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Abstract The health care system in the United States has a shortage of nurses. A careful
planning of nurse resources is needed to ease the health care system from the burden of
the nurse shortage and standardize nurse workload. An earlier research study developed a
data-integrated simulation to evaluate nurse-patient assignments (SIMNA) at the beginning
of a shift based on a real data set provided by a northeast Texas hospital. In this research,
with the aid of the same SIMNA model, two policies are developed to make nurse-to-patient
assignments when new patients are admitted during a shift. A heuristic (HEU) policy as-
signs a newly-admitted patient to the nurse who has performed the least assigned direct care
among all the nurses. A partially-optimized (OPT) policy seeks to minimize the difference
in workload among nurses for the entire shift by estimating the assigned direct care from
SIMNA. Results comparing HEU and OPT policies are presented.

Keywords Nurse Assignment · Patient Assignment · Simulation-Based Optimization

1 Introduction

The health care system in the United States is severely strained because of a shortage of
nurses and nurse burnout [53, 53]. Health care policy makers have responded to this crisis in
many ways. For instance, significant financial resources were made available to expand nurs-
ing education during last few years [22, 26]. Recently, hospitals have been actively thinking
of strategies to recruit and retain nurses. Such strategies often call for a state-of-the-art work
environment and easy access to career development. A Wall Street Journal article reports a
projected spending of $200 billion on construction and renovation of hospitals through 2014
[33]. As part of developing nursing careers, hospitals are launching residency programs and
short-term courses enabling easy access for working nurses [11]. Due to commendable effort
in different initiatives, there are early signs of the easing of the nurse shortage in selected
hospital systems [44].

While significant progress has been made in different aspects of nursing, few efforts
have been made to manage nurse-to-patient assignments and balance nurses’ workload for
a given shift. In an earlier research, Sundaramoorthi et al. [50] developed a data-integrated
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simulation to evaluate nurse-patient assignments (SIMNA) at the beginning of a shift based
on a real data set provided by a northeast Texas hospital. SIMNA utilized tree-based models
and kernel density estimation to extract important knowledge from the real data set. In this
current research two policies are developed to make nurse-to-patient assignments for newly
admitted patients during a shift and they are evaluated with the aid of the SIMNA model.

There are two major contributions made in this research:

– During a shift when new patients arrive, nurse supervisors often assign the new patient to
the nurse who has the least number of patients. This way of assignment may not balance
the workload of nurses for the entire shift. This research enhances SIMNA by adding
a feature that assists in assigning a nurse to a newly admitted patient during a given
shift. The enhanced SIMNA model can aid nurse supervisors to make better decisions
by simulating different new-patient assignment policies and quantifying the workload
measures from them.

– This research develops and compares a partially-optimized policy (OPT) with a heuristic
policy (HEU) to make nurse-to-patient assignments when new patients are admitted
during a shift. The HEU policy assigns a newly-admitted patient to the nurse who has
performed the least assigned direct care among all the nurses 15 minutes prior to a new
patient admission; while the OPT policy seeks to minimize the difference in workload
among nurses for the entire shift by estimating the assigned direct care from SIMNA.

The rest of this paper is organized as follows. In Section 2, a literature review on nurse
resource planning and simulation-based optimization is provided. In Section 3, a brief re-
view of the SIMNA model is provided. In Section 4, the assignment policies OPT and HEU
are developed. Section 5 compares the assignment policies (OPT and HEU) using SIMNA.
In Section 6, concluding remarks and future research directions are presented.

2 Literature Review

There are two major components in this research−−−nurse resource planning and simulation-
based optimization. This section gives a brief literature review on these two topics.

2.1 Nurse Resource Planning

Nurse burnout issue in health care was reported as early as 1979 [49]. Cullen [13] identi-
fied the factors that were embedded within health care, institutional, societal, and nursing
systems that caused stressful conditions and burnout for nurses. As a result of burnout,
nursing profession has a chronic problem of high turnover, absenteeism, and reduced pro-
ductivity [12, 45]. Staffing level is one of the key factors that contribute to the nurse burnout
[13, 20, 49]. Staffing levels were also found to have a positive correlation with the patient
outcomes [23]. In the last couple of decades, several research works addressed determining
staffing levels and schedules. Miller et al. [39] developed a constraint-based, artificial intelli-
gence nurse scheduling prototype by incorporating nurses’ preferences for Rouen University
Hospital. Jaumard et al. [27] presented a 0-1 column generation method for nurse schedul-
ing by maximizing the nurse preference and team balance, and minimizing the total nurse
salary for the schedule. Bard and Purnomo [3] formulated and solved the nurse schedul-
ing problem as a multi-objective problem which considered individual nurse’s preference.
Punnakitikashem et al. [42] formulated a stochastic programming problem to assign nurses
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to patients while balancing the nurse workload and solved it using Bender’s decomposition
approach. Vericourt and Jennings [52] determined nurse-to-patient assignment ratios utiliz-
ing queuing theory. Sundaramoorthi et al. [50] developed the SIMNA model to evaluate
nurse-to-patient assignments policies by considering hospital specific factors. Mullinax and
Lawley [40] developed an acuity system for a neonatal intensive care unit to determine nurs-
ing care for each patient and assigned them to nurses by balancing nurse workload using an
integer linear program. In the past couple of decades, several patient classification systems
and acuity systems were developed to aid determination of nursing care, staffing level, and
schedule ahead of a shift [7, 8, 17, 24, 29, 37, 55]. It has to be noted that four levels of acuity
were considered in this research depending upon the amount of care received by the patients
in the north Texas hospital. The top 25 percent of patients who needed the most nursing care
was given an acuity level of four while the bottom 25 percent got an acuity level of one. The
other two groups got acuity levels two and three. None of the patient classification systems
and acuity systems went as far as assigning patients to nurses for a given shift. To the best
of our knowledge, apart from this research, only Punnakitikashem et al. [42], Vericourt and
Jennings [52], Mullinax and Lawley [40], and Sundaramoorthi et al. [50] address the nurse
to patient assignment problem. This research extends the SIMNA model of Sundaramoorthi
et al. [50] by embedding nurse-to-patient assignments policies for new patient admits during
a shift. A brief review of SIMNA is provided in Section 3.

