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Abstract 

Control charts have been widely recognized as important and critical tools in system monitoring 

for detection of abnormal behavior and quality improvement. In particular, multivariate control 

charts have been effectively used when a process involves a number of correlated process 

variables. Most existing multivariate control charts were developed using the assumption of 

normally distributed process variables. However, process data from modern industries often do 

not follow the normal distribution. Despite the great need for nonparametric control charts that 

can control the error rate regardless of the underlying distribution, few efforts have been made in 

this direction. In this paper, we propose a new nonparametric control chart (called the kLINK 

chart) based on a k-linkage ranking algorithm that calculates the ranking of a new measurement 

relative to the in-control training data. A simulation study was performed to demonstrate the 

effectiveness of our kLINK chart and its superiority over the traditional Hotelling‘s T
2
 chart and 

the ranking depth control chart in nonnormal situations. In addition, to enable increased 

sensitivity to small shifts, we present an exponentially weighted moving average version of a 

kLINK chart. 

 

Key words: nonparametric, multivariate control charts, statistical quality control, Hotelling‘s T
2
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data depth 
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1. Introduction 

Multivariate quality control monitors the quality of a production process that depends on several 

correlated quality characteristics. A sample quality characteristic is used to calculate 

measurements, such as sample means, which are then combined into a single statistic that may be 

plotted on a control chart. The main purpose of the control chart is to monitor the performance of 

a process over time to maintain the process in-control.   

Most of the research performed in this field assumes the measurements that describe 

quality characteristics follow a multivariate normal distribution
1-3, 12, 18, 20, 27

. A Hotelling‘s T
2
 

control chart (T
2
 chart)

11
 is the most widely used multivariate control chart under the assumption 

that the measurements follow a multivariate normal distribution. However, this assumption of 

normality is not always applicable.  In particular, the distribution of the process variable may be 

highly skewed. In practice, use of transformed variables can be suggested. However, this task is 

difficult, and statistical methods to effectively transform multivariate nonnormal data into 

multivariate normal data are very limited
22

.  

When this assumed normality is not present, the calculated probabilities of Type I and 

Type II error rates derived from the control mechanisms are unreliable. Only a limited number of 

methods of multivariate quality control are available for use in nonnormal situations, which gives 

rise to the motivation to develop nonparametric methods for multivariate process control.   

Nonparametric techniques control the probabilities of false alarms no matter what the 

underlying distribution of the quality characteristics is. In the absence of a distributional 

assumption, a nonparametric procedure requires training the data of the in-control measurements 

to represent the underlying distribution. Research in nonparametric multivariate quality control 

has been conducted by Beltran
4
, Bush

6
, Bush et al.

7
, Cheng et al.

9
, Hayter and Bush

10
, Kapatou 
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and Reynolds
14

, Liu
16

, Qiu
22

, Qiu and Hawkins
23

, Stoumbos and Jones
24

, and Stoumbos and 

Reynolds
25

. An overview of some of these methods can be found in Chakraborti et al.
3
.  

The nonparametric r chart (ranking depth chart) introduced by Liu
16

 is based on ranking 

the depth of the multivariate testing data relative to the multivariate training data and then 

plotting these ranks in a univariate control chart. Data depth is a measure of how central a data 

point is compared with a data cloud without any distributional assumption. Several data depths, 

such as Mahalanobis depth and simplicial depth, have been used to construct r charts
15

. More 

recently, Beltran
4
 extended Liu‘s ranking depth chart by integrating principal components 

analysis (PCA). His PCA-simplicial depth r control charts were constructed by using simplicial 

depth ranks of the principal components to improve the detection of both variability and 

correlation shifts in multivariate processes without any distributional assumptions.  

Recently, Qiu
22

 proposed a nonparametric multivariate control chart based on log-linear 

modeling. He proposed to estimate the in-control distribution of the original training data X(i) by 

transforming X(i) into binary forms Y(i) to enable a log-linear modeling approach for estimating 

the joint distribution of Y(i). Even though information is lost in the transformation, Qiu‘s method 

has the capability to detect a shift in a location parameter vector (e.g., the median vector). 

