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Abstract

In this paper, a multiple stage wastewater treatment system (WTS) is solved for the selection
of technological options at each stage to minimize (economic cost, size, odor emissions) and to
maximize (nutrient recovery, robustness, global desirability). Stages in the wastewater treatment
system are the levels of treatment. There are seventeen levels of treatment, where the first eleven
levels are for the liquid treatment and the last six levels are for the solid treatment. This results
in a 20-dimensional, continuous-state, 17-stage, 6-objective, stochastic optimization problem.
The resulting multiple stage, multiple objective (MSMO) WTS is solved using the three-phase
methodology in conjunction with the multiple objective version of high-dimensional, continuous-
state, stochastic dynamic programming (SDP). The three-phase methodology comprises the
input phase, the matrix generation phase, and the weighting phase. The primary goal of three-
phase methodology is to obtain weight vectors at each stage of the WTS utilizing expert’s
opinions in the input phase, computing pairwise comparision matrices at each stage using the
geometric-mean based methods in the matrix generation phase, and then calculating weight
vectors at each stage using the eigenvector method in the weighting phase. The weight vectors
are then used to scalarize the vector optimization problem, which is solved using the high-
dimensional, continuous-state SDP augmented for handling multiple objectives at each stage.

The results obtained are practical as evidenced by the selection of new technologies in levels 1
and 5 thereby validating expert’s decision to include them in the evaluation process. In addition
to encouraging reviews from WTS experts, the implementation results satisfy a set of external
constraints in the form of interstage dependencies between technological options in the WTS.
Furthermore, the solution technique presented here utilizes expert’s opinions in the solution
development process, and is quite general in its application to a variety of large-scale MSMO
problems.

Key Words: Multiple objective decisions, Stochastic dynamic programming, Wastewater treat-
ment model, Pareto scalarization, Analytic hierarchy process
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1 Introduction

Rapid population growth and continued industrial development have created enormous challenges
in conserving water and making it potable. However, any wastewater treatment system (WTS)
needs to be designed to meet the economic, environmental, space, and performance requirements.
The wastewater treatment system considered here is based on the work of Chen and Beck (1997),
which involves removing the liquid and solid pollutants from domestic wastewater in several levels of
processing. This WTS comprises eleven levels of liquid processing and six levels of solid processing.

To meet the current domestic water requirements the liquid processing line of the WTS has
been modified from the one used by Chen and Beck as follows:

• Yellow Water Separation, and Yellow and Black Water Separation are two new wastewater
treatment technologies that have been added in level 1 of the WTS.

• Upflow Anaerobic Sludge Blanket (UASB) System plus Activated Sludge Process (C, P, N)
is a new treatment technology added in level 5 of the WTS.

The liquid and solid processing lines of the WTS can be seen in Fig. 1 and Fig. 2, respectively.

Tsai, Chen, Beck and Chen (2004) presented a decision-making framework to evaluate cur-
rent and emerging technologies for the multi-level wastewater treatment system with the objective
to minimize economic cost (capital cost plus operating cost). They solved a high-dimensional,
continuous-state, multistage (where stages refer to levels of wastewater treatment) decision-making
problem. Methodology and results are detailed in Tsai (2002). Unfortunately, the results were
far from practical as it only considered the economics of the WTS and ignored a range of critical
factors such as environment, size, performance, etc. A real-world wastewater treatment system
must be designed to meet various objectives simultaneously, including the conflicting ones. Hence,
the single objective WTS needs to be extended to a multiple objective version.

This paper improves earlier WTS versions by considering multiple objectives at each level
of WTS. The following six objectives are considered at each WTS level: minimize (economic
cost, size, odor emissions), and maximize (nutrient recovery, robustness, global desirability). This
results in a high-dimensional, continuous-state, 17-stage, 6-objective optimization problem. Each
level in the liquid processing line has a 20-dimensional state vector, and each level in the solid
processing line has a 10-dimensional state vector. The resulting problem is apparently the largest
multiple stage, multiple objective (MSMO) optimization problem in the current literature. To
solve the resulting MSMO optimization problem, we present an approach that effectively combines
three-phase methodology discussed in Tarun et al. (2007, 2008) and Tarun (2008) with the high-
dimensional, continuous-state stochastic dynamic programming method augmented to handle the
multiple objectives at each stage (or level) of WTS. As a result, the solution is practical and the
approach has a high likelihood of success in making decisions in a real-world wastewater treatment
system.

The objective of this paper is to evaluate wastewater treatment technologies, including new
and emerging ones, in a multiple stage (or multi-level) wastewater treatment system based on a
set of diverse criteria. Further, the presence of continuous state variables, high-dimensional state
vectors, and uncertainty due to new and emerging wastewater treatment technologies compounds
the complexity in solving an already complex multiple stage, multiple objective decision-making
problem. Therefore, it is essential to involve decision makers in the solution process to obtain a
solution that can be implemented in the real-world.

The three-phase methodology of Tarun (2008) allows decision makers to participate in the so-
lution development process. It involves eliciting system knowledge from experts (the input phase),
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utilizing experts’ system knowledge to compute pairwise comparison matrices contrasting all pos-
sible pairs of objectives at each stage (the matrix generation phase), and obtaining weight vectors
reflecting decision-makers’ opinions for all the stages (the weighting phase). The results from
the weighting phase are used to scalarize the MSMO wastewater treatment system. The purpose
of scalarization is to convert the MSMO problem into a multiple stage, single objective problem
without loss in any aspects of the original problem.

To solve the resulting multiple stage, single objective problem, the stochastic dynamic pro-
gramming (SDP) approach in Tsai (2002) and Tsai et al. (2004) was augmented to handle multiple
objectives at each stage. The modifications were made to capture expert opinions that lead to
meaningful weight vectors in the weighting phase of our three-phase methodology. A routine was
added to handle different units associated with multiple objectives. Few other changes were made
to accommodate the newly added technology units mentioned above, and these were state transition
equations, constraints, etc. The three-phase methodology in combination with orthogonal array-
based experimental designs (for state space discretization) and multiple adaptive regression spline
(MARS) technique (for the future value approximation in the stochastic dynamic programming
model) led to practical results. Chen, Ruppert and Shoemaker (1999) showed that the combina-
tion of orthogonal array-based experimental designs and MARS provides a polynomial algorithm for
numerically solving continuous-state SDP, and hence is appropriate for high-dimensional problems.

The practicality of results can be seen in the selection of new technologies in levels 1 and 5,
validating their inclusion in the evaluation process. The results also satisfy interstage dependen-
cies between various technology units across the wastewater treatment system. Furthermore, our
wastewater treatment experts had encouraging reviews about the results. The detailed interpre-
tation of results can be seen later. In summary, this paper presents a new approach to evaluate
selection of technologies in a multistage multiobjective wastewater treatment system that

• addresses the disconnect between decision makers and solution developers,

• extends the analytic hierarchy process (AHP) to an MSMO decision-making domain,

• helps develop methodologies for the computation of pairwise comparison matrices that have
traditionally been heavily dependent on direct inputs from experts,

• augments the high dimensional, continuous-state stochstic dynamic programming approach
to handle multiple objectives at each stage, and

• solves a 20-dimensional, 17-stage, 6-objective, continuous-state optimization problem, which
is larger than any numerically solved multistage multiobjective optimization problem in the
literature.

The paper is organized as follows. Section 2 describes the decision-making elements in the mul-
tiple stage, multiple objective (MSMO) wastewater treatment system and presents the formulation
for MSMO decision-making problem. Section 3 gives a detailed account of the solution method-
ologies. Section 4 presents the implementation results and discussions. Section 5 summarizes the
contributions, discusses the practical validation, and gives an insight into the future research work
needed to refine all three phases of our three-phase methodology.
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2 Multiple Stage, Multiple Objective Wastewater Treatment Sys-

tem

In extending Tsai’s model (Tsai, 2002) to an MSMO problem, the stages correspond to different
levels of processing in WTS. There are seventeen levels of sequential treatment. The first eleven
levels form the liquid processing line and the last six levels form the sludge processing line. The
key decision-making elements in the MSMO formulation of WTS are presented next.