2.2 Simulation-Optimization models

Studying industrial systems using simulation was prevalent as early as the late 1950’s and
early 1960’s. Simulation modeling has been used to study a wide range of problems in health
care [14, 16, 30, 36, 48]. In recent years, Zenios et al. [56], Kreke et al. [32], and Shechter
et al. [46] utilized simulation models even to study organ allocation systems. A comprehen-
sive review of health care simulation models can be found in Klein et al. [31] and Jun et al.
[28]. In the literature, most of the health care simulations modeled patient flow and analyzed
patient scheduling, admissions, routing, and availability of resources. Very few simulation
research works like Duraiswamy et al. [15], McHugh [38], and Sundaramoorthi et al. [50]
had staffing as the primary focus. In recent years, combining simulation and optimization
has been made possible due to powerful computers. In simulation-optimization, the goal is to
find simulation inputs (decision variables) in the allowable range (constraints) that optimize
an objective function expressed in terms of the simulation outputs. For a comprehensive re-
view of different simulation-based optimization methods refer to Fu [18], Fu and Hu [19],
Hurrion [25], Law and Kelton [34], Law and McComas [35], Olafsson and Kim [41], and
Robinson [43]. Simulation-based optimization is still at its early stages of development and
to the best of our knowledge this is the first research that utilizes simulation-based optimiza-
tion to address nurse-to-patient assignments.

3 SIMNA Review

Sundaramoorthi et al. [50] developed SIMNA based on the data set obtained from a north-
east Texas hospital. At the northeast Texas hospital, each nurse wears a locating device
that transmits data to a repository from where the data was collected for this research. The
hospital also provided information on admit dates, discharge dates, room numbers, and di-
agnoses for each patient. The data set with 570,660 observations contained information on
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nurse movements and patient characteristics of a Medical/Surgical care unit. The following
variables were included in the data set:

1. Current location and previous two locations for each nurse.
2. Time spent in each nurse visit to a location.
3. Nurse types.
4. Shift.
5. Hour.
6. Diagnoses codes of patients in each patient room.
7. Acuity levels of patients in each patient room.
8. Nurse-to-patient assignment.

SIMNA utilized four classification trees to estimate probability distributions of nurse
movements based on the current state of the system determined from the above listed vari-
ables; while a regression tree with kernel density estimates in each terminal node estimated
the amount of time spent by nurses at different locations for any given simulation state in
SIMNA. The simulation process, which involves repeated traversing of the tree structures,
was written in C++.

The first use of SIMNA was to assess the balance of nurse workload that results from the
nurse-to-patient assignment policies at the beginning of a shift. Specifically SIMNA tested
four assignment policies: clustered, heuristic, stochastic program, and random assignments.
In the clustered assignment, patients were assigned by location; that is, patients in consecu-
tive rooms were assigned to the same nurse. In the heuristic assignment, all of the nurses got
the same number of patients when the number of nurses divides into the number of patients
evenly. The patient with the highest expected direct care time was arbitrarily assigned to a
nurse. The patient with the second highest expected direct care time was then arbitrarily as-
signed to a second nurse, and so on. After assigning one patient for each nurse, in the second
cycle of assignments, the patient with the lowest expected direct care time was assigned to
the first nurse. The patient with the second lowest expected direct care time was assigned to
the second nurse, and so on. This process of assignment was repeated until all of the patients
were assigned. The stochastic program assignments were obtained from Punnakitikashem
et al. [42]. Finally, the random assignment assigned equal number of patients to nurses ran-
domly. The four policies were compared by quantifying each nurse′s total assigned direct
care (TADC), total unassigned direct care (TUADC), total direct care (TDC), and walk time.
Then max-min ratios of these quantities were calculated as performance measures to esti-
mate the level of balance in workload among nurses. A test problem in Sundaramoorthi et al.
[50] resulted in a superior performance of the clustered assignments among all assignments
from the four policies. It should be noted that the superior performance of the clustered as-
signments is confined to the test problem and could differ for other problems. The purpose
of SIMNA in Sundaramoorthi et al. [50] was to help hospital managements evaluate differ-
ent assignment policies prior to a given shift and aid them decide the policy they would like
to adapt for that shift. Identifying desirable nurse-to-patient assignment policies at the be-
ginning of the shift for different circumstances would require designing an experiment with
large number of treatments (discussed in Section 6) and would be an interesting research by
itself. SIMNA utilized structures and pointers to reconstruct tree structures, and efficiently
executed the simulation of an entire shift. It took less than three minutes on a Dual 2.4-
GHz Intel Xeon Workstation to run 1000 scenarios of the shift when the above four policies
were tested to evaluate the balance in nurse workload at the beginning of the shift. A proto-
type consisting SIMNA was evaluated by two groups of registered nurses enrolled in a north
Texas University. 73% of them liked to utilize such a prototype in their work place. Based on
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their feedback SIMNA was enhanced by including acuity levels and more diagnoses codes.
Refer to Baker et al. [2] for more information about the feedback obtained from the evalua-
tion. In this research, we utilize the same SIMNA model to develop new-patient assignment
policies in order to help the hospital management determine nurse-to-patient assignments
when new patients are admitted during a shift. Similar to the assignments at the beginning
of the shift, SIMNA produced the new-patient assignment results of 1000 scenarios, dis-
cussed in Section 5, in less than three minutes. Hence, it is possible to use this tool in real
time to make nurse-to-patient assignment decisions when new patients are admitted.