However, when a large number of variables are involved, constructing log-linear models is a 

challenge. In such cases, the performance of log-linear models has been inconclusive.  

Although all of these nonparametric control charts perform reasonably well in the 

situations for which they were designed, no consensus exists about which of them best satisfies 

all conditions. In the absence of consensus, we propose a new ranking algorithm, k-linkage 

ranking (kLINK), and construction of a kLINK chart. We demonstrate that this is a logical, 
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efficient, and robust control chart with flexible control boundaries that can effectively monitor 

multivariate processes in nonnormal situations.  

The outline of this paper is follows. Section 2 describes the general basis for the kLINK 

nonparametric procedure and presents our kLINK control chart. Section 3 provides simulation 

results that show the effectiveness of kLINK nonparametric charts compared with existing 

multivariate charts, such as the T
2
 and ranking depth charts in nonnormal situations. Section 4 

presents an exponentially weighted moving average version of a kLINK. Our conclusions are 

presented in Section 5.   

 

2. The kLINK Control Chart 

 

2.1 kLINK nonparametric procedure 

Denote the vector of p quality characteristic measurements by x = (x1, x2,…, xp), where x has 

covariance matrix Σ. Assume there exists an training dataset of m independent, identically 

distributed measurements, x
1
,…x

m
, where each is a p-dimensional vector of measurements, 

),...,( 1

i

p

ii xxx  for i = 1,…, m. Note that each measurement may be based on a single 

observation or a calculation based on multiple measurements. The purpose of a quality control 

procedure is to test the null hypothesis that a new measurement is from the same (unknown) 

distribution as the training data. If the null hypothesis is not true, a change has occurred within 

the process that has affected one or more of the quality characteristics, and the process should be 

declared out of control. When the process is operating at a constant mean, and variability is 

caused only by unavoidable sources, the process is said to be in control. An out-of-control 

process is operating under assignable causes of variability. These assignable causes should be 

detected and eliminated.  
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In classical quality control, the training data (or Phase I data) are used to calculate control 

limits. Nonparametric procedures rely on training data to define the standard against which new 

measurements are compared. When unknown distributions are involved, several procedures have 

been developed to determine if the training data can be considered in control. These procedures 

look for outliers and changes over time in the median of the training data
6
. Given appropriately 

calibrated training data, our kLINK nonparametric procedure calculates score statistics that rank 

the quality characteristic measurements of a new testing measurement, x
0
, relative to the 

measurements in the training data. Specifically, x
0
 is added to the training data to form the 

combined data of m + 1 measurements, then all m + 1 measurements are then ranked, and the 

value plotted on the control chart is based on the resulting ranking of x
0
.  

For a graphical illustration of the kLINK nonparametric procedure, consider the dataset, 

illustrated in Figure 1 (discussed in more detail in Section 4). Our kLINK method resulted in the 

rankings {1, 2,…, 100} that label the measurements. Low rankings indicate measurements that 

are central to the combined data; the highest rankings indicate those that are at the fringes. In a 

two-dimensional case, a new measurement can be plotted with the training data, and a visual 

judgment can be made as to whether or not the new measurement comes from the same 

distribution. In higher dimensions, however, visualization becomes difficult. However, rankings 

are simple to interpret regardless of the number of quality characteristics. 

 

[Figure 1 about here] 

 

Scores and ranks are calculated for all measurements in the combined data. A training 

data measurement x
i
 has score Si and the corresponding ranking Ri (i = 1,…, m). A measurement 
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x0 has score S0 and the corresponding ranking R0. The rankings are obtained by simply ordering 

the scores (average ranks can be used if there are ties among the scores). A low rank R0 indicates 

that the new measurement is within the borders of the p-dimensional space, which is defined by 

the training data. If a new measurement and all m measurements in the training data are from the 

same distribution (so that the process is in control), then R0 is equally likely to take any value 

from one to m + 1 (assuming there are no ties in the scores). Large values of R0 indicate that the 

new measurement is outside the training data.  The plausibility that the process is in-control can 

be calculated as 

                                                             φ=
1

2 0





m

Rm
.                                                                  (1) 

The φ represents the proportion of the m + 1 measurements in the combined pool that have 

scores Si no smaller than S0. It is important to note that the smallest possible φ obtained from the 

nonparametric procedures is limited by the size of the training data.  