2.1 State variables

Given the stage of domestic wastewater treatment, the domestic wastewater has certain types of
pollutants at certain levels. The levels of these pollutants go down when the wastewater is getting
cleaned, or they go up when the wastewater is monitored, but not cleaned. The levels of pollutants
in the wastewater at a given stage of wastewater treatment are referred to as states, and the
pollutant types are termed as state variables. Formally, state variables represent the state of the
wastewater treatment system going across various stages of treatment. At each stage of the liquid
processing line, the following ten state variables were considered for the liquid pollutants:

1. chemical oxygen demand (Liq-COD)

2. suspended solids (Liq-SS)

3. organic-nitrogen (Liq-orgN)

4. ammonia-nitrogen (Liq-ammN)

5. nitrate-nitrogen (Liq-nitN)

6. total phosphorus (Liq-totP)

7. heavy metals (Liq-HM)

8. synthetic organic chemicals (Liq-SOCs)

9. pathogens (Liq-pathogens)

10. viruses (Liq-viruses)

Similarly, the following ten state variables were considered for the solid (or sludge) pollutants at
each stage of both liquid and solid processing lines:

11. sludge volume (Sl-Vol)

12. sludge water content (Sl-WC)

13. sludge organic-carbon (Sl-orgC)

14. sludge inorganic-carbon (Sl-inorgC)

15. sludge organic-nitrogen (Sl-orgN)

16. sludge ammonia-nitrogen (Sl-ammN)

17. sludge total phospho-rus (Sl-totP)

4



18. sludge heavy metals (Sl-HM)

19. sludge synthetic organic chemicals (Sl-SOCs)

20. sludge pathogens (Sl-pathogens)

The state variables are continuous. All twenty state variables are monitored in the liquid
processing line comprising levels 1 through 11. The liquid pollutants (or the ten liquid state
variables with prefix ‘Liq’) are removed in levels 1 through 11 while the solid pollutants (or the ten
sludge state variables with prefix ‘Sl’) are collected in levels 1, 2, 5, 6, and 7 of the liquid processing
line. Further, the solid processing line from levels 12 through 17 removes the ten solid pollutants.
The twenty-dimensional state vector at level τ , xτ = (xτ,1, . . . , xτ,20)

′, where the first ten are liquid
state variables and the last ten are sludge state variables.

2.2 Decision variables

At each stage of the wastewater treatment system, given the state of pollutants entering the stage,
a decision needs to be made about the wastewater treatment technology that minimizes economic
cost, size, and odor emissions, but maximizes nutrient recovery, robustness, and global desirability.
In other words, there is a need to evaluate a collection of appropriate wastewater technologies
at each stage of treatment to select a technology that best optimizes a set of diverse objectives
simultaneously. Formally, decision variables are the technological options that are being evaluated
at each stage of the multiple stage, multiple objective wastewater treatment system. To maintain
consistency across various stages of processsing the liquid treatment line and the solid treatment line
are connected with stages numbered sequentially from 1 through 17. Of these seventeen treatment
stages (or levels), stages 1 through 11 form the liquid treatment line and stages 12 through 17 form
the solid processing line. The decision variables for the 17-stage WTS are shown in Table 1. At each
stage (or level of processing), a decision has to be made regarding the selection of a technology
unit. At any level, technology units can be added or removed depending on current or future
needs. Also, an “empty unit” can be seen in all other WTS levels except the first level of the liquid
line. The selection of “empty unit” at a particular level implies that no treatment is performed at
that level. Further, the decision-making must account for the interstage dependencies that occur
between certain levels of treatment, and thereby adding a few major constraints in the selection of
technological options in these levels. Interstage dependencies between technology units at various
levels of wastewater treatment are as follows.

1. In level 5, “Reed Bed System” requires using a technology unit in level 2.

2. In level 13, “Sludge Carver-Greenfield (C-G) Drying” requires using a technology unit in level
12.

3. In level 13, “Anaerobic Digestion” requires using a technology unit in level 12.

4. In level 14, “Filter and Belt” requires using the “Sludge Thickening Tank” in level 12 AND one
of the following in level 13: Sludge Vertech + Ammonia Stripping, Catalytic Wet Oxidation
Process (CWOP)-Upflow Anaerobic Sludge Blanket (UASB) + Ammonia Stripping, Sludge
Hydrolysis + UASB, Anaerobic Digestion, OR Aerobic-Anaerobic Digestion.

Also, uncertainty of the following two types are modeled:

1. Uncertainty in concentration of the influent and values of the state variables at subsequent
levels of WTS, and
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2. Uncertainty in the performance of a technology, denoted by ut in level t, including the objec-
tives associated with a technology.

The uncertainty of type (1) is represented by range limits, initialized by the values in Table 2.
All twenty state variables entering each level of the WTS are bounded by lower and upper lim-
its. The lower limits at a level are computed based on the maximum possible pollutant removal,
and the upper limits are based on the minimum possible pollutant removal assuming that the
“empty unit” was not selected. To solve the resulting stochastic dynamic programming (SDP), a
statistical experimental design based approach is used to efficiently represent the possible values
of state variables and to help construct a model over the continuous ranges of the state variables.
Type (2) uncertainty is represented by the stochastic vector ǫt,ut . The dimension of this vector
depends on the performance parameters for a particular technology, specified in the database by
Chen (1993). Since nothing is known about the appropriate probability distributions to represent
the stochasticity, only the ranges of the performance parameters are specified, and sampling based
on a uniform distribution is utilized. Narrower ranges are assigned to well-known technologies,
while wider ranges are assigned to newer and emerging technologies.

2.3 Transition functions

The transition function for a particular level determines how the state variables change at the exit
point of this level. For the multivariate transition function at level τ , given xτ , the state entering
level τ , if uτ is the treatment technology selected in level τ , and ǫτ,uτ is the uncertainty associated
with the transition, then the new state exiting level τ , xτ+1 = fτ (xτ , uτ , ǫτ,uτ ).

2.4 Objectives

As mentioned above, the six objective functions that are considered for the MSMO wastewater
treatment system are the following.

1. Minimize economic cost (in US Dollars), capital and operating cost of the treatment tech-
nology units.

2. Minimize size (in m2), the land area occupied by the treatment technology units.

3. Minimize odor emissions (in mg/min), obtained by multiplying the concentration of the
discharged gas (in the unit of mg/l or mg/m3) and the flow of the gas (in the unit of l/min
or m3/min).

4. Maximize nutrient recovery (on 1-5 scale), characterizing the rating of the treatment technol-
ogy units in removing liquid or sludge pollutants.

5. Maximize robustness (no units), characterizing the insensitivity to the variation of the inputs.

6. Maximize global desirability (on 1-6 scale), characterizing the impact of wastewater treatment
ouputs on the global environment.

2.5 Constraints

The basic constraints are water cleanliness targets that are specified at the WTS levels 11 and 17
for the liquid and solid lines, respectively. Also, constraints are added on the cleanliness of the
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liquid/sludge entering each level to handle a situation when liquid/sludge in the WTS are too pol-
luted to be processed by any treatment technology units available in a particular level (as a result
of empty units being selected too often in earlier levels). These range limits on the state variables
entering each level are shown in Tables 2, 3, and 4. They define the state space for each level of
liquid and solid lines. The lower limits are based on the highest possible pollutant removal, and
the upper limits are computed based on the lowest possible pollutant removal assuming that the
“empty unit” was not selected. Attainment of the constraints is achieved via a penalty function
added to the objective function. The same penalty function was utilized to achieve cleanliness
targets and to maintain state space limits. Mathematically, the target penalty functions are quin-
tic functions similar to those used in Chen et al. (1999) and Tsai (2002), which comprise three
knots: the lowermost (kn−) where there is zero penalty for being below target, the middle (kn),
and the uppermost (kn+). The middle and uppermost knots are defined as kn = kn− + △ and
kn+ = kn +△, respectively, where △ is determined such that the uppermost knot, kn+, coincides
with the maximum value of the effluent. The purpose of utilizing a penalty function is to assess
penalty for violating liquid/sludge cleanliness targets, and the quintic form was chosen to facilitate
modeling by multivariate adaptive regression splines (MARS). The cleanliness penalty is assessed
in WTS level 11 for the liquid line and in WTS level 17 for the solid line. Tables 5 and 6 present
the state variable ranges of the liquid/sludge exiting the wastewater treatment system, target val-
ues, cost smoothing values (denoted by △), and penalty coefficients. Target values can be easily
adjusted to satisfy any desired cleanliness requirements of WTS.