4 Simulation-Based Optimization

4.1 Markov Decision Problem

Unlike Sundaramoorthi et al. [50], which evaluated initial assignments at the beginning of
a shift, the topic of the present research is the assignment of new-patient admissions during
the shift. It is assumed in this research, and also common in reality, that the time of admit,
patient diagnosis, and patient acuity are known to the decision maker at least 15 minutes
prior to the actual admission. A simple decision rule is to simply assign a newly-admitted
patient to the nurse who had the least TADC among all the nurses 15 minutes prior to a
new patient admission. This is referred to as the heuristic policy HEU. It has to be noted
that the HEU policy is different from the initial assignment heuristic policy presented in
Sundaramoorthi et al. [50].

More complex to develop is an optimized decision rule. Recently, formulating and solv-
ing Markov decision problems using a simulator have become common and successful
[6, 21]. A typical Markov decision problem (MDP) would have the following components:

1. State: The state describes the status of a system under consideration. For example, spe-
cific values of the shift, the time of day, the nurse type, the current and previous locations
of the nurse, the nurse-patient assignments, the patient diagnosis, the patient acuity, and
the patient location variables can be considered as the state that describes our nurse-
patient system.

2. Action: This is the decision that we desire to optimize. Our decision is the assignment
of a newly admitted patient to a nurse.

3. Transition Probability: Transition probabilities determine transitions of the system from
one state to another. Assume an action a selected for state i transfers the system to
state j with probability p(i, a, j), this quantity is an example of a transition probability.
Collection of all such transition probabilities for all possible state transitions is required
to capture the dynamics of the system modeled.

4. Policy: A policy defines what action to take based on the state of the system. For exam-
ple, when a new patient is admitted during a shift, there are different policies that can
be used to make the assignment based on the state. A policy that maximizes the sum of
TADCs of nurses, shown in Equation (6), would increase patient care. Two policies that
balance nurse workload are presented in Section 4.2.

5. Performance Measure: A performance measure quantifies the performance of a policy.
For a patient care improvement problem, the sum of TADCs over all nurses could be
used to judge the performance of the policy.

In the late 1950’s, a mathematical technique called Dynamic Programming (DP) was
formulated by Bellman that could solve MDPs [4]. Since then, DP has evolved and been



6

applied for various applications [5, 6, 9, 10, 47, 51, 54]. The theory and solution techniques
of DP have also been studied and improved over the years. For a computationally tractable
solution, most of the solution techniques reduce to either approximating or simplifying the
Bellman optimality equation:

J∗ (i) = maxa∈A(i)

[
E (r (i, a)) +

∑‖S‖

j=1
p (i, a, j) J∗ (j)

]
∀i ∈ S. (1)

where:

1. S is the set of all possible states.
2. A(i) is the set of actions available for state i.
3. J∗ functions store the unknown optimal values associated with each element in S.
4. E (r (i, a)) is the immediate expected reward in i when action a is selected.
5. p(i, a, j) is the transition probability for the state transition from i to j when the action

a is selected for state i.

