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Abstract

One-class classification problems have attracted a great deal of attention from various disciplines.

In the present study, we attempt to extend the scope of application of the one-class classification

technique to statistical process control (SPC) problems. We propose new multivariate control charts

that apply the effectiveness of one-class classification to improvement of Phase I and Phase II anal-

ysis in SPC. In the proposed control charts, we use a monitoring statistic that represents the degree

of being an outlier as obtained through one-class classification. The control limits of the proposed

charts are established based on the empirical level of significance on the percentile, estimated by the

bootstrap method. A simulation study was conducted to illustrate limitations of current one-class

classification control charts and demonstrate the effectiveness of our proposed control charts.

Keywords: Data Mining; Hotelling’s T 2; Multivariate Process; One-Class Classification Method;

Statistical Process Control.



1 Introduction

Statistical process control (SPC) is one of the widely used techniques for quality control. The basic

objective of SPC is to quickly detect the occurrence of special cause variation, so that the process can

be investigated and corrective action may be taken before quality deteriorates and defective units are

produced (Stoumbos et al., 2000). One of the important tools in SPC is a control chart that monitors

the performance of a process over time to maintain the process in-control. In general, control chart

problems in SPC can be divided into two phases (Woodall, 2000; Woodall and Montgomery, 1999).

Phase I analysis tries to isolate the in-control (baseline) data from an unknown historical data set

and establish the control limits for future monitoring (Zhang and Albin, 2007). Phase II analysis

monitors the process using control charts derived from the “cleaned” in-control data set from Phase

I analysis. With a simple plot of a set of monitoring statistics that are derived from the original

samples, the control chart can effectively determine whether or not a process is in a state of control.

Examples of monitoring statistics include the sample average and the sample range. In addition

to the monitoring statistics, another important component of control charts is control limits, which

often are calculated based on the probabilistic distribution of the monitoring statistic.

Hotelling extended the univariate control chart to handle multivariate problems (Hotelling, 1947).

Hotelling’s T 2 chart (T 2 chart) is a multivariate control chart that can monitor a multivariate process

efficiently. T 2 charts use the T 2 statistic computed from the following equation:

T 2 = (x− x̄)TS−1(x− x̄), (1)

where x̄ and S are a sample mean vector and a sample covariance matrix determined from the

in-control (Phase I) data. The T 2 statistic measures the distance between an observation and

the scaled-mean estimated from the in-control data. Given that x follows a multivariate normal

distribution, the T 2 statistic follows an F distribution (Mason and Young, 2002). In T 2 charts, the

100α% tail-area of an F distribution is used as the control limit, where α is the user-specified level
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of significance. It is known that T 2 charts can effectively control type I and type II error rates when

the underlying distribution of the process data is the multivariate normal distribution (Lowry and

Montgomery, 1995). However, the distributional assumption of T 2 charts restrict their applicability

to the nonnormal data, which can be found in many modern industries. A number of nonparametric

control charts have been developed to address the limitation of the distributional assumptions (Bakir,

2006; Chakraborti et al., 2001; Kim et al., 2007; Liu et al., 2004; Qiu, 2008). However, no consensus

exists about which of them best satisfies all conditions encountered in modern process systems. A

detailed review of nonparametric control charts is beyond the scope of this paper.

As the limitations of current SPC techniques become increasingly obvious in the face of ever

more complex processes, data mining algorithms, because of their proven capabilities to effectively

analyze and manage large amount of data, have the potential to resolve the challenging problems in

SPC. Despite the enormous popularity of data mining studies that have been conducted on a variety

of applications, few efforts have been made to integrate data mining algorithms with SPC (Chinnam,

2002; Cook and Chiu, 1998; Hu et al., 2007; Hwang et al., 2005; Smith, 1994). In particular, one-class

classification methods share a common goal with control charts because both methods assume that

the in-control group (target group) is the only population and can be used for measuring the degree

of abnormality of new observations. Several studies have been undertaken recently with the goal

of implementing one-class classification algorithms as an alternative to traditional control charts.