2.6 MSMO Decision-Making Problem

The MSMO version of WTS is a continuous-state, 20-dimensional, 17-stage (levels of treatment
or time periods), 6-objective optimization problem. It is formulated as a multiobjective stochas-
tic dynamic programming, which is an extension of traditional stochastic dynamic programming
(SDP) often used for the optimization of multiperiod problems in diverse areas of application such
as engineering, finance, economics, etc. (Bertsekas, 2007). The multiple objective SDP can then be
formulated (shown schematically in Fig. 3). The multiple objective stochastic dynamic program-
ming formulation of WTS is

Vmin
u1,...,uT

E {M{m1(x1, u1, ǫ1,u1), m2(x2, u2, ǫ2,u2), . . . ,mT (xT , uT , ǫT,uT
)}}

s.t. xτ+1 = fτ (xτ , uτ , ǫτ,uτ ), for τ = 1, . . . , T − 1,

xτ ∈ Sτ , uτ ∈ Γτ , for τ = 1, . . . , T ,

(1)

where T is the time horizon, xτ is the state vector (attributes of the liquid/sludge) at level τ ,
uτ is the decision vector (index of the selected technology unit) at level τ , ǫτ,uτ is the random
vector representing the stochastic component on the performance parameters of unit uτ , xτ+1 is
the state vector at level τ + 1 determined by the transition function fτ (·), Sτ contains the lower
and upper range limits on the state variables at level τ , Γτ contains the indices of the available
technology units at level τ , and the function M(·) denotes the multiple objective return function.
The expectation is taken over the random vector with the known probability distribution to be the
objective function. For the multiple stage WTS, the expected value was estimated by generating
discrete random numbers to simulate ǫτ from a uniform distribution. The cleanliness penalty is
computed in WTS level 11 for the liquid line (using the range limits in S11) and in WTS level 17
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for the solid line (using the range limits in S17). Also, the objective vector at stage τ is

mτ (xτ , uτ , ǫτ,uτ ) =











m1
τ (xτ , uτ , ǫτ,uτ )

m2
τ (xτ , uτ , ǫτ,uτ )

...
mk

τ (xτ , uτ , ǫτ,uτ )











,

where k is the number of objective functions at each stage.

3 Approach to Solving MSMO Wastewater Treatment System

The MSMO version of WTS can be solved by combining the multiple stage aspect of the problem
with its multiple objective aspect without altering the original problem. The multiple objective
problems aim to determine a set of solutions representing optimal trade-offs on a set of diverse ob-
jectives (which may include conflicting and non-commensurable objectives). These are popularly
referred to as Pareto optimal solutions. The methods for generating Pareto optimal points include,
weighted-sum (Chankong and Haimes, 1983), ε-constraint (Chankong and Haimes, 1983), hybrid
(combines both weighted-sum and ε-constraint) (Miettinen, 1999), norm or weighted metrics, min-
imax, etc. The weighted-sum method is used here for its applicability and the ease with which it
allows decision-makers/technical experts to participate in the solution development process. The
weighted-sum transforms a multiple objective optimization problem into a single objective opti-
mization problem (schematically shown in Fig. 4). This conversion process is usually referred to as
scalarization. The scalarization process results in a weighted-sum of the objective functions, which
is then optimized to obtain a set of Pareto optimal solutions by varying the weights. However, a
potential complication to the weighted-sum scalarization process arises due to the multiple stage
aspect of the optimization problem: determining meaningful weight vectors a priori at each stage
of a multistage problem. The three-phase methodology, discussed in (Tarun et al., 2007; Tarun,
2008), provides a systematic approach that allows decision-makers’ participation in resolving the
issues of determining a meaningful weight vector at one stage and modifying it appropriately to
obtain the weight vectors at subsequent stages. Next, we describe the three-phase methodology
and the weighted-sum scalarization of the original MSMO formulation.

3.1 Three-Phase Methodology

The methodology is built upon three distinct phases. These three phases are depicted in Fig. 5 for
a typical multistage and multiobjective model. This extends the multiple stage, single objective
decision-making framework presented in Tsai (2002) to a multiple stage, multiple objective (MSMO)
decision-making domain. The input phase elicits judgments from decision makers on pairs of
objectives for the first stage and on dependencies from one stage to the next. The matrix generation
phase uses experts’ opinions from the input phase to construct pairwise comparison matrices for
subsequent stages. The weighting phase uses the pairwise comparison matrices computed in the
matrix generation phase to calculate weight vectors at each stage (Saaty, 1980). Subsequently, these
weight vectors are used for the weighted-sum scalarization of the multistage vector optimization
problem.

3.1.1 The Input Phase

Let the matrices A(τ,τ) and Tτ be defined as follows.
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• A(τ,τ) is the k × k pairwise comparison matrix at stage τ , where k is the number of objective

functions at stage τ , and a
(τ,τ)
ij is the value at the intersection of row i and column j of A(τ,τ).

• Tτ is the k×k diagonal transformation matrix between stage τ and τ +1, and tτij is the value
at the intersection of row i and column j of Tτ .

The input phase utilizes the questionnaire approach, discussed in Tarun et al. (2008) and Tarun
(2008), to obtain the following two classes of judgments from the decision makers (or experts or
technical consultants) with regard to MSMO wastewater treatment system:

1. the judgment on the pairwise comparisons in the first stage to form a complete pairwise
comparison matrix at stage one (denoted by matrix A(1,1))

2. the judgments on dependencies of the same classes of objective function from one stage to
the next (denoted by matrices Tτ between stage τ and τ + 1)

Judgment on the Pairwise Comparisons at the First Stage: A(1,1) satisfies all the proper-
ties of the pairwise comparison matrix specified by the AHP. According to AHP, the following are
the properties of a pairwise comparison matrix:

• the value in row i and column j of A(τ,τ) (denoted by a
(τ,τ)
ij ) indicates how much more

important objective i is than objective j at stage τ ;

• the importance is measured on a ratio scale [19 , 9] with each number being interpreted accord-
ing to the AHP philosophy given in Saaty (1980);

• the value in row i and column j of Aτ,τ should be positive, i.e., a
(τ,τ)
ij > 0,∀ i, j;

• a
(τ,τ)
ii = 1,∀i;

• for consistency it is necessary that a
(τ,τ)
ji = 1

a
(τ,τ)
ij

,∀ i, j;

• transitivity may not hold if the decision maker is inconsistent, i.e., if ∃ i, j, k such that

[a
(τ,τ)
ij ][a

(τ,τ)
jk ] 6= a

(τ,τ)
ik .

We assume that there are the same k objective functions in every stage. The necessary consis-
tency property implies a need for k(k−1)

2 pairwise judgments in order to form a complete pairwise
comparison matrix.

Judgments on Dependencies from One Stage to the Next: The k × k diagonal matrix Tτ

implies a need to obtain k pairwise judgments. We assume that dependencies exist between the
same objective functions in consecutive stages. This implies k pairwise judgments. Alternately,
the matrix of dependencies can also be termed as an interstage diagonal transformation matrix,
named from the role it plays in transforming the pairwise comparison matrix in one stage into the
pairwise comparison matrix in next stage following the methodologies for matrix generation in the
second phase. The properties of the matrix of dependencies (or interstage diagonal transformation
matrix), Tτ , are:

• the value in row i and column i of Tτ (denoted by tτii) indicates how much more important
objective i in the stage τ is than objective i in the stage τ + 1;
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• the importance is measured on a ratio scale [19 , 9] with each number being interpreted accord-
ing to AHP philosophy given in Saaty (1980);

• the value of non-diagonal elements of Tτ should be zero, i.e., tτij = 0, for i 6= j;

• diagonal elements of Tτ should be positive, and belong to the AHP ratio scale [19 , 9], i.e.,
tτii > 0 and tτii ∈ [19 , 9].