To equalize the effects of quality characteristics with different variances and the relative 

contribution of correlated quality characteristics, the distance between two measurements in the 

multivariate space is commonly determined by the Mahalanobis distance between measurements 

x
i
 and x

j
 
5, 13

: ).()'( 12 jijiD xxxx    When Σ is unknown, as we assume in this paper, the 

sample covariance matrix V is used to calculate the distance:    

                                                      ).()'( 1 jiji

ijd xxVxx                                                       (2) 

In the following section, we describe in detail our k-linkage ranking algorithm that is used to 

create the kLINK nonparametric multivariate quality control chart.  
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2.2. Linkage ranking algorithm 

Our linkage ranking algorithm is based on cluster analysis and chaining. In cluster analysis, we 

are interested in separating the data into distinct groups. Chaining begins with one starting data 

point, then measurements are added to the chain one by one to form one large cluster instead of 

several smaller clusters. Measurements are continually closer or more similar to the cluster than 

to the other measurements; thus, no separation occurs and dissimilarities are not discovered. 

Although certain clustering techniques are designed to avoid this problem, the concept of 

chaining is the key to linkage ranking algorithms. Again, the fundamental question in quality 

control is whether a training dataset and a new measurement have the same distribution, or in 

other words, whether they belong to the same cluster. If a new measurement belongs to the 

cluster defined by the training data, then it will quickly be linked to the rest of the chain.  

The chain begins at the center of the distribution, which we represent by the central 

statistic, and then branches to all m + 1 measurements in the combined data. The central statistic 

x
M

 = ),...,( 1

M

p

M xx is intended to represent the middle of the distribution — for example, the 

sample mean or the sample median of the training data. At each step, the closest measurement to 

the cluster is added. A measurement‘s distance to the cluster may be defined in several ways, 

which will be discussed later. The score statistic Si is the order in which measurement realization 

x
i
 is linked to the chain:  

Si = j when x
i
 is the j

th
 measurement linked to the chain, 

and hence, rank Ri = Si.  

The chain will spread outward from the center to the fringes. The linkage ranking 

algorithm tends to allocate lower scores to measurements in dense areas; this is because once one 
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measurement in a dense area is added to the chain, the others will soon follow. Having no close 

neighbors, measurements in sparse areas will not be linked to the chain as quickly.  

The central statistic is considered the initial member of the chain, although one may 

argue that once the first measurement from the combined data is linked to the chain, then the 

central statistic should be dropped because it is not an actual measurement. However, if we drop 

the central statistic at this point, then the measurement that was second closest to the central 

statistic may not be the next measurement to join the chain unless it also happens to be the 

closest measurement to the first one linked. Thus, a measurement‘s distance to the central 

statistic should influence a decision about which measurement will join the chain at the next 

iteration. As the chain grows, the weight of this decision will decrease. By the time the last few 

measurements are joined to the chain, the decision to keep or discard the central statistic will no 

longer be influential. Because the control procedure is focused on the measurements made at the 

fringes, keeping the central statistic may not be critical to the success of the procedure; however, 

its retention is recommended.  

The question that remains is how to define the distance from a measurement to the chain. 

The distance to the chain is a function of the distances to all the measurements in the chain. 

Suppose the chain has g measurements; then m + 1 - g measurements remain to be linked to the 

chain. For a measurement x
i
 not in the chain, calculate its Mahalanobis distance to every x

j
 in the 

chain. Let )(h

iD  be the h
th

 smallest of these distances, h = 1,…, g. Then calculate the distance 

from measurement x
i
 to the chain as 

                                                           



k

h

h

ii DT
1

)( ,                                                                       (3) 
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where k should be determined by the user. The linking rule is to add the measurement x
i
 with the 

smallest Ti. Thus, a measurement‘s distance to the chain is the minimum distance from it to any k 

measurements already in the chain. 

