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Unsupervised Feature Selection Using Weighted Principal Components 

 

Abstract 

Feature selection has received considerable attention in various areas as a way to select 

informative features and to simplify the statistical model through dimensional reduction.  One of 

the most widely used methods for dimensional reduction includes principal component analysis 

(PCA). Despite its popularity, PCA suffers from a lack of interpretability of the original feature 

because the reduced dimensions are linear combinations of a large number of original features. 

Traditionally, two or three dimensional loading plots provide information to identify important 

original features in the first few principal component dimensions. However, the interpretation of 

what constitutes a loading plot is frequently subjective, particularly when large numbers of 

features are involved.  In this study, we propose an unsupervised feature selection method that 

combines weighted principal components (PCs) with a thresholding algorithm. The weighted PC 

is obtained by the weighted sum of the first k PCs of interest. Each of the k loading values in the 

weighted PC reflects the contribution of each individual feature. We also propose a thresholding 

algorithm that identifies the significant features. Our experimental results with both the 

simulated and real datasets demonstrated the effectiveness of the proposed unsupervised feature 

selection method.  

Keywords: Data mining; Feature selection; Principal component analysis; Unsupervised 

learning  
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1. Introduction 

One of the major challenges associated with high-dimensional data is to identify a subset of 

relevant features of interest. In recent years, feature selection/extraction has received 

considerable attention in various areas for which datasets with thousands of features are present. 

The main purpose of feature selection/extraction is to identify a subset of features that are most 

predictive or informative in a given a dataset. Successful implementation of feature 

selection/extraction simplifies the entire modeling process and thus reduces computational and 

analytical efforts. 

It is important to distinguish between feature selection and feature extraction, although 

much of the literature fails to clearly distinguish between them (Jain et al., 2000). Feature 

selection is a process to select a subset of original features, and feature extraction creates new 

features through the transformation of the original features (Guyon and Elisseeff, 2003). Widely 

used feature extraction methods include principal component analysis (PCA) and partial least 

squares (PLS). PCA is an unsupervised feature extraction method in that the process depends 

solely upon the input variables, and does not take into account information from the output 

variable (Jolliffe, 2002). On the other hand, PLS is a supervised feature extraction in that the 

process takes into account both the input and output variables (Kim, 2008). In general, the first 

few transformed features obtained from PCA and PLS suffice to provide useful information in 

the original data. However, because these reduced dimensions from PCA and PLS are linear 

combinations of a large number of original features, their interpretation cannot be readily made 

and the extraction of meaningful information is cumbersome.   

Interpretation problems posed by the transformation process in PCA and PLS can be 

overcome by using feature selection methods that simply pick the subset of original features. 
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Feature selection methods can also be divided into supervised and unsupervised. Supervised 

feature selection methods use the information of an output variable to identify the best subset of 

given features in a dataset. Genetic algorithms have been successfully used as an efficient 

method of supervised feature selection for a high-dimensional spectral dataset (Cho et al., 2008; 

Davis et al., 2003).  Moreover, supervised feature selection problems have been formulated by a 

multiple hypothesis testing procedure that controls the false discovery rate (Mei et al., 2009; Kim 

et al., 2008).   

Despite extensive research in using the supervised/unsupervised feature extraction and 

supervised feature selection, relatively few attempts have been made to identify the important 

features by using unsupervised feature selection methods (Mao, 2005). Unsupervised feature 

selection methods usually have been divided into three categories — wrapper, filter, and hybrid 

approaches (Kim and Gao, 2006). The filter approach employs the general characteristics of the 

data to select a subset of the original data without using any clustering algorithms. In contrast, 

the wrapper approach necessitates the use of a predetermined clustering algorithm as evaluation 

criterion. The hybrid approach combines both the filter and wrapper approaches by using 

different evaluation criteria for each different state (Kim and Gao, 2006). 

Dy and Brodley (2000) introduced a wrapper approach that uses an expectation-

maximization (EM) clustering algorithm. Hastie et al. (2000) developed a gene-shaving method 

that used its first principal component to identify the best subsets of those features with large 

variations. Ding (2003) proposed a two-way ordering approach in which relevant genes were 

selected based on their similarity information.  

Mao (2005) proposed a filter approach that sought to select a subset of original features 

by using principal components combined with an evaluation based on least square estimation 
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(LSE). Motivated by Mao’s idea, Kim and Gao (2006) developed a two-step hybrid approach. 

The first step is to subsets of features based on an LSE-based evaluation; the second is to apply a 

searching algorithm to obtain the best subsets that maximize clustering performance.  