The questionnaire modeling of the input phase is unique in the way it is applied to obtain pair-
wise judgments across various stages in a multiple stage, multiple objective problem. The input
phase, with the exception of matrix of dependencies from one stage to the next or interstage diag-
onal transformation matrix (Tarun et al., 2007; Tarun, 2008), follows the standard AHP approach
(Hobbs and Meier, 2000). The implementation results of questionnaire modeling for the 17-stage,
6-objective wastewater treatment system are shown in the next section.

3.1.2 The Matrix Generation Phase

This step is crucial for achieving the primary objective of weight vector generation. In this phase,
pairwise comparison matrices are computed for all stages. Our primary motivation for the new
methods was to attain pairwise comparison matrices that comply with the AHP ratio scale. These
methods are:

1. Geometric mean (GM)

2. Successive geometric mean (SGM).

Aside from satisfying the AHP ratio scale, GM and SGM approaches do not distort the scaling.
We first define the new functions gν and G that form the basis for both GM and SGM methods.

Function Definitions: Let νp be a function such that νp : ℜp → ℵ where ℜ is the set of all real
numbers on the AHP ratio scale [19 , 9], p is the number of input matrices, ℵ is the set of all natural
numbers less than or equal to p, and

νp(α1, α2, . . . , αp) = number of non-one αi’s, if ∃ αi 6= 1 for some i = 1, 2, . . . , p. (2)

Then let gp be a function such that gp : ℜp → ℜ, and

gp(α1, α2, . . . , αp) = (α1α2 · · ·αp)
1

νp(α1,α2,...,αp) , if ∃ αi 6= 1 for some i = 1, 2, . . . , p, (3)

= 1, otherwise.

Let there be a set of p k × k matrices where p is an odd number greater than or equal to 3. Of
the p matrices let there be p − 1 diagonal matrices Dq = (dq

ij), q = 1, 2, . . . , (p − 1) with positive
diagonal entries d

q
ii > 0 for i = 1, 2, . . . , k, and Θ = (θij) being a real matrix with positive entries

θij > 0 for i, j = 1, 2, . . . , k. Then let us define a function G such that

G(D1, D2, . . . , D( p−1
2

), Θ, D( p−1
2

+1), D( p−1
2

+2), . . . , D(p−1)) = Θ′, (4)

where Θ′ = (θ′ij) is a k × k matrix, and

θ′ij = gp(d
1
ii, d

2
ii, . . . , d

( p−1
2

)

ii , θij , d
( p−1

2
+1)

jj , d
( p−1

2
+2)

jj , . . . , d
(p−1)
jj ). (5)

We next describe the computation of pairwise comparison matrices using GM and SGM methods.
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Geometric Mean (GM): The GM method calculates the geometric mean of non-ones: the
first iteration computes a matrix containing the geometric mean of non-ones of the multiplication
of matrices (T1)

−1, A(1,1), and T1; the second iteration computes a matrix containing the geometric

mean of non-ones of the multiplication of (T2)
−1, three matrices from the first iteration, and T2;

and an arbitrary (τ−1)th iteration computes the geometric mean of non-ones of the multiplication
of (Tτ−1)

−1, 2τ − 3 matrices from (τ − 2)th iteration, and Tτ−1. The meaning of the geometric
mean of non-ones becomes clear from the second iteration onward. It involves computation of a
matrix containing the geometric mean of non-ones of the multiplication of 2i + 1 matrices, where i

is the iteration. Given the matrices from the input phase and using the definition of G(·) from the
section on function definitions with p = 2i + 1, the GM computation is as follows:

1st iteration: Pairwise comparison matrix at stage 2

A(2,2) = G[(T1)
−1

, A(1,1), T1].

2nd iteration: Pairwise comparison matrix at stage 3

A(3,3) = G[(T2)
−1

, (T1)
−1

, A(1,1), T1, T2].

...

(τ-1)st iteration: Pairwise comparison matrix at stage τ

A(τ,τ) = G[(Tτ−1)
−1

, (Tτ−2)
−1

, . . . , (T1)
−1

, A(1,1), T1, T2, . . . , Tτ−1].

For i > j at an arbitrary stage τ , values in the pairwise comparison matrix A(τ,τ) can be expressed
as:

a
(τ,τ)
ij =





((

tτ−1
jj

tτ−1
ii

)(

tτ−2
jj

tτ−2
ii

)

· · ·

(

t1jj

t1ii

)) 1
Nτ

ij





[

(a
(1,1)
ij )

1
Nτ

ij

]

, (6)

for τ = 2, 3, . . . , T , where N τ
ij is the number of non-ones involved in the GM computation of a

(τ,τ)
ij .

Successive Geometric Mean (SGM): The SGM method calculates the geometric mean of
non-ones successively : the first iteration computes a matrix containing the geometric mean of
non-ones of the multiplication of matrices (T1)

−1, A(1,1), and T1; the second iteration computes

a matrix containing the geometric mean of non-ones of the multiplication of (T2)
−1, the resulting

matrix from the first iteration, and T2; etc. Again, the meaning of the successive geometric mean
of non-ones becomes clear from the second iteration onward. It involves computation of a matrix
containing the geometric mean of non-ones of the multiplication of three matrices, one of which is
a matrix having geometric mean of non-ones from the previous iteration. Given the matrices from
the input phase and using the definition of G(·) from the section on function definitions with p=3
for all iterations, the SGM computation becomes:

1st iteration: Pairwise comparison matrix at stage 2

A(2,2) = G[(T1)
−1

, A(1,1), T1].

2nd iteration: Pairwise comparison matrix at stage 3

A(3,3) = G[(T2)
−1

, A(2,2), T2].

...
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(τ−1)st iteration: Pairwise comparison matrix at stage τ

A(τ,τ) = G[(Tτ−1)
−1, A(τ−1,τ−1), Tτ−1].

For i > j at an arbitrary stage τ , values in the pairwise comparison matrix A(τ,τ) can be expressed
as:

a
(τ,τ)
ij =





(

tτ−1
jj

tτ−1
ii

) 1
Nτ

ij

(

tτ−2
jj

tτ−2
ii

) 1

Nτ
ij

N
τ−1
ij

· · ·

(

t1jj

t1ii

) 1

Nτ
ij

N
τ−1
ij

···N2
ij





[

(a
(1,1)
ij )

1

Nτ
ij

N
τ−1
ij

···N2
ij

]

, (7)

for τ = 2, 3, . . . , T , where N τ
ij is the number of non-ones involved in the SGM computation of a

(τ,τ)
ij .

The geometric mean-based methods for computing pairwise comparison matrices, GM and
SGM, are unique not only in the way they reduce the time to generate pairwise comparison matrices
but also in the fashion they help maintain the component values of resulting pairwise comparison
matrices in the AHP ratio scale range. Further, the geometric-mean based methods produce highly
consistent pairwise comparison matrices, as demonstrated in Tarun (2008).

3.1.3 The Weighting Phase

The weighting phase is identical for both GM and SGM methods of pairwise comparison matrix
generation. Saaty’s eigenvector method is used to approximate the principal eigenvector associated
with each pairwise comparison matrix. These principal eigenvectors are used as as the weight
vectors. The weight vector calculation procedure requires one to normalize the pairwise comparison
matrix A(τ,τ) at a stage τ by dividing each entry in column j by the sum of entries in column j,
which is denoted by Anorm

(τ,τ) and approximate the principal eigenvector (termed as weight vector

Wτ at stage τ) by finding the average of each row of the normalized matrix. Consistent pairwise
comparison matrices result in meaningful weight vectors to be used for weighted-sum scalarization.
Implementation results of weighting phase are shown in the next section.

One of the major advantages of the three-phase methodology is the significant reduction in the
amount of information required from the experts/decision makers in the input phase. Since all
pairwise comparisons are considered only for the first stage, and the pairwise comparison matrices
for the subsequent stages are computed based on comparing only k pairwise objectives instead of
k(k−1)

2 , where k is the number of objectives at each stage. Mathematically, k <
k(k−1)

2 for k > 3.
The three-phase methodology extends analytic hierarchy process (AHP) to the MSMO decision-

making problems along with the following features: high interpretability as pairwise comparison
matrices maintain the component values in the AHP ratio scale range; highly consistent pairwise
comparison matrices at each stage due to interactions with the experts; actual decision makers
expressing their judgments on the relative importance of objectives at a stage and between two
consecutive stages without being overwhelmed with the technical details; and generation of mean-
ingful weight vectors for the scalarization of the MSMO version of WTS.