Sun and Tsung (2003) proposed kernel distance-based charts (K charts) based on a support vector

data description (SVDD) algorithm. SVDD is a modified version of the original support vector

machines (SVMs) for solving one-class classification problems. K charts use a monitoring statistic

derived from the distance between the new observation and the decision boundary generated by the

SVDD algorithm. The control limits of K charts are established and adjusted from a parameter in

the SVDD algorithm. Sun and Tsung’s study revealed that K charts perform better than T 2 charts

when the data deviate from normality. Kumar et al. (2006) used another one-class SVM technique to
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construct robust K charts through normalized monitoring statistics. They showed that, in addition to

the flexibility of nonnormal data, robust K charts can efficiently handle autocorrelated process data.

Further, one-class SVM-based control charts have been applied to detect anomalies in computer-

networking applications (Zhang et al., 2007). It is clearly laudable that the aforementioned studies

proposed to use the monitoring statistic from the one-class SVM method. Thus, the construction of

the charts does not require any distribution assumptions. However, they did not suggest an efficient

way to establish the control limits, one of the major components in control charts.

This paper makes contributions in two aspects. First, we propose an efficient way to establish

the control limits necessary to improve the existing one-class SVM-based control charts. Second, we

propose new one-class classification-based control charts based on a k-nearest algorithm. Simulation

studies were conducted to demonstrate the effectiveness of the proposed approaches in both the

Phase I and Phase II analyses.

2 Support Vector Data Description (SVDD)-Based Control Charts

2.1 The SVDD Algorithm

An SVM is one of the supervised learning algorithms popularly used for both regression and classi-

fication problems. SVMs use geometric properties and obtain a separating hyperplane by solving a

convex optimization problem that simultaneously minimizes the generalization error and maximizes

the geometric margin between the classes (Vapnik, 1998). Nonlinear SVM models can be constructed

from kernel functions such as linear, polynomial, and radial basis functions, etc. SVDD is a mix-

ture of SVM and the data description method for solving one-class classification problems (Tax and

Duin, 2004). SVDD provides a hypersphere boundary around the data. A brief summary of the

SVDD algorithm is as follows: Let a be the center of the hypersphere. Let R2 be the radius of the

hypersphere (i.e., the distance from a to the boundary). Let xi = [xi1, xi2, . . . , xip]T , for i = 1, 2,
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. . ., N be a sequence of p-variate training (target) observations. SVDD boundaries are constructed

to minimize the volume of the hypersphere while maximizing the training observations captured by

the hypersphere (Tax and Duin, 2004). That is, the problem is to:

Minimize R2 + C

N∑

i=1

ξi, (2)

with the constraint:

‖xi − a‖2 ≤ R2 + ξi, (3)

where ξi > 0 is the slack variable that allows x to be outside the hypersphere. R2 is the distance

from a to the boundary of the hypersphere. C controls the trade-off between the volume of the

hypersphere and the misclassification errors. Tax and Duin (2004) defined a user-specified parameter

f that represents the fraction of the training data outside the decision boundary.

f =
1

NC
, (4)

where N is the number of target observations. For instance, 80% of the training data points are

supposed to be included in the SVDD boundary constructed with f = 0.20. When f is increased

from 0.20 to 0.30, the volume of the hypersphere becomes smaller but the misclassification error in

the target class becomes larger.

The problem in (2) can be solved by the following Lagrangian:

L(R,a, αi, γi, ξi) = R2 + C

N∑

i=1

ξi −
N∑

i=1

αi{R2 + ξi − (‖xi − a‖2)} −
N∑

i=1

γiξi, (5)

where αi ≥ 0 and γi ≥ 0 are the Lagrange multipliers. Setting partial derivatives of L with respect

to R, a, and ξi and set to zero provides the following constraints:

N∑

i=1

αi = 1, (6)

a =
N∑

i=1

αixi, (7)
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αi = C − γi. (8)

When substituting these constraints to (5), the optimization problem becomes:

L =
∑

i

αi(xi · xj)−
∑

ij

αiαj(xi · xj). (9)

The solution, the set of αi, i = 1, 2, . . . , N , can be obtained by maximizing (9) subject to 0 ≤ αi ≤ C

and
∑N

i=1 αi = 1.

Like conventional SVM, the SVDD algorithm can generate more flexible decision boundaries by

replacing inner product with kernel functions. For example, the following Gaussian kernel function

can be replaced with the inner product in (9):

K(xi · xj) = exp(−‖xi − xj‖
S2

), (10)

where S > 0 is the width of the Gaussian kernel that controls the complexity of the SVDD boundary.