Our k-linkage ranking (kLINK) algorithm uses linking via the sum of k distances in 

Equation (3) to calculate all the ranks Ri, and, subsequently, the rank R0 for a new testing 

measurement. Equation (1) is used to calculate the appropriate φ. A summary of the kLINK 

algorithm is described as follows:  

_____________________________________________________________________________ 

Algorithm kLINK 

______________________________________________________________________________ 

Specify k 

Calculate central statistic x
M

 of the training data. 

Initialize the set of measurements x
j
 in the chain: CHAIN = {M}. 

Initialize the set of measurements x
i
 not in the chain: NOTinCHAIN = {0, 1,…, m}. 

Initialize counter: RANK = 0. 

repeat 

for all measurements x
i
 such that i   NOTinCHAIN do 

for all measurements x
j
 such that j   CHAIN do 

Calculate dij as in equation (2). 

end for 

Calculate Ti as in equation (3). 

if Ti is the smallest so far then  

Save index i as i*. 

end if 

end for 

Add x
i*

 with smallest Ti* (saved) to CHAIN: 

CHAIN = CHAIN  {i*}; 

NOTinCHAIN = NOTinCHAIN \  {i*}; 

RANK = RANK +1;    

Ri = RANK. 

until all measurements are linked in CHAIN. 

______________________________________________________________________________ 

The method based on linking can be thought of as a nearest-neighbor method. The 

parameter k determines how many nearest neighbors are considered, and only measurements 

already in the chain are a nonmember‘s potential neighbors. When k = 1, the only consideration 
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given to a measurement joining the chain is its distance to any one member of the chain. When k 

= g, the measurement selected to join depends on its distance to every point in the chain. Ideally, 

the center of the chain should remain close to the center of the training data. When k is large, the 

center of the chain changes more slowly than with smaller values of k, which means that it takes 

more iterations for the mean of the chain to become significantly different from the mean of the 

combined data. However, it also takes more iterations to get back to the center of the training 

data once the two means are no longer close.  

Figures 2, 3, and 4, respectively, show examples of control boundaries from the kLINK 

(with k = 1) algorithm, T
2 

statistics, and the ranking depth algorithm with simplicial depth for the 

bivariate gamma distribution with 200 simulated in-control training data observations.  If the 

observation is inside the colored area, it is in control; otherwise the observation would be treated 

as out of control. We can see that a lower α results in a larger in-control boundary. It can be also 

observed that the kLINK chart produced more flexible control boundaries than the T
2
 and 

ranking depth charts. This implies that the kLINK chart can effectively control Type I and Type 

II error rates in nonnormal situations.  

 

[Figure 2 about here] 

 

 

[Figure 3 about here] 

 

 

[Figure 4 about here] 
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3. Simulation Study 

This section describes the kLINK control chart via a simulation study, and then compares its 

performance against Hotelling‘s T
2
 charts, and ranking depth (with simplicial depth) charts. We 

used an R package (www.r-project.org) to perform the simulation. In particular, we used the 

function depth( ) from the R package ―depth‖
21

 to implement ranking depth charts.    

 

3.1 Simulation scenarios 

Two bivariate probability distributions were generated for the simulation study.  We generated 

the data from the bivariate normal distribution with the mean vector μin and the covariance 

matrix Sin  as follows:  

 00in , 









284.3109.1

109.1284.3
inS . 

Further, we generated the data from the bivariate gamma distribution in which both the shape 

and the scale parameters were specified as one. This particular set of shapes was devised to test 

the robustness of our kLINK chart to nonnormality. Figure 1 illustrates the results of applying the 

kLINK algorithm with k = 1 to the bivariate gamma dataset. The number to the right of each 

observation is the ranking for that observation. Note that observations in the center of the plot 

score lowest, and observations closer to the fringes score highest. In addition, observations in 

dense areas tend to have similar scores, which is a desirable property of this nonparametric 

method.  