3.2 Weighted-Sum Scalarization

The next task is to generate Pareto optimal solutions. Some of the methods for generating Pareto
optimal points include, weighted-sum (Chankong and Haimes, 1983), ε-constraint (Chankong and
Haimes, 1983), hybrid that combines both weighted-sum and ε-constraint (Miettinen, 1999), norm
or weighted metrics, and minimax. The weighted-sum method is used here for its ease of appli-
cation and involvement of decision makers in the solution process. The weighted-sum transforms
multiple objective functions into a single objective function, and optimizes the weighted-sum of
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the objectives. This conversion process is usually referred to as weighted-sum scalarization. The
weighted-sum scalarized form of the problem (shown schematically in Fig. 4) becomes

min
u1,...,uT

E

{

T
∑

τ=1

W τmτ (xτ , uτ , ǫτ,uτ )

}

s.t. xτ+1 = fτ (xτ , uτ , ǫτ,uτ ), for τ = 1, . . . , T − 1,

xτ ∈ Sτ , uτ ∈ Γτ , for τ = 1, . . . , T ,

(8)

where W τ is the weight vector at stage τ , (w1
τ , w

2
τ , . . . , w

k
τ ), and mτ (xτ , uτ , ǫτ,uτ ) is the objective

vector at stage τ , (m1
τ (xτ , uτ , ǫτ,uτ ), m2

τ (xτ , uτ , ǫτ,uτ ), . . . , mk
τ (xτ , uτ , ǫτ,uτ ))′. The equation 8 is the

resulting multiple stage, single objective optimization problem.

3.3 Normalization/transformation of objective functions

It is practical to transform or normalize the objective functions so that they all have comparable
orders of magnitude. We use the upper-lower-bound approach recommended in Marler and Arora
Marler and Arora (2005). For a given stage τ , this approach uses the transformation,

mti =
mi(u) − mi

0

mi
max − mi

0

, (9)

mi
max = max

1≤j≤k
mi(u∗

j ), (10)

for i = 1, . . . , k where k is the number of objective functions and u
∗
j is the point that minimizes

the jth objective function,

mi
0 = min

u
{mi(u)|u ∈ Γ}, (11)

where Γ is the feasible decision space.
Therefore, the normalized/transformed form of the multiple stage, single objective problem in

equation 8 is,

min
u1,...,uT

E

{

T
∑

τ=1

(W τ ⋆ MT τ ) mτ (xτ , uτ , ǫτ,uτ )

}

s.t. xτ+1 = fτ (xτ , uτ , ǫτ,uτ ), for τ = 1, . . . , T − 1,

xτ ∈ Sτ , uτ ∈ Γτ , for τ = 1, . . . , T ,

(12)

where ⋆ is the symbol for component-wise vector multiplication, W τ is the weight vector at stage τ ,
(w1

τ , w
2
τ , . . . , w

k
τ ), and MT τ is the objective transformation vector at stage τ , (mt1τ , mt2τ , . . . , mtkτ ).

Therefore, the problem that needs to be solved eventually is the normalized multiple stage, sin-
gle objective problem formulation described above in equation 12. The solution approach to the
resulting optimization model is described next.

3.4 Solution to Normalized Multiple Stage, Single Objective Optimization Prob-
lem

The normalized multiple stage, single objective problem formulation described above in equation 12
is solved using an approach that augments the high-dimensional, continuous-state stochastic dy-
namic programming method described in Tsai (2002) and Chen et al. (1999) to deal with multiple
objectives at each stage. In particular, the following modifications were made to address the present
needs.
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• A routine was added to capture decision makers’ preferences, which get translated into weight
vectors using the three-phase methodology.

• A routine was added to normalize/transform the objective functions with different units to
have similar units and orders of magnitude.

• State transition equations were added for new technology units- Yellow Water Separation
and Yellow and Black Water Separation in level 1, and UASB System plus Activated Sludge
Process (C, P, N) in level 5.

• Constraints (both liquid and sludge state variable limits in each level) were modified to reflect
the addition of new technology units.

• Penalty coefficients and costsmooth parameters were modified due to addition of new tech-
nologies.

Some of the issues with the augmented stochastic dynamic programming model include presence
of continuous-state variables, presence of uncertainty, 20-dimensional state vector, form of state
transitions, and future value function approximation. To resolve the continuous nature of state
variables, the orthogonal array (OA) based Latin hypercube designs, presented in (Chen et al.,
1999; Chen, 2001), are used for state space discretization, and the MARS (Tsai and Chen, 2005)
algorithm is used for future value function approximation. The details on the orthogonal array
based Latin hypercubes and MARS algorithm can be seen in Tsai (2002).

A small and a big design with 2209 and 12167 discretization points, respectively, are considered
for demonstrating the results from implementation of the augmented stochastic dynamic program-
ming approach to evaluate wastewater treatment technologies. Next, a brief explanation is given for
how these design points are used to evaluate technology processes/units in wastewater treatment
system (WTS).

The future value functions are obtained backward. Starting the iteration in the last level, for
each discretization/design point in the last level we solve the optimization problem that minimizes
the normalized weighted-sum of objective functions. Then, we approximate the solution to this
minimization problem through a future value function, for all the discretization points, obtained
by fitting a statistical model to the data obtained in the previous step. This results in the selection
of optimal technologies for each of the design points in the last level. Moving to the next level (last
but one), for each discretization point we solve the optimization problem that minimizes the (the
weighted-sum of objective functions in the current level + the future value function obtained from
the last level). Then we approximate the solution to optimization problem through a future value
function, for all the discretization points in the current level, obtained by fitting a statistical model
to the data obtained in the previous step. This results in the selection of optimal technologies
for each of the design points in the current level. The process is repeated until the future value
function for the level 1 is obtained.

4 Implementations and Results

4.1 Three-Phase Methodology

We are applying the three-phase methodology (Tarun et al., 2007) on a conceptual multiple stage,
multiple objective wastewater treatment system. Table 1 shows wastewater treatment technology
choices at all levels of WTS. The stages correspond to different levels of processing in WTS. The
MSMO version of WTS has two new technologies at level 1 and one new technology at level 5 of the

14



liquid processing line. Again, the goal is to select the treatment technology units at each level of
WTS for minimizing economic cost, size, and odor emissions, while maximizing nutrient recovery,
robustness, and global desirability. Results of the three-phase implementation are presented next.

4.1.1 Input phase

The questionnaire modeling, discussed in Tarun et al. (2008), is used in the input phase to elicit
decision makers’ preferences on the tradeoffs between all possible pairs of objectives at a stage
and between same objective types in consecutive stages. A single technology unit “empty unit”
at level 4 of the wastewater treatment system (WTS) implies that no optimization is needed at
this level, which means there is no need of a questionnaire at stage 4 (or level 4). In other words,
the questionnaire-modeling involves tradeoff questions at levels 1 through 3, and 5 through 17 of
the WTS. We obtained answers to a total of 390 questions in various questionnaires from Georgia
Department of Natural Resources (GADNR). We denote the WTS objectives at level τ as follows.

• ECτ denotes the Economic Cost (in USD).

• Sτ denotes the Land Area (in m2).

• Oτ denotes the Odor Emissions (in mg/min).

• NRτ denotes the Nutrient Recovery (on 1-5 scale).

• Rτ denotes the Robustness (no units).

• GDτ denotes the Global Desirability (on 1-6 scale).

The questionnaire had a set of questions on the worst/best values for the objectives at each
level, the relative importance for different objectives at level 1, and the relative importance for
same types of objectives across different levels of the WTS. The WTS questionnaire is organized
in the following tables.

• Table 7 presents the worst and the best values for all six objectives at levels 1 through 3.
These values are based on the WTS code developed by Jining Chen (Chen, 1993; Chen and
Beck, 1997). The worst and best values for all six objectives at all 17 levels can be seen in
Tarun (2008).

• Table 8 presents importance questions for comparing the different objectives within Level 1
of WTS.

• Table 9 presents interlevel importance questions for comparing the same objective types across
different levels of WTS. The complete tables for all six objectives can be seen in Tarun (2008).

