128.76 640 3

Table 20: Instance 4: solving the retricted master problem (RMP 1) with different time limits within SINSA-NBD.



Excess Staffing No. Med-Surg1 Med-Surg2

workload cost of No. of No. of

(min) ($) nurses Reg PRN OT Agen Reg PRN OT Agen

SINSA-BD

32.68 2912 13 3 0 1 0 2 2 3 2

35.37 2784 12 3 0 1 0 1 4 1 2

56.00 1936 9 2 0 0 0 2 1 3 1

59.64 1872 9 3 0 0 0 1 2 3 0

68.07 1856 9 2 0 1 0 2 1 3 0

261.57 976 5 2 0 0 0 1 1 1 0

284.13 960 5 2 0 0 0 1 0 2 0

337.62 880 4 1 0 0 0 1 0 1 1

1132.64 720 3 1 0 0 1 0 0 1 0

1680.28 576 2 0 1 0 0 0 0 0 1

SINSA-LRBD

32.83 3968 17 3 1 0 1 3 2 4 3

35.48 3728 16 3 1 1 1 3 2 2 3

42.12 3648 16 3 0 1 1 3 3 3 2

45.09 3328 15 3 1 2 1 3 2 2 1

54.60 2912 13 3 1 0 0 3 1 2 3

125.21 2768 13 3 0 1 0 3 3 2 1

168.12 2576 12 3 0 0 1 3 1 3 1

172.93 1152 6 2 0 0 0 2 2 0 0

311.06 976 5 2 0 0 0 1 1 1 0

337.68 880 4 1 0 0 0 1 0 1 1

366.12 736 4 1 0 0 0 2 1 0 0

372.14 720 4 1 0 0 0 2 0 1 0

701.54 640 4 1 0 0 0 3 0 0 0

1065.57 560 3 1 0 0 0 1 0 1 0

1127.59 400 2 1 0 0 0 0 0 1 0

1273.56 320 2 1 0 0 0 1 0 0 0

SINSA-NBD

37.89 2992 13 2 1 1 1 3 1 2 2

620.64 800 4 1 0 1 0 1 0 1 0

675.24 560 3 1 0 0 0 1 0 1 0

Table 21: Instance 1 results from solving SINSA with three different approaches.



Excess Staffing No. Med-Surg1 Med-Surg2

workload cost of No. of No. of

(min) ($) nurses Reg PRN OT Agen Reg PRN OT Agen

SINSA-BD

14.14 1936 9 3 0 0 0 2 1 1 2

24.26 1872 9 2 1 0 0 3 1 1 1

33.39 1760 9 3 0 0 0 3 0 2 1

43.87 976 5 1 0 0 0 2 1 1 0

60.48 880 5 1 0 0 0 3 0 1 0

707.45 800 3 1 0 0 0 0 0 0 2

750.17 416 2 1 0 0 0 0 1 0 0

SINSA-LRBD

16.51 1040 5 1 0 1 0 2 0 0 1

24.35 720 4 1 0 0 0 2 0 1 0

26.92 576 3 1 0 0 0 1 1 0 0

42.25 560 3 1 0 0 0 1 0 1 0

90.17 480 3 1 0 0 0 2 0 0 0

481.57 320 2 1 0 0 0 1 0 0 0

SINSA-NBD

12.86 2832 13 2 0 0 0 4 2 3 2

44.22 1456 7 2 1 0 1 2 0 1 0

Table 22: Instance 2 results from solving SINSA with three different approaches.



Excess Staffing No. Med-Surg1 Med-Surg2

workload cost of No. of No. of

(min) ($) nurses Reg PRN OT Agen Reg PRN OT Agen

SINSA-BD

21.71 2944 13 3 1 0 1 1 3 4 0

24.60 2848 12 3 0 1 0 1 3 1 3

30.53 1936 9 3 0 0 0 2 1 1 2

41.63 1872 9 3 0 1 0 1 2 2 0

57.16 1776 9 3 0 0 0 3 1 1 1

63.94 1616 8 2 0 0 0 2 1 3 0

67.67 976 5 2 0 0 0 1 1 1 0

77.65 960 5 2 0 0 0 2 0 0 1

85.88 896 5 2 0 0 0 2 1 0 0

837.54 640 3 1 0 1 0 0 0 1 0

2137.82 400 2 0 0 1 0 1 0 0 0

SINSA-LRBD

20.42 3984 17 3 1 1 0 3 3 2 4

22.57 3968 17 3 1 1 1 3 2 3 3

25.22 3648 16 3 1 0 2 3 2 4 1

27.07 3488 15 3 0 1 3 3 3 1 1

28.19 3472 15 3 0 1 0 3 2 2 4

30.81 3408 15 3 0 1 0 3 3 2 3

32.82 3392 15 3 2 1 1 3 0 3 2

33.54 2912 13 3 1 0 0 3 1 2 3

34.25 2848 13 3 1 1 0 3 2 1 2

38.23 2832 13 3 0 1 0 3 2 2 2

38.72 1216 6 2 0 0 0 1 1 2 0

58.43 1136 6 2 0 0 0 2 1 1 0

59.73 992 5 2 0 0 0 1 2 0 0

61.97 960 5 2 0 0 0 1 0 2 0

77.76 880 5 2 0 0 0 2 0 1 0

132.52 800 4 2 0 0 0 1 0 0 1

133.69 720 4 2 0 0 0 1 0 1 0

242.50 640 4 2 0 0 0 2 0 0 0

577.38 560 3 1 0 0 0 1 0 1 0

SINSA-NBD

24.81 2864 11 1 3 1 0 1 1 0 4

138.96 896 4 1 1 0 0 1 0 0 4

218.17 640 3 1 0 0 0 1 0 0 1

Table 23: Instance 3 results from solving SINSA with three different approaches.



Excess Staffing No. Med-Surg1 Med-Surg2

workload cost of No. of No. of

(min) ($) nurses Reg PRN OT Agen Reg PRN OT Agen

SINSA-BD

8.43 1952 8 1 0 1 1 1 2 1 1

9.00 1856 8 1 0 1 0 2 1 1 2

12.53 1792 8 2 0 0 0 1 2 2 1

13.53 1712 8 1 0 2 0 2 2 1 0

16.36 992 5 1 0 0 0 2 2 0 0

16.88 896 4 1 0 0 0 0 1 2 0

20.77 816 4 1 0 0 0 1 1 1 0

31.67 672 3 1 0 0 0 0 2 0 0

162.13 640 3 1 0 1 0 0 0 1 0

SINSA-LRBD

8.82 3664 15 2 2 1 1 2 2 2 3

8.93 3648 15 2 0 0 0 2 3 4 4

9.26 3584 15 2 1 2 0 2 3 2 3

9.45 3072 13 2 1 1 2 2 1 3 1

9.89 1552 7 2 0 0 0 1 2 1 1

14.02 1056 5 1 0 0 0 1 1 2 0

19.04 816 4 1 0 0 0 1 1 1 0

28.46 560 3 1 0 0 0 1 0 1 0

56.79 480 3 1 0 0 0 2 0 0 0

159.01 400 2 1 0 0 0 0 0 1 0

SINSA-NBD

2.55 2096 9 2 0 0 1 2 1 1 2

128.76 640 3 1 0 0 1 1 0 0 0

Table 24: Instance 4 results from solving SINSA with three different approaches.