To evaluate performance of each method, we generated 500 in-control training observations and 

200 testing observations in which the first 180 observations are in control and the last 20 

observations are out of control.  To generate the out-of-control data, three types of shifts (N1, N2, 

and N3) were considered in the multivariate normal case, and three types of shifts (G1, G2, and 
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G3) were considered in the multivariate gamma case.  For univariate cases, the process shifts are 

generally expressed in terms of standard deviation. However, this may not be applicable in 

multivariate cases because shifts involve more than one process variable. In multivariate cases, 

shifts can be usually expressed in terms of the following noncentrality parameter λ, a function of 

the magnitude of the shift δ and the estimated covariance matrix inS :  

                                                            1'  inS                                                                      (4) 

In the present study, we assume the covariance matrix has not changed and remains constant. 

The summary of the simulation scenarios for multivariate normal and gamma distributions is 

described as follows:  

 N1 (small shift):        λ=1, 

 N2 (medium shift):    λ=2,      

 N3 (large shift):         λ=3, 

 G1 (small shift):        λ=1, 

 G2 (medium shift):    λ=2,         

 G3 (large shift):         λ=3. 

 Figures 5 and 6, (which visualize the simulated datasets in different scenarios) show that 

the separation between in-control and out-of-control observations becomes clearer as the degree 

of shift increases.  

 

[Figure 5 about here] 

 

[Figure 6 about here] 

 

[Figure 7 about here] 
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 As mentioned earlier, in order to construct the kLINK chart, we need first to determine 

parameter k. In general, one can try various k and select the best k that produces the smallest 

error rate.  Table 1 shows Type I and Type II error rates of the kLINK charts with different α 

from the G2 scenario. To find the optimal k, we generated 100 preliminary testing observations 

in which the first 50 observations are in control and the last 50 observations are out of control.  

The results shows that similar Type I and Type II error rates were obtained for different values of 

k, implying that k does not play a significant role in constructing kLINK charts.  In this paper, we 

use k = 5 for further analyses. 

 

[Table 1 about here] 

 

3.2 Construction of kLINK charts 

We demonstrate here the kLINK charts using the simulated data. Figure 1 shows the kLINK 

chart in the G2 scenarios.  The monitoring statistics are the 1- φ or the plausibility that the testing 

measurements are out of control. The size of the combined data is 501, and the control limit (the 

horizontal solid line) is the desired α, set here at 0.1 and 0.2. The values are reported as out of 

control if the corresponding monitoring statistics (1- φ) exceed the control limit (shown in Figure 

8 in the horizontal solid line).  

 

[Figure 8 about here] 
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3.3. Effect of the control limits in the kLINK chart   

The control limits used in the kLINK chart were established by a user-specified α. Figure 9 

illustrates this under multivariate normal and multivariate gamma scenarios, where actual Type I 

and Type II error rates in the kLINK charts vary with the user-specified α shown on the x-axis. 

We ran 500 replications for each scenario to obtain average Type I and Type II error rates. As 

expected, increases in α result in higher Type I error rates and lower Type II error rates.  The 

kLINK chart yielded low Type I and Type II error rates when α was between 0.05-0.2. All 

scenarios provided the same trend; with the larger shift yielding lower Type II error rates 

compared with the same Type I error rates. Because the maximum standard error for Type I and 

Type II errors in any of the simulated scenarios is quite small (less than 0.006), 500 replications 

is sufficient to draw a reliable conclusion. 

 

[Figure 9 about here] 

 

3.4. Performance comparison 

Our kLINK charts were compared with Hotelling‘s T
2
 charts, and ranking depth charts.  Figures 

10 and 11, respectively, show the comparative results in the normal and gamma scenarios.  We 

ran 500 replications for each chart to determine the average Type I and Type II error rates.  

Given the same Type I error rates, lower Type II error rates are considered a better.  

In cases using the normal distribution, all three control chart techniques produced 

comparable results.  However, when the gamma distribution was used, the kLINK charts 

outperformed the other two methods. Interestingly, in cases using the gamma distribution, the 

ranking depth chart based on a nonparametric approach performed worse than the T
2
 control 

chart. This unexpected result can be explained by the earlier figures (Figures 2, 3, and 4) that 
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show that the control boundary of the ranking depth chart is less flexible than the kLINK 

algorithm. Furthermore, the control boundary of the ranking depth control chart is not even as 

effective as the T
2
 control chart in the gamma distribution, an example of a skewed distribution.  