The worst and best values in Table 7 help decision makers answer tradeoff questions (or relative
importance questions) in Tables 8 and 9 with a relatively high level of precision and consistency.
We use Tables 8 and 9 to get the complete pairwise comparison matrix at level 1 and interstage
diagonal matrices, respectively.

The questionnaire-based approach results in the pairwise comparison matrix at stage 1, A(1,1),
and interstage diagonal transformation matrices (or matrices of dependencies from one stage to
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the next), Tτ , for τ = 1, 2, . . . , (T − 1), where T=17. These matrices are utilized as inputs to the
matrix generation phase. The resulting pairwise comparison matrix at stage 1,

A(1,1) =

















R S O GD EC NR

R 1 3 1
4

1
2 4 4

S 1
3 1 1

6
1
4 2 1

2
O 4 6 1 2 8 7
GD 2 4 1

2 1 6 6
EC 1

4
1
2

1
8

1
6 1 1

3
NR 1

4 2 1
7

1
6 3 1

















.

The sixteen interstage diagonal transformation matrices are,

T1 =

















1
7 0 0 0 0 0
0 1

3 0 0 0 0
0 0 1

5 0 0 0
0 0 0 1

3 0 0
0 0 0 0 1

8 0
0 0 0 0 0 4

















, T2 =

















1
5 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 4 0 0
0 0 0 0 1

8 0
0 0 0 0 0 1

9

















, T3 =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















,

T4 =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















, T5 =

















1
5 0 0 0 0 0
0 1

6 0 0 0 0
0 0 1

7 0 0 0
0 0 0 1 0 0
0 0 0 0 1

8 0
0 0 0 0 0 4

















, T6 =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















,

T7 =

















1
3 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 3 0 0
0 0 0 0 1

5 0
0 0 0 0 0 1

9

















, T8 =

















2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 2

















, T9 =

















1 0 0 0 0 0
0 1

2 0 0 0 0
0 0 1

2 0 0 0
0 0 0 1

9 0 0
0 0 0 0 1 0
0 0 0 0 0 1

9

















,

T10 =

















6 0 0 0 0 0
0 5 0 0 0 0
0 0 6 0 0 0
0 0 0 9 0 0
0 0 0 0 8 0
0 0 0 0 0 9

















, T11 =

















4 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 5 0 0
0 0 0 0 9 0
0 0 0 0 0 1

















, T12 =

















3 0 0 0 0 0
0 3 0 0 0 0
0 0 4 0 0 0
0 0 0 2 0 0
0 0 0 0 5 0
0 0 0 0 0 1

















,

T13 =

















1
8 0 0 0 0 0
0 1

8 0 0 0 0
0 0 1

8 0 0 0
0 0 0 2 0 0
0 0 0 0 1

8 0
0 0 0 0 0 1

4

















, T14 =

















8 0 0 0 0 0
0 7 0 0 0 0
0 0 8 0 0 0
0 0 0 1

2 0 0
0 0 0 0 9 0
0 0 0 0 0 1

















,
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T15 =

















1
9 0 0 0 0 0
0 1

9 0 0 0 0
0 0 1

9 0 0 0
0 0 0 5 0 0
0 0 0 0 1

9 0
0 0 0 0 0 1

9

















, T16 =

















6 0 0 0 0 0
0 4 0 0 0 0
0 0 5 0 0 0
0 0 0 2 0 0
0 0 0 0 9 0
0 0 0 0 0 9

















.

The above matrices are used as inputs to the matrix generation phase to generate pairwise
comparison matrices using geometric-mean based methods, GM and SGM, at each stage of the
MSMO version of the WTS. The results for matrix generation phase are presented next.

4.1.2 Matrix generation phase

For both GM and SGM methods, the computed pairwise comparison matrix at stage 2 is,

A(2,2) =

















R S O GD EC NR

R 1.000000 1.912931 0.704730 1.052727 1.518294 4.820285
S 0.522758 1.000000 0.464159 0.629961 0.908560 1.817121
O 1.418983 2.154435 1.000000 1.493802 1.709976 5.192494
GD 0.949914 1.587401 0.669433 1.000000 1.310371 4.160168
EC 0.658634 1.100642 0.584804 0.763143 1.000000 2.201285
NR 0.207457 0.550321 0.192586 0.240375 0.454280 1.000000

















.

The computed pairwise comparison matrices for WTS levels 3 through 17 using the methods,
geometric mean (GM) of non-ones and successive geometric mean (SGM) of non-ones, for matrix
generation can be seen in Tarun (2008).

4.1.3 Weighting phase

Saaty’s eigenvector approach (Saaty, 1980) is used to compute weight vectors for both GM and
SGM methods in the matrix generation phase. These are principal eignevectors for the pairwise
comparison matrices obtained in the matrix generation phase. Tables 10 and 11 are the weight
vectors obtained using the GM and SGM methods, respectively.

4.2 Computational results on the consistency of computed pairwise matrices

Lower values of consistency indices indicate better consistencies of corresponding pairwise compari-
son matrices (Saaty, 1980). These results show that the pairwise comparison matrices computed in
the matrix generation phase are highly consistent implying that the corresponding weight vectors
computed in the weighting phase are meaningful. Therefore the weight vectors can be used to
scalarize the MSMO version of the WTS. Highly consistent pairwise comparison matrices imply
high level of consistency in the decision makers’ judgments elicited in the input phase.

For GM method, consistency indices decrease from one stage to the next as seen in Table 12
and Fig. 6. Further, the consistency indices for the SGM method are higher than the indices for the
GM method implying that the GM method performs better in terms of consistency of judgments
elicited from decision makers.
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4.3 Solution Results for the Scalarized Version of WTS

Since the weight vectors obtained were based on highly consistent pairwise comparison matrices,
they can be used for scalarization of the MSMO version of WTS using weighted-sum of objective
functions at each stage. The scalarization converts the MSMO decision-making problem into a
multiple stage, single objective decision-making problem, which is also referred to as stochastic dy-
namic programming (SDP) formulation. We next present the results obtained using the augmented
stochastic dynamic programming solution approach to solve the scalarized version of WTS.

4.3.1 Results for the small design

Tables 13 and 14 present the resulting counts for a solution with the GM and the SGM methods
respectively, using an orthogonal array and Latin hypercube based experimental design (OA-LHD)
with N=2209 generated from a 47-level strength two orthogonal array. In the results table, “bold-
face” signifies technology units that are new (may only be existing as prototypes) or new for a
specific level, and “italics” signifies somewhat new technology units (may not be well understood
yet). In order for MARS to estimate the future value functions, the maximum number of basis
funtions and number of eligible knots considered are 200 and 35, respectively. The dependencies
between technology units are evident in Tables 13 and 14. For instance, the technology unit Sludge
Thickening Tank gets picked most of the time in level 12 and Aerobic-Anaerobic Digestion quite a
significant number of times in level 13, thereby enabling the selection of Filter and Belt in level 14.

Yellow Water Separation, the new technology in level 1, is a clear winner for both GM and
SGM. Vortex SSO and Chemical Precipitation look promising in level 2. Ozonation and Physical
Irradiation are picked up in level 3. In level 5, A-B System is only selected using the GM method
while Activated Sludge (C, P, N) is selected only with the SGM method. The use of a technology
is necessary for levels 6 and 7. Both Physical Irradiation and Ozonation appear to be promising
in level 8. Air Stripping gets selected more often in level 9. None of the technology units in level
10 appears to be a good candidate. GAC Adsorption is a clear winner in level 11. In the solid
line, Sludge Thickening Tank in level 12 appears to be highly promising. Sludge Dewatering Bed
and Aerobic-Anaerobic Digestion are effective in level 13. In level 14, Filter and Belt is favored in
counts. However, Permanent Thermal Process and Thermo-Chemical Liquefaction look promising
as well. Sludge Dewatering Bed and Physical Irradiation work well in levels 15 and 16 respectively.
In level 17, Chemical Fixation appears to win by count with GM while settling for a second place
with SGM.

4.3.2 Results for the big design

To validate the results using the small design, a solution was obtained using an OA-LHD with
12167 design points generated from a 23-level strength three orthogonal array. The results, which
should be more precise than the small design, can be seen in Tables 15 and 16. The coefficients
of multiple determination (R2) are shown inside the square brackets. The dependencies between
technology units can be easily seen.