Applying a classical method of solving Equation (1), for optimizing the assignment of a
newly-admitted patient, is impossible due to the high dimensional state space and unavail-
ability of transition probabilities. When transition probabilities are not available explicitly,
a Q-factors method uses a simulation model to solve the following equation, which is a
mathematical equivalent of Equation (1):

J∗ (i) = maxa∈A(i)

[
E (r (i, a)) + E

(
J∗ (j)

)]
∀i ∈ S. (2)

Equation 2 can be further simplified as

J∗ (i) = maxa∈A(i)E
(
r (i, a) + J∗ (j)

)
∀i ∈ S. (3)

Unlike the Bellman optimality equation, each element of Q-factors are associated to
state-action pairs. For a state-action pair (i, a), the Q-factor is defined as

Q (i, a) =
∑‖S‖

j=1
p (i, a, j)

[
r (i, a) + J∗ (j)

]
(4)

By combining equations (1), (3), and (4), we get

J∗ (i) = maxa∈A(i)Q (i, a) (5)

Refer to Bertsekas [5] and Gosavi [21] for a comprehensive review of Q-Factors meth-
ods. In the new-admit patient-nurse assignment optimization problem, if the objective is to
maximize the sum of TADC across the nurses for the entire shift, the new-admit patient-
nurse assignment optimization can be expressed as

J∗(i) = maxa∈A(i)

[∑N

n=1
TADCn (i, a, i + 1)

]
+ E

(
J∗(i + 1)

)
∀i ∈ S. (6)

In Equation (6), N is the total number of nurses working in that shift, the state for the current
new-patient-admit is denoted by i, the action a is taken to assign this new patient to a nurse,
and then the subsequent state when the next new-patient-admit occurs is denoted by i + 1.
TADCn(i, a, i + 1) denotes the TADC of nurse n over the period from the current new-
patient-admit in state i to the next new-patient-admit in state i + 1 following the action of
assignment a . Note that in Equation (6), the notation i and i+1 represents high dimensional
states determined by specific values of shift, time of day, nurse type, current and previous
locations of nurses, existing nurse-patient assignments, patient diagnoses, patient acuities,
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and patient location variables. It is assumed that an action is required only when a new
patient is admitted.

As mentioned earlier, when a simulation model is available, a computational optimiza-
tion technique called Q-Factors is an attractive approach to solve Equation (6). The funda-
mental idea of this approach is to store quantities Q(i, a), shown in equations (4) and (5),
called Q-Factors for each state-action combination and update them based on the progress
of the simulation. In the beginning, these Q-Factors are usually initialized to zero. Then
for each action selected, the simulation is allowed to transition to the next state, and the
Q-Factors are updated based on the performance measure. For the patient care improvement
problem, a state-action pair yielding a larger sum of TADCs of all nurses would be re-
warded by increasing the corresponding Q-Factor. State-action pairs yielding smaller sums
of TADCs would be punished by reducing the corresponding Q-Factors. The same policy of
rewarding and punishing has to be repeated for a sufficiently large number of state-action
visits. At the end, the action(s) that produces the highest Q-Factor would be declared as
optimum. The key for achieving the true or near optimum in the Q-Factors method depends
on the choice of the so-called “sufficiently large number” for state-action pair visits. In the
problem of optimizing the assignment of a newly-admitted patient, the number of state-
action pairs grows exponentially due to random arrivals of patients (admit times) with the
unknown probability distribution for diagnosis and acuity. Such a huge number of state-
action pairs makes it computationally impossible to have enough simulation scenarios to
obtain reliable Q-Factors.

4.2 Assignment Policies

Even though increasing patient care is an important objective, in this research it is implic-
itly assumed that balancing nurse workload will help improve patient care, and hence the
max-min TADC ratio was chosen to be the performance measure. In addition to the compu-
tational issues raised in the previous section, the max-min TADC ratio is not additive and
consequently, the nurse workload balancing problem cannot be formulated like Equation
(6). For these reasons, methods like simple enumeration, classical DP, and Q-Factors are
ruled out for this research.

Among the two expected values in Equation (2), the first one incorporates the immediate
reward i.e., in a sense, it accounts for the past and the immediate present. The second ex-
pected value, which approximates the future, for a current decision is impossible to approx-
imate from simulation due to the huge number of potential state-action pairs. In the nurse-
patient assignment problem, the difficulty reduces to the estimation of TADC(i, a, i + 1).
While solving for the optimal assignment for state i, a huge number of simulation runs will
be required to optimize assignments a(i + 1), a(i + 2), a(i + 3), . . . . For this reason, this
research develops an alternate policy that groups both the expected values of Equation (2)
together:

J∧(i) = mina∈A(i)E

(
(TADC (0, a(0), i) + TADC (i, a, T ))max

(TADC (0, a(0), i) + TADC (i, a, T ))min

)
∀i ∈ S. (7)

We refer to this policy as ”OPT” since it is based on the Bellman optimality equation. In
Equation (7), TADCn(0, a(0), i) denotes the TADC of nurse n from the beginning of the
shift until the current new patient arrival in state i when assignment a(0) is made, and
TADC(i, a, T ) is TADC from the current arrival through the end of the shift in state T .
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TADC(i, a, T ) can be expanded as TADC(i, a(i), i + 1) + TADC(i + 1, a(i + 1), i + 2) +

TADC(i+2, a(i+2), i+3). . . ; ideally these future assignments and TADC quantities would
be obtained via a DP type optimization; however, this is computationally impractical. In-
stead, the future assignments required to obtain TADC(i + 1, a(i + 1), i + 2), TADC(i +

2, a(i + 2), i + 3),. . . were determined by the HEU policy. In simple terms, the OPT policy
considers both the past and the future workload of nurses for a nurse-to-patient assignment
decision, while the HEU policy considers only the past workload. The decision maker can
use either HEU by itself or OPT to decide which nurse would get the new patient.