The maximum standard error of the Type I and Type II error rates from 500 replications is 0.006.  

 

[Figure 10 about here] 

 

[Figure 11 about here] 

 

4. Exponentially Weighted kLINK   

Because a traditional T
2
 control chart monitors and evaluates a current process based on the most 

recent measurement, it may be insensitive to small process shifts. Multivariate exponentially 

weighted moving average (MEWMA) charts, which accumulate information from previous 

measurements, were devised to provide robustness to nonnormality and increased sensitivity to 

small shifts
17, 19, 26

. Here we propose an exponentially weighted moving average (EWMA) 

version of the kLINK chart (i.e., EWMA-kLINK). The monitoring statistic iZ   can be computed 

from the following equation:  

                                                      1)1()1(  iii ZZ  ,                                             (5)   

where λ is the smoothing parameter with a range between 0 and 1, and Zi is the EWMA-kLINK 

for measurement i. The starting value Z0 can be obtained from the average 1-φ from in-control 

training data. The control limits of EWMA-kLINK charts are the desired α. The EWMA-kLINK 

chart signals an alarm when Zi exceeds the control limit. 
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   Because kLINK charts performed quite well with medium and large shifts, our focus here 

is the performance of the EWMA-kLINK chart in detecting small shifts in a nonnormal scenario. 

Small- and medium-shift scenarios from bivariate gamma distribution data (G1 and G2) were 

used to compare the performances of the MEWMA, the kLINK and EWMA-kLINK charts. We 

used average run length (ARL) as a measure of performance. Two different types of ARL can be 

defined based on the condition of the process. In-control ARL (ARL0) is defined as the expected 

number of measurements needed for the chart to detect a shift in the in-control state; out-of-

control ARL (ARL1) is the number of measurements expected to be necessary for the chart to 

detect a shift in the out-of-control state.  

In our simulation, ARL0 and ARL1 were computed based on 500 replications with λ at 

0.25. Here the parameter λ was chosen arbitrarily because the main purpose was not to find the 

optimal parameter of the EWMA control chart. Primarily, we prefer a procedure that provides a 

lower ARL1, given a similar value of ARL0. Both the kLINK and EWMA-kLINK charts were 

constructed with k = 5.  Figure 12 shows that in all scenarios and at any given ARL0, the EWMA-

kLINK charts produced a lower ARL1 than the kLINK and MEWMA charts.   

 

 

[Figure 12 about here] 

 

5. Discussions 

5.1 Effect of the sizes of training data 

The size of the training data can affect the performance of kLINK charts.  We found that the 

degree to which the size of the training data affects the performance is determined by the 

underlying data distribution.  We studied the performance of six different sizes of training data 
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(i.e., 100, 200, 300, 400, 500, and 1000) under medium shift in bivariate normal (N2) and 

bivariate gamma (G2) scenarios. The resulting average values of Type I and Type II errors from 

100 replications of different sizes of training data were shown in Figure 13. The maximum 

standard error in this experiment is 0.004. It can be observed from Figure 13 (a) that the line 

(n=100) appeared to have a higher Type II error rate for the smallest tested α value, indicating 

that when the training data size is small, say 100 or less, and the process data follow the normal 

distribution, kLINK charts may produce higher Typer II error rate. On the contrary, in the 

gamma distribution case, Figure 13 (b) shows that all lines do overlap. This indicates that the 

performance of kLINK chart is not significantly affected by the size of the training data. Overall, 

our kLINK chart produced the stable result once we get to a size of about 200. Further, we want 

to point out that the small set of training data is often not an issue any longer with the larger 

quantities of data that are stored in modern systems.    

 

[Figure 13 about here] 

 

5.2 Effect of high-dimensional data 

Here we generated 200 in-control training observations and 200 testing observations from the 

10-dimensional gamma distribution. In the testing data, the first 180 observations are in control 

and the last 20 observations are out of control. Figure 15 shows the performance of the kLINK 

(with k = 5), T
2
, and ranking depth (with Tukey depth) charts in terms of Type I and Type II error 

rates from 500 replications. The maximum standard error in this simulation is 0.0052, small 

enough to draw a reliable conclusion. For the ranking depth chart, we used Tukey depth because 

simplicial depth in the R package is limited for only two-dimensional data. In addition, Masse 
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and Plante (2009) indicated that Tukey depth provides only approximate depth values in high-

dimensional data sets. The result indicated that our kLINK charts outperformed both T
2
 and 

ranking depth charts. Note that the ranking depth chart could not produce Type I error rates less 

than 0.6638. This is due to the limitation of ranking depth charts in high-dimensional data sets.  