In level 1, Yellow Water Separation is a clear winner for both GM and SGM. In level 2, Vortex
SSO is a winner by count with GM, and is a clear winner with SGM. Ozonation is a clear winner
in level 3. For GM, both Multi-reactor/Deep and UASB+Activated Sludge (C, P, N) appear to be
promising in level 5. However, for SGM UASB+Activated Sludge (C, P, N) looks to be a heavy
favorite. Microfiltration and Secondary Settler appear to have potential in level 6, while Reverse
Osmosis and Microfiltration are shown to be effective in level 7. Ozonation is dominant in level 8.
Air Stripping outshines other units in level 9. Results for levels 10 and 11 are identical to the small
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design. Results for the solid line look similar to the results using the small design.

4.3.3 Discussions

We now compare the results for the big design with that of the small design. We discuss first
the results using GM method, and then those for the SGM method. In the GM method results,
Yellow Water Separation wins clearly for both the designs in level 1. It is interesting to see the
newly-added Yellow Water Separation unit get selected in level 1. In level 2, the small design selects
Vortex SSO and Chemical Precipitation while the big design also selects Sedimentation Tank and
Empty Unit. Nonetheless, there is a consistency in the selection of Vortex SSO as a heavy favorite
in level 2. In level 3, Ozonation wins the selection on count for both the designs. Levels 5, 6, 7,
and 8 have the following interesting observations.

• In level 5, Multi-reactor/Deep emerges as another legitimate option for the big design in
addition to UASB + Activated Sludge (C, P, N). It is encouraging to see UASB + Activated
Sludge (C, P, N), the newly-added unit in level 5, as the most promising technology.

• In level 5, UASB System gets selected for the big design as opposed to the small design.

• In level 5, The set of technological units selected for the big design is smaller in comparison
with the small design.

• Results for levels 6 and 7 confirm a necessity for the use of technological units.

• Level 6 for the big design selects Microfiltration as the winner followed by Secondary Settler,
Chemical Precipitation, and Reverse Osmosis. On the other hand, level 6 for the small design
declares Chemical Precipitation as a clear winner on count while selecting other technology
units occasionally.

• In level 7, both big and small design concur on Reverse Osmosis as the major selection.
However, the big design has a better balance in terms of how often other technology units
get selected. Microfiltration and Chemical Precipitation are selected frequently for the big
design, while Physical Filtration, Microfiltration, and Chemical Precipitation are the choices
for the small design.

• In level 8, the big design selects Ozonation as the winner on count followed by Physical
Irradiation, which swaps the results for small design interestingly.

Level 9 selects Air Stripping far more often for both the designs. It is apparent that level 10 does
not require the use of a technology unit. In level 11, GAC Adsorption is clearly superior. In the
solid line, the results are more or less consistent for both the designs.

In the SGM method results, Yellow Water Separation wins clearly for both small and big designs
in level 1. The big design clearly declares Vortex SSO and Ozonation as winners in levels 2 and 3
respectively. The small design, however, also selects Chemical Precipitation in level 2 and Physical
Irradiation (rather infrequently) in level 3. For both the designs, level 5 selects UASB + Activated
Sludge (C, P, N) to be the winner. Interestingly, the small design selects Activated Sludge (C, N),
Activated Sludge (C, P, N), and Activated Sludge (N) in level 5, which do not get picked up at all
for the big design. Trends similar to the GM method can be seen in levels 6 through 17.

In summary, both the methods show the new technologies in levels 1 and 5 to be promising.
This observation justifies the decision to include these technologies in the evaluation process. Also,
the solution obtained satisfies the dependencies between technology units.

19



5 Concluding Remarks

This paper addresses the disconnect between the decision makers and the solution developers for
an MSMO optimization problem through the use of a questionnaire approach that allows decision-
makers to participate in the solution development process. Other contributions of this paper are
summarized next. First, it extends AHP approach to a multiple-stage decision-making framework
using three-phase methodology. Second, it helps develop theories and methodologies for computing
pairwise comparison matrices that have traditionally been constructed using direct inputs from
decision makers. Computation of pairwise comparison matrices reduces the amount of information
required from the decision makers, thereby increasing efficiency of the solution process. More
importantly, the new methods in the matrix generation phase, GM and SGM, result in highly
consistent pairwise comparison matrices. Third, we modify the high-dimensional, continuous-state
stochastic dynamic programming (SDP) approach in Tsai (2002) to handle multiple objectives by
augmenting it with two new routines: first, the routine that allows inputs from decision makers
in form of weight vectors at each stage; and second, the routine that normalizes/transforms the
objective functions with different units and orders of magnitude that is crucial to a practical
application of weighted-sum of objective functions approach. Finally, we solve a 20-dimensional,
17-stage, 6-objective, continuous-state wastewater treatment system (WTS), which is larger than
any numerically solved problem in the current literature.

We use our three-phase methodology with the augmented high-dimensional, continuous-state
SDP to solve an MSMO optimization model. This technique is quite general in its application to
a variety of large-scale MSMO problems. Also, the technique is pragmatic in the sense of involving
decision makers in the solution development process. We have demonstrated it on a 20-dimensional,
17-stage, 6-objective, continuous-state wastewater treatment system (WTS). The solution obtained
satisfies all the constraints and complications such as dependencies between technologies, etc. The
final solution to WTS selects the new technologies, Yellow Water Separation and UASB System plus
Activated Sludge Process (C, P, N), in levels 1 and 5, respectively. This result justifies the experts’
decision to include these new technologies for the evaluation purposes. However, our three-phase
methodology might benefit from the following refinements:

• Exploring the involvement of multiple decision makers in order to achieve a desired level of
objectivity in the Input phase,

• Developing a theoretical basis for the consistency behavior of computed pairwise comparison
matrices at a stage using the GM and SGM methods in the Matrix Generation Phase,

• Exploring alternate weight determination methods in the Weighting Phase in a quest to get
a better weight estimate.

The results for consistency index indicate that the consistency indices decrease along the stages
(or levels), implying that the judgments seem to improve as we move from one stage to the next for
GM method. However, the consistency results are not as conclusive for SGM method. A theoretical
method for comparing the results should be developed. The idea is to construct a mathematical
proof to show that the consistency indices for the computed pairwise comparison matrices using the
GM and the SGM methods, in general, decrease in value while moving forward across the stages. It
is based on the AHP-based fact that a lower value of consistency index indicates a more consistent
judgment from the decision maker.

In addition, there is a need to implement alternate methods for weight determination in the
weighting phase of the three-phase methodology. It is possible that these methods could provide
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weight estimates better than the Saaty’s eigenvector method. Some of the promising weight-
determination methods are: the alternative eigenvector method by Cogger and Yu (1985), the
graded eigenvector method (GEM) of Takeda et al. (1987), the three methods for weight derivation
based on pairwise comparison matrices of Krovak (1987), and the weight determination based on
the decision makers’ qualitative information by Batishchev et al. (1991).

Group decision making is a central feature of today’s organizational decision making. The input
phase in our three-phase methodology depends on the responses from single expert thereby making
it relatively subjective. If the questionnaire could account for responses from multiple decision
makers, the input phase could be improved in terms of consistency, accuracy, and representation
of experts’ preferences. In other words, the goal would be to collect inputs from multiple decision
makers at a time in order to achieve some level of objectivity in the judgment.

Currently, our three-phase methodology is based on inputs from one decision maker thereby
making it more or less deterministic. Though AHP has its value in terms of maintaining and
ensuring consistency in decision makers’ judgments/preferences, nonetheless it could do much better
if the pairwise comparison matrices were stochastic reflecting uncertainties or subjectivities in
human judgments. In addition to asking the decision makers a priori about their preferences, we
could also investigate the possibility of presenting them with multiple Pareto optimal solutions for
multiple sets of stagewise weight vectors. In solving weighted-sum version of the stochastic dynamic
programming, we could also investigate various experimental designs for the discretization of state
space and other statistical modeling approaches for the future value approximation.
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Table 1: Decision variables (or treatment technologies) at each level of the wastewater treatment system. 

 



 

Table 2: Lower and upper limits (in mg/l) on the ten liquid state variables of the wastewater treatment 

system for the liquid line (Levels 1-11). 