Given a testing data point z, D2 that measures the distance between z and the center, a can be

calculated by the following equation:

D2 = K(z · z)− 2
∑

i

αiK(z · xi) +
∑

ij

αiαjK(xi · xj). (11)

For classification, a new observation z is classified as the target when D2 is less than or equal to R2.

To illustrate the control boundaries of SVDD, we generated a banana-shaped data set using a

MATLAB code available from PRTools (Duin et al., 2007). The control boundaries with different

values of parameters (f and S) in the SVDD algorithm were constructed from 180 in-control training

observations (i.e., Phase I data). Figure 1 shows different SVDD boundaries embedded in two-

dimensional plots of Phase I data. It can be seen from Figures 1 (a), (b), and (c) that given the

same f value (f=0.01), the shape of the control boundary becomes smoother with larger S. One

can choose an appropriate S that balances a tradeoff between oversmoothness and undersmoothness

of the control boundary. In the present study, we tried some potential values of S and find the one

that yields the smallest type I and type II error rates. Given the same S value (S=3), Figures 1 (c),
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(d), (e), and (f) show that the control boundary becomes tighter to the volume centroid with the

larger f .

2.2 Existing Control Chart Methods based on the SVDD Algorithm

Several studies have implemented one-class classification methods in SPC problems. Sun and Tsung

(2003) proposed K charts to handle nonnormality problems by using the kernel distances obtained

from the SVDD algorithm. They proposed to establish and adjust the control limits of the K chart

by using f (or C), one of the parameters of the SVDD algorithm. Kumar et al. (2006) proposed

robust K charts, which are similar to K charts but use normalized kernel distances. One-class SVM-

based control charts were applied for anomaly detection in computer networks (Zhang et al., 2007).

Although the aforementioned control charts use slightly different monitoring statistics, they are all

based on the one-class SVM method.

One-class SVM (OC-SVM)-based control charts can be constructed by plotting monitoring statis-

tics (D2) that measure the distance between new observations and the center of the hypersphere.

The control limits (R2) of OC-SVM charts are determined by f (or C). In other words, error rates

in OC-SVM charts are adjusted by f . Large f values tend to yield a larger type I error rate because

the algorithm utilizes less training data inside the boundary.

Figure 2 displays a T 2 chart and two OC-SVM charts corresponding to the control boundaries

in Figures 1 (b) and (c). In these figures, the monitoring statistics of 400 Phase II data were plotted

(the first 360 are in control and the last 40 are out of control). Note that the control limits of

these charts were established by 180 Phase I data. In OC-SVM charts, it is interesting to observe

that the user-specified f value affects not only the determination of the control limits, but also the

calculation of the monitoring statistic. Note that two totally different control charts were obtained

by the changing the value of f from 0.01 to 0.20 (Figures 2 (c) and (d)). This clearly demonstrates

that f is inappropriate for establishing the control limits in OC-SVM charts. This limitation can
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be explained by Figure 1, showing that completely different control boundaries were obtained by

changing the value of f from 0.01 to 0.20. As a consequence, an observation detected as out of

control (or in control) may no longer be detected as out of control (or in control) as a reaction to the

use of different values of f . In contrast, T 2 charts use the controlling value α that is independent of

the monitoring statistic, T 2. Thus, the ellipse boundary of T 2 always captures more out-of-controls

and yields a higher type I error rate with a larger α (Figures 1 (b) and (c)). Further, the same values

of monitoring statistics are plotted in the T 2 chart regardless of α (Figure 2 (a)).

2.3 New Design Strategy of OC-SVM Charts Based on the Bootstrap

To address the limitation of the current OC-SVM control charts, we propose a new design strategy

to establish the control limits in OC-SVM charts. We call the proposed chart D2 charts. The

control limits of D2 charts are established and adjusted based on a percentile value, estimated by

the bootstrap method. The bootstrap is one of the widely used resampling methods to provide

statistical estimates when the population distribution is unknown (Efron and Tibshirani, 1993).

In traditional control charts, the control limits are determined based on the underlying distri-

bution of the monitoring statistic with the user-specified value (e.g., type I error rate). In contrast,

the distribution of monitoring statistic of a D2 chart is unknown due to its nonparametric nature.