 

[Figure 14 about here] 

 

6. Conclusions 

We have presented a new nonparametric multivariate control chart technique (the kLINK chart) 

and compared it against competing methods under normal and nonnornal scenarios. The results 

demonstrated that our kLINK chart outperformed the ranking depth chart and the Hotelling‘s T
2
 

chart in cases of nonnormal situations, and all three methods performed comparably in situations 

of normal distribution.  To increase its capability to detect small process shifts, we also 

developed an EWMA version of the kLINK chart. The simulation study showed that the 

EWMA-kLINK chart performed better than both the kLINK or MEWMA charts in detecting 

small shifts in nonnormal cases.   
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Figure 1. A kLINK algorithm with the parameter k =1, using the sample mean, applied to the 

bivariate gamma dataset. Numbers indicate the rankings. 

  
                                                (a)                                                        (b) 

 

Figure 2. Control boundaries of kLINK algorithm with k = 1 for bivariate gamma distribution 

with 200 in-control training data. (a) α = 0.1 and (b) α = 0.2 
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     (a)                                                        (b) 

 

 

Figure 3. Control boundaries of T
2
 algorithm for bivariate gamma distribution with 200 in-

control training data. (a) α = 0.1 and (b) α = 0.2. 

 

 

  
     (a)                                                        (b) 

 

 

Figure 4. Control boundaries of the ranking depth algorithm for the bivariate gamma distribution 

with 200 in-control training data. (a) α = 0.1 and (b) α = 0.2. 
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                                                (a)                                                        (b) 

 
(c) (d) 

 

Figure 5. Simulation data from the bivariate normal distribution.  (a) Training set, (b) N1, (c) N2, 

and (d) N3. 
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                                               (a)                                                        (b) 

 
                                                (c)                                                        (d)  

 

Figure 6. Simulation data from the bivariate gamma distribution.  (a) Training set, (b) G1, (c) G2, 

and (d) G3. 
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Figure 7. Determination of the appropriate k in the G2 scenario. 

 

 

 

 

 

 

 

Figure 8. kLINK chart for the G2 scenario.   
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                                        (a)                                                                    (b) 

 

Figure 9. Average Type I and Type II error rates of the kLINK charts. (a) N2 scenario, (b)  G2 

scenario. 
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                                              (a)                                                          (b) 

 

      (c) 

Figure 10. Actual Type I and Type II error rates of the kLINK, T
2
, and ranking depth control 
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                                                 (a)                                                        (b) 

 

                                                                               (c) 

Figure 11. Actual Type I and Type II error rates of the kLINK, T
2
, and ranking depth control 
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                                         (a)                                                                    (b) 

 

Figure 12. Comparison of the average values of ARL0 and ARL1 among the EWMA-kLINK, 

kLINK, and EWMA-kLINK charts. (a) G1, and (b) G2. 

 

 

(a)                                                                    (b) 

Figure 13. Average values of  Type I and Type II error rates (from 100 replications) of the 

kLINK charts with 100, 200, 300, 400, 500, and 1000 training data for (a) bivariate normal (N2) 

and (b) bivariate gamma (G2) cases.  
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Figure 14. Actual Type I and Type II error rates of the kLINK (k=5), T
2
, and ranking depth (with 

Tukey depth) charts from the 10-dimensional gamma distribution. 
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Table 1. Comparison of Type I and Type II error rates for different k and α in the G2 scenarios 

(Type II error rates are shown in parentheses) 

 

                            

            k           

α   1  2  3  4  5  6  7  8  9  10    S.D. 