 



 

Table 3: Lower and upper limits (in mg/l) on the ten sludge state variables of the wastewater treatment 

system for the liquid line (Levels 1-11). 

 
 

Table 4: Lower and upper limits (in mg/l) on the ten sludge state variables of the wastewater treatment 

system for the solid line (Levels 12-17). 

 



Table 5: Minimum and maximum values (in mg/l) of the ten liquid state variables for the wastewater
exiting the Liquid Line. Targets are approximately 10% of the maximums. For the quintic penalty
function, differences ∆ between the knots are calculated as 0.5×(maximum − target). Penalty
coefficients are calculated as 2000/(maximum − target).

Effluent ↓ L-COD L-SS L-orgN L-ammN L-nitN

Minimum 8.6528(10−4) 9.6228(10−6) 1.296(10−3) 0 1.314(10−3)
Maximum 47.7603 52.5 66.5 14.9226 170.3263

Target 5 5.5 7 1.5 16
∆ 21.4 24 30 6.7 77.2
Penalty 47 43 34. 149 13

Effluent ↓ L-totP L-HM L-SOCs L-pathogens L-viruses

Minimum 0 7(10−10) 3.164(10−10) 0 8(10−15)
Maximum 8 0.001701 0.32 212.625 0.0025515

Target 0.8 0.00015 0.04 20 0.0003
∆ 3.6 0.00078 0.1395 96.313 0.00112
Penalty 278 1.29(106) 7.2(103) 10.4 8.88(105)

Table 6: Minimum and maximum values (in mg/l) of the ten solid state variables for the solid
exiting the Solid Line. Targets are approximately 10% of the maximums. For the quintic penalty
function, differences ∆ between the knots are calculated as 0.5×(maximum − target). Penalty
coefficients are calculated as 2000/(maximum − target).

Effluent ↓ S-Vol S-WC S-orgC S-inorgC S-orgN

Minimum 1 0 0.0122 0.082 4.87(10−4)
Maximum 3078.691 0.30 8.03(106) 8.942(106) 5.0125(105)

Target 306 0.03 6.08(105) 6.83(105) 3.81(104)
∆ 1386 0.135 3.71(106) 4.13(106) 2.316(105)
Penalty 0.72 7407.41 2.7(10−4) 2.4(10−4) 4.32(10−3)

Effluent ↓ S-ammN S-totP S-HM S-SOCs S-pathogens

Minimum 1.425(10−6) 0.0168 6.5(10−6) 0 1.856(10−6)
Maximum 2.21(104) 1.5442(1011) 1.826(108) 9.588(1010) 2.435(1013)

Target 1685 1.472(105) 453 2.74(105) 1.38(108)
∆ 1.02(104) 7.721(1010) 913(107) 4.794(1010) 1.22(1013)
Penalty 0.0981 1.3(10−8) 1.1(10−5) 2.09(10−8) 8.21(10−11)



 

Table 7: The worst and the best objective values in WTS Levels 1–3. 

 
 

 

Table 8: The importance questions for Level 1 of the wastewater treatment system. 

 
 



 

Table 9: The interlevel importance questions for six objectives. 

 
 



Table 10: Weight vectors for GM method

W1 (0.154237, 0.058427, 0.421142, 0.256685, 0.036603, 0.072906)

W2 (0.218300, 0.117765, 0.273487, 0.195936, 0.139935, 0.054577)

W3 (0.244031, 0.106403, 0.214016, 0.119192, 0.203495, 0.112864)

W4 (0.244031, 0.106403, 0.214016, 0.119192, 0.203495, 0.112864)

W5 (0.244031, 0.106403, 0.214016, 0.119192, 0.203495, 0.112864)

W6 (0.231888, 0.137621, 0.225310, 0.101896, 0.219167, 0.084118)

W7 (0.231888, 0.137621, 0.225310, 0.101896, 0.219167, 0.084118)

W8 (0.221956, 0.142302, 0.204020, 0.089873, 0.225492, 0.116357)

W9 (0.211932, 0.147220, 0.196833, 0.104796, 0.214795, 0.124425)

W10 (0.193660, 0.147616, 0.188594, 0.128934, 0.196043, 0.145154)

W11 (0.191603, 0.154427, 0.187325, 0.131833, 0.189292, 0.145520)

W12 (0.186320, 0.161504, 0.186168, 0.132277, 0.174369, 0.159363)

W13 (0.183047, 0.161063, 0.179718, 0.138594, 0.167228, 0.170350)

W14 (0.186209, 0.166115, 0.183183, 0.124514, 0.171779, 0.168199)

W15 (0.176766, 0.160269, 0.174110, 0.146163, 0.163228, 0.179465)

W16 (0.180087, 0.164718, 0.177622, 0.127089, 0.167485, 0.182998)

W17 (0.178291, 0.167024, 0.177371, 0.135758, 0.164072, 0.177484)

Table 11: Weight vectors for SGM method

W1 (0.154237, 0.058427, 0.421142, 0.256685, 0.036603, 0.072906)

W2 (0.218300, 0.117765, 0.273487, 0.195936, 0.139935, 0.054577)

W3 (0.249305, 0.087228, 0.150558, 0.076308, 0.253163, 0.183438)

W4 (0.249305, 0.087228, 0.150558, 0.076308, 0.253163, 0.183438)

W5 (0.249305, 0.087228, 0.150558, 0.076308, 0.253163, 0.183438)

W6 (0.223666, 0.164886, 0.212225, 0.063104, 0.266724, 0.069395)

W7 (0.223666, 0.164886, 0.212225, 0.063104, 0.266724, 0.069395)

W8 (0.192707, 0.152082, 0.165406, 0.060352, 0.242291, 0.187161)

W9 (0.174404, 0.160278, 0.165265, 0.138625, 0.189626, 0.171803)

W10 (0.097431, 0.144250, 0.145907, 0.243649, 0.102808, 0.265956)

W11 (0.149496, 0.181108, 0.171078, 0.177404, 0.138297, 0.18261)

W12 (0.134220, 0.185263, 0.156601, 0.131842, 0.097592, 0.294482)

W13 (0.132221, 0.149261, 0.126301, 0.152176, 0.097900, 0.342142)

W14 (0.183986, 0.191534, 0.181199, 0.076517, 0.166317, 0.200446)

W15 (0.107444, 0.114419, 0.106874, 0.274970, 0.099282, 0.297011)

W16 (0.173007, 0.176721, 0.172702, 0.066514, 0.168428, 0.242628)

W17 (0.163754, 0.188783, 0.173912, 0.171678, 0.141776, 0.160098)



Table 12: Consistency indices (CI) for GM and SGM methods

GM Method SGM Method

CI1 0.054527 0.054527

CI2 0.005730 0.005730

CI3 0.003273 0.012704

CI4 0.003273 0.012704

CI5 0.003273 0.012704

CI6 0.002739 0.010679

CI7 0.002739 0.010679

CI8 0.001420 0.001159

CI9 0.001117 0.000310

CI10 0.000546 0.002617

CI11 0.000380 0.000291

CI12 0.000247 0.001748

CI13 0.000196 0.001932

CI14 0.000148 0.000214

CI15 0.000140 0.004674

CI16 0.000109 0.000517

CI17 0.000091 0.000057



 

Table 13: Selected technologies using GM method with 2209 design points. 

 



 

Table 14: Selected technologies using SGM method with 2209 design points. 

 



 

Table 15: Selected technologies using GM method with 12167 design points, where the fractions in 

square brackets denote the R
2
 values. 

 



 

Table 16: Selected technologies using SGM method with 12167 design points, where the fractions in 

square brackets denote the R
2
 values. 

 



 

Figure 1: Levels and treatment technologies for the liquid line of the wastewater treatment system. 

 



 

Figure 2: Levels and treatment technologies for the solid line of the wastewater treatment system. 

 
 



 

Figure 3: Basic formulation of multiple stage multiple objective optimization problem. 

 



 

Figure 4: Scalarization using weighted-sum of objective functions approach. 

 



 

Figure 5: A typical multistage multiobjective model highlighting three phases in our methodology. 

 
 

 

Figure 6: Consistency indices of pairwise comparison matrices over WTS levels. 

 