This motivates us to develop an appropriate nonparametric procedure to establish the control limit.

First, D2 values (monitoring statistics) of Phase I observations of size N are obtained through the

SVDD algorithm. Second, we take B bootstrap samplings and compute the percentile values of

interest from each bootstrap sample of size N drawn with replacement from D2 values of Phase I

observations. Finally, the control limit is determined by taking average of B percentile values.

The following is a more explicit description of the bootstrap procedure to establish the control

limits of the D2 chart:

1. Compute the D2 statistics of Phase I observations of size N using (11) and generate B inde-
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Figure 1: Control boundaries of SVDD obtained from different values of parameters
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pendent bootstrap samples. Let D2
j1, D

2
j2, . . . , D

2
jN be a sequence of N D2 statistics from the

jth bootstrap sample (for j = 1, ..., B).

2. For each bootstrap sample, given a user specified α (0 < α ≤ 1) and the ordered D2 values

(D2
j(1) < D2

j(2) < · · · < D2
j(N)), D2

j(i) is the ith largest value of N D2 values in the jth bootstrap

sample where i is a roundup number of N · α.

3. Calculate the control limit (CL) by taking average of the ith largest values (i.e., 100 · (1−α)th

percentile values) in each of B bootstrap samples: CL=
∑B

j=1 D2
j(i)/B.

4. Monitoring Phase II observations: Declare the observations out of control if the corresponding

D2 values exceed the control limit.

Figure 3 displays the D2 chart and the corresponding control boundary. In the D2 control chart,

180 in-control observations were used to estimate the control limits (bootstrap-based 99th and 80th

percentiles of the D2 statistics) and 400 D2 statistics from Phase II observations were plotted. Figure

3 (b) shows the corresponding control boundary generated from the D2 chart in Figure 3 (a). It

can be seen that by increasing the α value from 0.01 to 0.20, more out-of-control observations were

detected.

3 k-Nearest Neighbors Data Description (kNNDD)-Based Control

Charts

The SVDD algorithm involves an optimization problem that requires a high computational load

during the training process. The SVDD algorithm requires around 4.06 hours in one of our machines

to train the model using 4,000 bivariate observations. Because of the high computational cost, D2

charts may not be efficient for a process that needs frequent retraining. In order to address this

computational burden, we propose a new one-class classification-based control chart called a K2
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chart. The algorithm used in a K2 chart requires about 5.42 seconds (on the same machine as

the SVDD algorithm) to complete 4,000 bivariate training observations. K2 charts are based on a

k-nearest neighbors data description (kNNDD) method that solves one-class classification problems

by estimating the local density of the data using a nearest neighbors algorithm (Breunig et al., 2000;

Tax, 2001). A brief description of the kNNDD algorithm is presented in the following section.

3.1 kNNDD Algorithm

Let NNi(z) be the ith nearest neighbor training observation of a data point z that needs to be

classified (or monitored). Let V be the volume of the hypersphere containing i nearest neighbor

training observations. Let N be the size of the training set. The local density of z can be determined

by:

d(z) =
i/N

V ‖z−NNi(z)‖ . (12)

Similarly, the local density of NNi(z) can be determined by:

d(NNi(z)) =
i/N

V ‖NNi(z)−NNi(NNi(z))‖ , (13)

where NNi(NNi(z)) is the ith nearest neighbor of NNi(z) in the same training set. The kNNDD

algorithm classifies z as the target class when the ratio of its local density of z (12) to the local

density of NNi(z) (13) is greater than or equal to 1, which can be explained as follows:

d(z)
d(NNi(z))

=
‖NNi(z)−NNi(NNi(z))‖

‖z−NNi(z)‖ ≥ 1. (14)

To make the algorithm more robust, the average of k distances is considered (for i = 1, ..., k). Thus,

(14) becomes:
∑k

i=1 ‖NNi(z)−NNi(NNi(z))‖∑k
i=1 ‖z−NNi(z)‖

≥ 1. (15)

In the kNNDD algorithm, the size of nearest neighbor, k, affects its performance. Figure 4 displays

the control boundaries obtained by kNNDD with two different values of k. Decision boundary with
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k = 30 is fairly smooth compared to the control boundary obtained by using k = 2. One can search

possible values of k and find an appropriate one that compromises a tradeoff between oversmoothness

and undersmoothness of the control boundary. A previous study indicated that the proper range of

k in the kNNDD algorithm is between 10 to 50 (Breunig et al., 2000).