5 Comparison of Policies

5.1 Problem Setting

To analyze the performance of OPT and HEU, 50 problems with different initial states were
considered. Admissions of two, three, four, five, and six new-patients were considered dur-
ing a shift. The 50 problems were designed in such a way, shown in Table 1, to have ten
problems for each shift and ten problems for each number of admissions. The number of
problems for each combination of shift and the number of new admissions were arbitrarily
chosen with rates of admission, shown in Table 2, in consideration. It is determined from
the north Texas hospital data set that on average there were nine patient-admits for a given
day with a maximum of six patients admitted during a shift. While solving an assignment,
the future admits were simulated using a Poisson process with the arrival rates determined
by the average number of patient admits per day and rates of admit for specific time period
shown in Table 2.

· · ·
Table 1 comes about here
· · ·

· · ·
Table 2 comes about here
· · ·

There are 26 patient rooms in the Medical/Surgical care unit of the north Texas hospital
usually staffed with five nurses. For all the 50 problems considered, the number of empty
patient rooms was chosen to be the same as the number of new-patient admits. For a given
problem, the empty patient room locations to accommodate new admits were selected ran-
domly. The rest of the rooms were occupied by patients from the beginning of the shift.
The diagnosis and acuity of patients present at the beginning of the shift as well as newly-
admitted patients were chosen randomly. It was assumed five registered nurses work during
all the shifts. Admission times of the new patients - for whom assignments have to be deter-
mined - were chosen arbitrarily and remained unknown until 15 minutes prior to the actual
admit. For simplicity in modeling, it was assumed that there are no patient discharges during
the shift.
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5.2 Average and Spread

The 50 problem instances were simulated on SIMNA with the nurse-to-patient assignments
determined by OPT and HEU for each new-patient admit. One thousand scenarios were gen-
erated for each problem instance by changing the random seed. The average max-min TADC
of the entire shift was determined by averaging max-min TADCs from 1000 scenarios. As-
signments from a random policy, referred as RAND, were also simulated to judge whether
the “smarter” policies like HEU and OPT yield consistently better results than random as-
signments. The average max-min TADCs from the 1000 simulation scenarios for each of
the 50 assignments are presented in Table 3.
· · ·

Table 3 comes about here
· · ·

In Table 3, the first column represents the problem instances presented in Table 1. The
second column presents the average max-min TADCs from the three policies evaluated.
Ideally, a policy that produces a max-min TADC ratio of one is desired in that it achieves
perfect balance in workload among nurses. The policy that yields the smallest average max-
min TADC is preferred as it achieves the best possible balance among the three policies. It
can be observed that OPT resulted in the least ratio for 30 of the 50 problems, while HEU had
17 smallest ratios. Not surprisingly, RAND managed to be the preferred policy just thrice of
the 50 problems. While considering averages to determine the performance of policies, it is
important to account for the variability associated with each policy. Boxplots are provided in
Figures 1 and 2 to illustrate the spread of data from the OPT and HEU policies. Because of
the outlier scenarios, the scale of boxplots in Figure 1 is extended leaving it hard for a reader
to observe the difference between the plots from OPT and HEU. In Figure 2, the max-min
TADC values higher than five were removed to facilitate the visualization of the boxplots.
After removal of outliers, the OPT and HEU policies had, respectively, 45,429 and 45,089
max-min TADC ratios, a sufficiently large number of data points to make a comparison of
spread. It could be observed that the spread of data in both plots are similar and it would be
safe to use average max-min TADC ratio to judge the performance of the policies. Similarly,
individual boxplots from each of the 50 instances, not presented here, obtained after removal
of five or higher max-min TADC ratios from OPT and HEU had comparable spread. One
could well argue that, in reality, it is unlikely to have an imbalance of a magnitude that would
result in a value of five or more for max-min TADC ratios. It has to be noted that in all the
50 problems the nurse-to-patient assignments at the beginning of the shift was not balanced
and hence, high values for max-min TADCs cannot be ruled out.
· · ·

Figure 1 comes about here
· · ·

· · ·
Figure 2 comes about here
· · ·

Boxplots from three problem instances are provided in Figures 3, 4, and 5 to illustrate
the preferable performances of OPT and HEU in terms of average max-min TADC ratios.
In Figure 3, a typical OPT performance with a lower max-min TADC ratio than HEU is
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shown. In Figure 4, a better performance of HEU is shown, while Figure 5 illustrates an
equal performance of OPT and HEU.
· · ·