0.01   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.00  

  (1.00) (1.00) (0.98) (0.94) (0.98) (0.96) (0.96) (0.96) (0.96) (0.96)  (0.02) 

0.02   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.00  

  (0.94) (0.94) (0.94) (0.94) (0.94) (0.94) (0.94) (0.94) (0.94) (0.94)  0.00  

0.03   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.00  

  (0.88) (0.84) (0.88) (0.84) (0.84) (0.84) (0.84) (0.84) (0.84) (0.84)  (0.02) 

0.04   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.00  

  (0.72) (0.78) (0.82) (0.82) (0.80) (0.80) (0.80) (0.80) (0.80) (0.80)  (0.03) 

0.05   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.00  

  (0.70) (0.72) (0.78) (0.76) (0.76) (0.76) (0.78) (0.78) (0.78) (0.80)  (0.03) 

0.06   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.00  

  (0.60) (0.58) (0.60) (0.58) (0.58) (0.56) (0.52) (0.50) (0.50) (0.54)  (0.04) 

0.07   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.00  

  (0.58) (0.58) (0.60) (0.58) (0.58) (0.56) (0.50) (0.50) (0.50) (0.50)  (0.04) 

0.08   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.00  

  (0.58) (0.58) (0.56) (0.56) (0.52) (0.48) (0.48) (0.48) (0.48) (0.48)  (0.05) 

0.09   0.02  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.01  

  (0.50) (0.52) (0.52) (0.52) (0.46) (0.44) (0.46) (0.46) (0.46) (0.44)  (0.03) 

0.10   0.02  0.00  0.02  0.00  0.02  0.02  0.02  0.02  0.02  0.02   0.01  

  (0.44) (0.42) (0.42) (0.40) (0.36) (0.36) (0.36) (0.36) (0.36) (0.40)  (0.03) 

0.11   0.02  0.00  0.02  0.02  0.04  0.04  0.04  0.04  0.04  0.04   0.01  

  (0.36) (0.42) (0.36) (0.34) (0.36) (0.36) (0.36) (0.36) (0.36) (0.36)  (0.02) 

0.12   0.02  0.02  0.04  0.02  0.04  0.04  0.04  0.04  0.04  0.04   0.01  

  (0.36) (0.34) (0.34) (0.34) (0.36) (0.36) (0.36) (0.34) (0.34) (0.36)  (0.01) 

0.13   0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04   0.00  

  (0.28) (0.30) (0.34) (0.34) (0.34) (0.34) (0.32) (0.30) (0.30) (0.26)  0.00  

0.14   0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04   0.00  

  (0.24) (0.30) (0.28) (0.26) (0.26) (0.26) (0.24) (0.24) (0.24) (0.24)  0.00  

0.15   0.06  0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04   0.01  

  (0.18) (0.22) (0.22) (0.18) (0.16) (0.18) (0.16) (0.18) (0.18) (0.18)  (0.02) 

0.16   0.06  0.06  0.04  0.06  0.06  0.06  0.04  0.04  0.04  0.04   0.01  

  (0.16) (0.22) (0.16) (0.12) (0.14) (0.10) (0.10) (0.10) (0.10) (0.10)  (0.04) 

0.17   0.08  0.08  0.04  0.06  0.06  0.06  0.06  0.06  0.04  0.04   0.01  

  (0.16) (0.22) (0.16) (0.10) (0.08) (0.10) (0.10) (0.10) (0.10) (0.10)  (0.04) 

0.18   0.08  0.10  0.06  0.06  0.06  0.06  0.06  0.06  0.04  0.04   0.02  

  (0.16) (0.22) (0.16) (0.10) (0.08) (0.10) (0.10) (0.10) (0.10) (0.10)  (0.04) 

0.19   0.12  0.12  0.06  0.06  0.08  0.06  0.10  0.08  0.08  0.08   0.02  

  (0.16) (0.18) (0.16) (0.10) (0.08) (0.10) (0.10) (0.10) (0.10) (0.10)  (0.03) 

0.20   0.14  0.12  0.10  0.10  0.08  0.10  0.12  0.12  0.10  0.12   0.02  

    (0.16) (0.18) (0.16) (0.10) (0.08) (0.10) (0.10) (0.10) (0.10) (0.10)   (0.03) 

 