3.2 K2 Charts

To construct K2 charts, the average distance between z and k nearest observations is calculated as

follows:

K2 =
∑k

i=1 ‖z−NNi(z)‖
k

. (16)

K2 values are then used as monitoring statistics. The control limits of a K2 chart are obtained by

the bootstrap percentile procedure as we proposed in D2 charts (Please see Section 2.3). Here is the

detailed summary of the bootstrap percentile procedure for K2 charts.

1. Compute the D2 statistics of Phase I observations of size N using (11) and generate B inde-

pendent bootstrap samples. Let K2
j1,K

2
j2, . . . , K

2
jN be a sequence of N K2 statistics from the

jth bootstrap sample (for j = 1, ..., B).

2. For each bootstrap sample, given a user specified α (0 < α ≤ 1) and the ordered K2 values

(K2
j(1) < K2

j(2) < · · · < K2
j(N)), K2

j(i) is the ith largest value of N K2 values in the jth bootstrap

sample where i is a roundup number of N · α.

3. Calculate the control limit (CL) by taking average of the ith largest values (i.e., 100 · (1−α)th

percentile values) in each of B bootstrap samples: CL=
∑B

j=1 K2
j(i)/B.

4. Monitoring Phase II observations: Declare the observations out of control if the corresponding

K2 values exceed the control limit.

Figure 5 displays the K2 chart (k=30) and the corresponding control boundary from the banana-

shaped data set. Two different control limits were calculated by estimated percentiles (99th and
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80th) from 5,000 bootstrap samples of 180 K2 statistics. For monitoring Phase II observations, the

K2 value of each Phase II observation was plotted. Figure 5 (b) displays the control boundaries

corresponding to the control limits embedded in a two-dimensional plot of the Phase II observations,

showing that control charts become more sensitive as α increases.

4 Simulation Study

4.1 Simulation Setup

A simulation study was conducted to compare the performance among D2, K2, T 2, and OC-SVM

charts. We generated the data based on the bivariate normal, bivariate t, and bivariate gamma and

a banana-shaped data set. For D2 and OC-SVM charts, we used the width of Gaussian kernel, S=1

for the normal, t, and gamma cases and S=3 for the banana-shaped data. For K2 charts, we used

k=30. One thousand Phase II observations (900 in-control and 100 out-of-control) were monitored

based on the control limits that were established by 200 Phase I observations. Let µ0 and Σ0 be the

mean vector and the covariance matrix of the in-control data. Let µ1 = µ0 + δ be the mean vector

of the out-of-control data. The magnitude of the shift δ is represented by the following noncentrality

parameter λ:

λ =
√

δTΣ-1
0 δ. (17)

To generate the out-of-control data for the bivariate normal, bivariate t, and bivariate gamma

distributions, two types of mean shifts (i.e., the medium mean shift λ = 2 and the large mean shift

λ = 3) were considered. At a certain value of λ, all variables are shifted equally. Note that we do not

consider the change in variance. We generated two different angles of banana shapes that represent

the in-control and out-of-control data (please see Duin et al., 2007, for more details on generating

the banana-shaped data set). The summary of simulation scenarios is described as follows:

• N2, λ = 2: The medium-mean-shift case of the bivariate normal distribution with
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µ0 =
[

0 0

]
and Σ0 =




1 .35

.35 1


.

• N2, λ = 3: The large-mean-shift case of the bivariate normal distribution with

µ0 =
[

0 0

]
and Σ0 =




1 .35

.35 1


.

• t2(3), λ = 2: The medium-mean-shift case of the bivariate t distribution with three degrees of

freedom.

• t2(3), λ = 3: The large-mean-shift case of the bivariate t distribution with three degrees of

freedom.

• Gam2(1, 1), λ = 2: The medium-mean-shift case of the bivariate gamma distribution with the

shape and scale parameters, where both of them are one.

• Gam2(1, 1), λ = 3: The large-mean-shift case of the bivariate gamma distribution with with

the shape and scale parameters, where both of them are one.