Figure 3 comes about here
· · ·

· · ·
Figure 4 comes about here
· · ·

· · ·
Figure 5 comes about here
· · ·

5.3 Statistical Significance

In Section 5.2, performances of OPT, HEU, and RAND were analyzed by comparing the
average and spread of max-min TADC ratios. In that analysis, it was found that the OPT
policy is the most successful, while the RAND policy is the least successful among the
50 problems considered. However, it is necessary to perform statistical analysis to draw a
reliable conclusion regarding the difference in performances among the policies. In order to
understand the statistical difference among the policies, Tukey and Bonferroni simultaneous
pairwise comparison groupings were generated at 0.05 significance level and shown in the
last column of Table 3. The distinct groups are represented by alphabets A, B, and C with
A and C being the groups with the smallest and the highest means for the max-min TADC
ratio, respectively. It has to be noted that if there is only one group (C), it need not be a
high mean group. A policy would not be desirable if it falls in a higher mean group while
there is at least one other policy in a lower mean group. Both Tukey and Bonferroni grouped
the policies identically. From Table 3, it can be observed that 39 times either or both OPT
and HEU were in a lower mean group than RAND. Similarly, it can be observed that HEU
was out performed by either or both OPT and RAND six times (highlighted by bold), while
OPT was outperformed just once by HEU (highlighted by bold). Clearly, from this analysis
RAND is the least desirable policy and proves that the “smarter” policies HEU and OPT
yield better results. Also, this analysis showed that OPT results are statistically slightly
better than HEU.

To further understand the magnitude of the difference between HEU and OPT (HEU -
OPT), 95% and 99% confidence intervals (CIs) were constructed in Table 4. In this table,
HEU is declared as the winner if both the upper and lower limits are negative. The negative
limits indicate a higher max-min TADC ratio from the OPT policy compared to the HEU
policy. Similarly, OPT is declared as the winner if both the upper and lower limits are pos-
itive. The instances with zero included in the CIs are declared as a Tie. It can be observed
from these tables that OPT won 15 out of the 50 instances, while HEU won only four times
with 95% CI. The rest of the 31 instances ended as a Tie between OPT and HEU. With 99%
CIs, OPT won ten times, while HEU won only twice. The remaining 38 problem instances
were declared as tied because CIs include zero. It can be viewed that OPT performed at least
as good as HEU in 46 and 48 instances with 95% and 99% CIs, respectively.
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· · ·
Table 4 comes about here
· · ·

Intuitively, assignments obtained from OPT would perform better than HEU when a
reliable estimation of future was used while solving for the assignments. From the above
analyses, not surprisingly, the OPT policy performed better than the HEU and RAND poli-
cies.

6 Conclusions and Future Work

This research along with Sundaramoorthi et al. [50] has laid a foundation for hospital spe-
cific nurse-to-patient assignment problems. It has introduced a tool to evaluate different
new-patient nurse-to-patient assignment policies. When new patients are admitted, nurse su-
pervisors often assign the new patient to the nurse who has the least number of patients. This
method need not balance the work load of nurses for the entire shift. This research added
a feature to SIMNA that helps evaluating nurse-to-patient assignment policies to identify a
nurse assignment for the new patient. The enhanced SIMNA model can aid nurse supervi-
sors to make better decisions by simulating different new-patient assignment policies and
quantifying the workload measures from them. This research also developed and compared
the OPT policy with the HEU policy to make nurse-to-patient assignments when new pa-
tients are admitted during a shift. The HEU policy assigned the newly-admitted patient to the
nurse who performed the least assigned direct care among all the nurses 15 minutes prior to
a new patient admission; while the OPT policy finds the assignment that minimized the dif-
ference in workload among nurses for the entire shift from SIMNA. Results from the HEU
and OPT policies were compared, and the OPT policy was found to be the better policy. The
following are the other promising directions that can be incorporated to this research.

1. HEU vs OPT: It was found from this research that OPT performed better than HEU.
Intuitively, HEU′s solution should get better towards the end of a shift as workload im-
balance information from the past is naturally more important and available at the end
of the shift. Similarly, with SIMNA approximating the future accurately, OPT should
perform relatively much better than HEU at the beginning of a shift than towards the
end. Identifying circumstances suitable for OPT and HEU is another interesting area
of research. While making a nurse-to-patient assignment decision for a new-patient ad-
mit, factors like the time left in the shift, diagnosis, acuity, shift, empty room location,
and existing nurse-to-patient assignments could influence the performance of OPT and
HEU. To statistically analyze the performance of the assignment policies, an experiment
should be designed with diagnosis, acuity, shift, empty room location, existing nurse-to-
patient assignments, and time left in the shift as factors and max-min TADC ratio as the
response. With 19 diagnoses codes, four acuity levels, five possible shifts, at least eight
time periods in a shift, and 26 patient rooms, the experiment will result in more than
79,040 treatments. To perform such an analysis efficiently and reporting results from
them would be an interesting research by itself.