• Banana-Shaped: A banana-shaped data set with two different angles.

4.2 Control Limits

In contrast to existing OC-SVM charts that use the parameter f of the SVDD algorithm to adjust

the control limits, the control limits of D2 and K2 charts are adjusted by the percentile, which is

estimated by the bootstrap method. Figures 6 and 7 show how actual type I and type II error

rates in the D2, K2, T 2, and OC-SVM charts are controlled by the controlling factors (α or f),

indicated in the x-axes. We used the average values of actual type I and type II error rates from 100

simulation runs. The standard errors of 100 simulations are relatively small (between .02 and .06),

demonstrating that 100 simulations are enough to draw the meaningful conclusion. We presented

the results for only N2 and Gam2(1, 1) scenarios, respectively, as examples of normal and nonnormal
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cases. In general, as the controlling factor increases, all control charts produced larger type I error

rates but produced smaller type II error rates. The particularly strong positive correlation between

the actual type I error rate and the controlling factor is desired. The proposed D2 and K2 charts

satisfy this condition in both normal and nonnormal cases, but T 2 charts satisfy this condition in

only normal cases. In both normal and nonnormal cases, OC-SVM charts failed to provide strong

linear correlation between the actual type I error rate and the controlling factor. Moreover, type I

and type II error rates may not be properly controlled by f as the size of target observations goes up

in OC-SVM charts. Figure 8 shows OC-SVM charts, constructed from the N2 with λ = 2 scenario

using 300 and 400 target observations. It can be observed that type I and type II error rates seem

to be constant over the different values of f . As we defined earlier in (4), f represents the fraction of

the target data outside the decision boundary and has an inverse relationship with the total number

of target observations. Thus, with the large number of target observations, the fraction of the target

data (f) plays a little role in changing the control boundary, leading to relatively constant type I

and type II error rates. These demonstrate that f is an inappropriate choice as the controlling factor

in OC-SVM charts.

4.3 Performance Comparisons

The average values of type I and type II error rates from 100 simulation runs among D2, K2, T 2,

and OC-SVM charts were compared. The control chart that yields a lower type II error rate is

considered a better method if the type I error rate is similar. Figures 9 displays the average rates of

type I and type II error under all the simulation scenarios studied.

The result shows that the D2 and K2 charts produced smaller type II error rates than the T 2

chart, given similar type I error rates in the gamma and banana-shaped data scenarios. In the

normal and t cases, all methods provide comparable performances. The range of standard errors

of 100 simulation is between .02 and .08 for the normal, t, and Gamma cases, while much larger
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Figure 5: The K2 chart and the corresponding control boundary
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(a) D2 chart
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(c) T 2 chart
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(d) OC-SVM chart

Figure 6: Average type I and type II error rates from D2, K2, T 2, and OC-SVM charts (N2 with λ

= 2 scenario)
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(b) K2 chart
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(c) T 2 chart
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(d) OC-SVM chart

Figure 7: Average type I and type II error rates from D2, K2, T 2, and OC-SVM charts (Gam2(1, 1)

with λ = 2 scenario)
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(a) Using 300 Phase I Observations
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(b) Using 400 Phase I Observations

Figure 8: Average type I and type II error rates from OC-SVM charts when the number of Phase I

observations is large (N2 with λ = 2 scenario)
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(b) N2 with λ = 3 scenario
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(c) t2(3) with λ = 2 scenario
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(d) t2(3) with λ = 3 scenario
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(e) Gam2(1, 1) with λ = 2 scenario
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(f) Gam2(1, 1) with λ = 3 scenario
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(g) Banana-shaped scenario

Figure 9: Type I and type II error rates of the D2, K2, T 2, and OC-SVM charts under the simulation

scenarios studied

18



standard errors were obtained from OC-SVM (between .10 and .26). It should be noted that OC-

SVM charts produce very irregular type II error rates over type I error rates. Consequently, it is

difficult to compare the performance of OC-SVM with other charts.

5 Phase I Application of D2 and K2 Charts

Phase I analysis separates the in-control data from the historical data set, which is a mixture of

the in-control and out-of-control data, in order to establish the reliable control limits for monitoring

future observations. A simulation study was conducted to show the applicability of D2 and K2

charts for Phase I problems. We compared the performance of the D2 and K2 charts with the

existing Phase I method that recursively removes the observations that exceed the control limits

until no out-of-control observations are detected. In multivariate processes, this recursive procedure

is performed by the Hotelling’s T 2 control chart in the Phase I application (Montgomery, 2005).

We generated 200 historical observations from the bivariate normal, bivariate t, and bivariate

gamma distributions and a banana-shaped data set. We assigned 20 observations (out of 200) to

be out of control where two different noncentrality parameters, λ=2 and λ = 3, were used for the

bivariate normal, bivariate t, and bivariate gamma distributions. For the banana-shaped data set,

two different angles of banana shapes were used to represent the in-control and out-of-control data.

The D2 and K2 charts were constructed with all 200 observations. The control charts removed the

historical observations in which the statistics exceed the control limits. Analogous to D2 and K2

charts for Phase II analysis, 100 × (1 − α)th bootstrap percentiles of the D2 and K2 statistics of

the historical data were used as control limits in Phase I analysis. The remaining observations were

defined as in control. The observations that were actually in control but incorrectly removed were

type I errors. The remaining observations that were actually out of control were type II errors.

We compared the performances of the D2 and K2 charts with the recursive T 2 in terms of

type I and type II error rates (average values from 100 simulation runs). Table 1 shows that the
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performances of the D2 and K2 charts are slightly better than recursive T 2 under the normal

and t scenarios but they are comparable. Because the Hotelling’s T 2 chart can effectively handle

multivariate normal data, the recursive T 2 is also an appropriate method in normal distribution cases

of Phase I analysis. However, in the gamma and banana-shaped data scenarios, the D2 and K2 charts

produced smaller type II error rates than the recursive T 2 method. This clearly demonstrates that

D2 and K2 charts are effective approaches to use for Phase I analysis in both normal and nonnormal

cases.

6 Conclusions

We have proposed new multivariate control charts based on one-class classification algorithms. The

proposed D2 and K2 charts obtain their monitoring statistics from the SVDD and kNNDD al-

gorithms. The control limits are derived from the bootstrap-estimated percentile of monitoring

statistics. The proposed control charts, because of their data-driven nature, can effectively describe

reality, reflect the unique characteristics of the data being monitored, and require a minimal set of

assumptions to construct a control chart. The comparative study from the simulated data shows

that performances of the D2 and K2 charts were comparable to T 2 charts in the normal distribution

case. However, D2 and K2 charts outperformed T 2 charts in nonnormal distribution cases. More-

over, we demonstrated the applicability and effectiveness of the D2 and K2 chart techniques for

Phase I problems. There are several interesting directions for future research. One such direction is

to extend our study to other one-class classification methodologies. Further research also can develop

more efficient ways to establish control limits. A more comprehensive simulation study should be

conducted to evaluate the efficacy and consequences of various scenarios, including the impact of

variance changes.

20



Table 1: Average values of type I error rate (α) and type II error rate (β) of the D2 chart, the

K2 chart, and the recursive T 2 in Phase I application (average values of standard errors are shown

inside the parentheses)

D2 K2 T 2

Scenarios α β α β α β

N2, λ = 2 .1869 .3630 .1829 .3485 .1892 .3865

(.0128) (.0994) (.0124) (.1065) (.0566) (.1354)

N2, λ = 3 .2124 .0800 .2183 .0825 .2137 .0915

(.0103) (.0674) (.0097) (.0561) (.0664) (.0810)

t2(3), λ = 2 .2219 .6830 .2144 .6790 .2248 .7165

(.0119) (.0932) (.0122) (.0970) (.0426) (.1071)

t2(3), λ = 3 .2038 .6290 .1995 .6375 .2069 .6230

(.0132) (.0949) (.0126) (.1013) (.0444) (.1436)

Gam2(1), λ = 2 .1996 .2410 .2101 .2825 .2089 .3250

(.0171) (.1307) (.0140) (.1196) (.0596) (.1969)

Gam2(1), λ = 3 .2204 .0380 .2208 .0715 .2335 .1200

(.0100) (.0556) (.0116) (.0905) (.0781) (.1482)

Banana-Shaped .1751 .1680 .1771 .0865 .1791 .2380

(.0118) (.0886) (.0127) (.0721) (.1026) (.1211)
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