2. “Time Period-Action Q-Factors” method: In this research, a brief discussion about the
potential use of the Q-Factors methods was provided especially in circumstances when
a simulator is available. However, the existing algorithms of the Q-Factors method is not
feasible to implement for the nurse-patient assignment problem because the number of
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state-action pairs is huge. It will be interesting to explore the possibility of having the
Q-Factors for arrival-action pairs instead of state-action pairs. This approach will reduce
the number of Q-Factors significantly. It should be noted that with stochastic arrivals,
it is still difficult to update all the arrival-action pairs accurately within a reasonable
number of simulation runs. For example, the first arrival time in a simulation run is
likely to be different from another first arrival simulated in a different simulation run. To
tackle this issue, the shift can be divided into smaller time periods to get the Q-Factors
for each period-action pair. The actions in this research are to assign the newly-admitted
patients to nurses. There is no action required in a time period if there is no new-patient
admits. Therefore, with the “time period-action Q-Factors”, the number of Q-Factors
would be equal to the number of time-periods times the number of nurses. For example,
for an eight hour shift broken into one hour periods with five nurses working, there
would be just forty Q-Factors. As mentioned earlier, it would take just three minutes
to run one thousand scenarios, and it is possible to update the Q-Factors for real time
decision making using the proposed “time period-action Q-Factors” method.

3. Optimization: Exploring the applicability of simulation-optimization methods, such as
in Atlason et al. [1], and Fu and Hu [19], is also an interesting topic for future research.
The traditional simulation-optimization methods, in general, use an approximated value
for the gradient of the simulation. The dynamics of SIMNA in Sundaramoorthi et al.
[50] are captured by the static tree structures from CART. Extracting the gradient of the
simulation from CART and using it for optimization is potentially feasible and worth
exploring.

4. Patient Discharge: It was assumed that there are no patient discharges during a shift
for simplicity in modeling. However, it is common to have discharges during a given
shift. When discharge occurs, the amount of work load will go down for the nurse who
had that patient. It will not affect the relative merit in the nurse-to-patient assignment
decisions made by OPT and HEU as discharges impact both policies identically. Hence,
it is preferable to keep SIMNA as simple as possible. However, incorporating patient
discharges in future will enhance practicality of SIMNA’s usage in hospitals.
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Table 1 Fifty problem instances

# of New Admits
Shift (#) 2 3 4 5 6

WEEK
Day (1) 2 5 3 0 0
Evening (2) 0 0 2 4 4
Night (3) 7 2 1 0 0

WEEK END
Day (4) 0 0 0 5 5
Night (5) 1 3 4 1 1

Table 2 Patient admit rate

6am to 2pm 2pm to 6pm 6pm to Midnight Midnight to 6am
12% 70% 16% 2%
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Table 3 Outcome of OPT, HEU, and RAND evaluations

# Patients, Av. Ratio Tukey / Bonf.
Shift, Instance OPT HEU RAND OPT HEU RAND

2, 1, 1 3.206 3.146 3.149 C C C
2, 1, 2 2.690 2.945 3.295 B B C
2, 3, 1 3.034 3.267 3.183 C C C
2, 3, 2 4.292 4.362 4.361 C C C
2, 3, 3 3.836 4.141 5.310 B B C
2, 3, 4 4.478 5.730 4.469 B C B
2, 3, 5 4.208 4.496 4.290 C C C
2, 3, 6 3.692 3.907 3.949 C C C
2, 3, 7 5.871 5.172 6.586 B,C B C
2, 5, 1 2.102 2.229 5.511 B B C
3, 1, 1 3.069 3.020 3.709 B B C
3, 1, 2 3.562 3.564 3.863 C C C
3, 1, 3 3.521 3.450 5.412 B B C
3, 1, 4 2.712 2.678 2.988 B B C
3, 1, 5 4.162 3.770 4.706 B,C B C
3, 3, 1 4.007 4.101 4.432 C C C
3, 3, 2 6.792 5.584 6.660 C B C
3, 5, 1 3.201 3.561 3.318 B C B,C
3, 5, 2 2.439 2.250 5.050 B B C
3, 5, 3 2.238 2.225 3.188 B B C
4, 1, 1 3.935 4.250 4.790 B B,C C
4, 1, 2 2.742 3.131 3.867 A B C
4, 1, 3 4.213 4.057 7.123 B B C
4, 2, 1 2.568 3.758 4.186 A B C
4, 2, 2 3.499 3.422 3.320 C C C
4, 3, 1 2.702 3.043 3.411 A B C
4, 5, 1 2.657 2.612 4.391 B B C
4, 5, 2 2.154 2.165 3.474 B B C
4, 5, 3 2.574 2.567 4.402 B B C
4, 5, 4 2.341 2.326 4.382 B B C
5, 2, 1 4.093 4.080 3.936 C C C
5, 2, 2 2.881 2.900 8.267 B B C
5, 2, 3 2.946 3.139 3.216 B B,C C
5, 2, 4 4.000 4.413 6.720 B B C
5, 4, 1 1.972 1.932 4.769 B B C
5, 4, 2 1.844 1.888 3.936 B B C
5, 4, 3 1.924 1.977 3.650 B B C
5, 4, 4 2.084 2.183 5.443 B B C
5, 4, 5 2.034 2.041 5.417 B B C
5, 5, 1 2.601 2.522 5.110 B B C
6, 2, 1 2.635 2.653 3.150 B B C
6, 2, 2 3.183 3.749 4.838 B B C
6, 2, 3 3.864 3.928 5.059 B B C
6, 2, 4 3.309 3.237 3.571 B,C B C
6, 4, 1 1.872 1.929 6.645 B B C
6, 4, 2 3.017 3.159 10.030 B B C
6, 4, 3 1.846 2.388 4.879 A B C
6, 4, 4 2.468 2.381 8.326 B B C
6, 4, 5 2.409 2.743 16.223 B B C
6, 5, 1 2.505 2.523 5.762 B B C



17

Table 4 Confidence Intervals for means of HEU-OPT max-min TADC ratios

# Patients, HEU-OPT Winning Policy
Shift, Instance 95% CI 99% CI 95% CI 99% CI

2, 1, 1 -0.305 0.184 -0.382 0.261 Tie Tie
2, 1, 2 0.039 0.470 -0.029 0.538 OPT Tie
2, 3, 1 -0.069 0.536 -0.164 0.631 Tie Tie
2, 3, 2 -0.485 0.625 -0.660 0.799 Tie Tie
2, 3, 3 -0.220 0.830 -0.385 0.995 Tie Tie
2, 3, 4 0.521 1.985 0.291 2.214 OPT OPT
2, 3, 5 -0.170 0.746 -0.314 0.890 Tie Tie
2, 3, 6 -0.164 0.595 -0.283 0.714 Tie Tie
2, 3, 7 -1.385 -0.012 -1.601 0.204 HEU Tie
2, 5, 1 0.066 0.188 0.047 0.208 OPT OPT
3, 1, 1 -0.284 0.186 -0.357 0.259 Tie Tie
3, 1, 2 -0.435 0.438 -0.572 0.575 Tie Tie
3, 1, 3 -0.497 0.355 -0.631 0.489 Tie Tie
3, 1, 4 -0.152 0.084 -0.189 0.121 Tie Tie
3, 1, 5 -0.865 0.080 -1.013 0.228 Tie Tie
3, 3, 1 -0.336 0.525 -0.471 0.660 Tie Tie
3, 3, 2 -1.960 -0.456 -2.197 -0.219 HEU HEU
3, 5, 1 0.151 0.570 0.085 0.635 OPT OPT
3, 5, 2 -0.263 -0.113 -0.286 -0.090 HEU HEU
3, 5, 3 -0.072 0.046 -0.090 0.065 Tie Tie
4, 1, 1 -0.234 0.863 -0.406 1.036 Tie Tie
4, 1, 2 0.253 0.526 0.210 0.569 OPT OPT
4, 1, 3 -0.589 0.278 -0.725 0.415 Tie Tie
4, 2, 1 1.006 1.375 0.948 1.432 OPT OPT
4, 2, 2 -0.288 0.134 -0.354 0.200 Tie Tie
4, 3, 1 0.199 0.484 0.154 0.529 OPT OPT
4, 5, 1 -0.162 0.072 -0.199 0.108 Tie Tie
4, 5, 2 -0.051 0.074 -0.071 0.094 Tie Tie
4, 5, 3 -0.096 0.082 -0.125 0.110 Tie Tie
4, 5, 4 -0.112 0.083 -0.142 0.114 Tie Tie
5, 2, 1 -0.537 0.510 -0.701 0.674 Tie Tie
5, 2, 2 -0.128 0.166 -0.175 0.213 Tie Tie
5, 2, 3 -0.005 0.390 -0.067 0.452 Tie Tie
5, 2, 4 -0.079 0.905 -0.233 1.059 Tie Tie
5, 4, 1 -0.087 0.007 -0.102 0.022 Tie Tie
5, 4, 2 0.003 0.085 -0.010 0.097 OPT Tie
5, 4, 3 0.008 0.098 -0.006 0.113 OPT Tie
5, 4, 4 0.042 0.156 0.024 0.174 OPT OPT
5, 4, 5 -0.046 0.061 -0.063 0.078 Tie Tie
5, 5, 1 -0.165 0.006 -0.192 0.033 Tie Tie
6, 2, 1 -0.095 0.130 -0.130 0.165 Tie Tie
6, 2, 2 0.155 0.977 0.026 1.106 OPT OPT
6, 2, 3 -0.422 0.550 -0.575 0.703 Tie Tie
6, 2, 4 -0.269 0.127 -0.331 0.189 Tie Tie
6, 4, 1 0.012 0.101 -0.002 0.114 OPT Tie
6, 4, 2 0.028 0.256 -0.008 0.292 OPT Tie
6, 4, 3 0.489 0.596 0.472 0.613 OPT OPT
6, 4, 4 -0.158 -0.016 -0.181 0.007 HEU Tie
6, 4, 5 0.202 0.389 0.172 0.419 OPT OPT
6, 5, 1 -0.057 0.093 -0.081 0.117 Tie Tie
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Fig. 1 Boxplots of max-min TADC ratios from OPT and HEU with all 50,000 data points.

Fig. 2 Boxplots of max-min TADC ratios from OPT and HEU that are less than five.
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Fig. 3 A boxplot showing OPT win (# New-Patients:4, Shift: 1, Instance: 2).

Fig. 4 A boxplot showing HEU win (# New-Patients:3, Shift: 5, Instance: 2).
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Fig. 5 A boxplot showing tie between OPT and HEU (# New-Patients:5, Shift: 2, Instance: 2).