Although all of the existing unsupervised feature selection methods performed 

reasonably well within the limits of the situations for which they were designed, no consensus 

exists about which of them best satisfies all conditions. Moreover, most of the methods require a 

high computational load because they involve an extensive search procedure such as the forward 

selection or the backward elimination. Consequently, the methods based on a search algorithm 

are not relevant for identifying important features in high-dimensional dataset, often encountered 

in various applications in these days. In the present study, we propose a new unsupervised 

feature selection that combines the weighted principal components with a thresholding algorithm. 

To be specific, the contribution of each feature is represented by a loading value in a weighted 

principal component, and a thresholding algorithm based on a moving range-based control chart 

evaluates the significance of its contribution. The proposed method belongs to the filter category 

and is computationally efficient and easy to implement.    

The remainder of this paper is organized as follows. Section 2 presents the proposed 

unsupervised feature selection method. Section 3 presents the simulation study that examined the 

performance of the proposed method under various scenarios. Section 4 describes a case study 

developed to demonstrate the feasibility and effectiveness of the proposed method in real 

situations. Finally, Section 5 presents our concluding remarks.  
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2. The Proposed Unsupervised Feature Selection Approach 

2.1. Weighted Principal Components 

PCA is one of the most widely used multivariate data analysis techniques and is employed 

primarily for dimensional reduction and visualization (Jolliffe, 2002). PCA extracts a lower 

dimensional feature set that can explain most of the variability within the original data.  The 

extracted features, PCi’s (Yi) are each a linear combination of the original features with the 

loading values (αij, i, j=1,2,…,p).  The Yi’s can be represented as follows:  
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The loading values represent the importance of each feature in the formation of a PC. For 

example, αij indicates the degree of importance of the jth feature in the i
th

 PC.  A two-

dimensional loading plot (e.g., PC1 vs PC2 loading plot) may provide a graphical display for 

identification of important features in the first and second PC domains. However, the 

interpretation of a two-dimensional loading plot is frequently subjective, particularly in the 

presence of a large number of features. Moreover, in some situations, consideration of only the 

first few PCs may be insufficient to account for most of the variability in the data. Determination 

of the appropriate number of PCs (=k) to retain can be subjective.  One can use a scree plot that 

visualizes the proportion of variability of each PC to determine the appropriate number of PCs 

(Johnson and Wichern, 2002).   

If a PCA loading value for the jth original feature can be computed from the first k PCs, 

the importance of the jth feature can be represented as follows: 
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where k is the total number of features of interest and i  represents the weight of ith PC. The 

typical way to determine i  is to compute the proportion of total variance explained by the ith 

PC.  j  can be called a weighted PC loading for the feature j.  

For illustration, Figure 1 displays a plot of j s, computed from a simulated dataset that 

contains 1,000 features. A feature with a large value of j  indicates a significant feature. In the 

next section, we will present a systematic way to obtain a threshold that determines the 

significance of each feature.  

[Figure 1 about here.] 

 

2.2. Moving Range-Based Thresholding Algorithm 

We propose a moving range-based thresholding algorithm as a way to identify the 

significant features from the weighted PC loadings discussed in the previous section. The main 

idea of a moving range-based thresholding algorithm comes from a moving average control chart 

that has been widely used in quality control (Vermaat et al. 2003). A control chart provides a 

comprehensive graphical display for monitoring the performance of a process over time so as to 

keep the process within control limits (Woodall and Montgomery, 2001). A typical control chart 

comprises monitoring statistics and the control limit. When the monitoring statistics exceed (or 

fall below) the control limit, an alarm is generated so that proper remedial action can be taken. A 

moving range control chart is useful when the sample size used for process monitoring is one. 

Moreover, the average moving range control charts perform reasonably well when the 

observations deviate moderately from the normal distribution (Vermaat et al. 2003). 
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In our problem, we can consider the weighted PC loading values as the monitoring 

statistics. Thus, we plot these loading values on the moving range control chart and identify the 

significant features when the corresponding weighted PC loading exceeds the control limit 

(threshold). Given a set of the weighted PC loading values for individual features ),...,,( 21 p , 

the threshold   can be calculated as follows (Vermaat et al. 2003):  

                                       


 *
2

11  
,                                                    (3) 
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 , 1  is the inverse standard normal cumulative distribution function, and α 

is the Type I error rate that can be specified by the user. The range of α is between 0 and 1. In 

typical moving range control charts,  can be estimated by RM , calculated by the average of the 

moving ranges of two successive observations.  
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However, in our feature selection problems, because the weighted PC loading values for 

individual features p ,...,, 21 are not ordered, we cannot simply use (4). To address this issue, 

we propose a different way of computing the RM that can properly handle a set of unordered 

observations. Given the fact that there is no specific order of observations p ,...,, 21 , they are 

randomly reshuffled, and sRM are recalculated. Therefore, for B=1,000, we obtain a set of sRM  

)()2()1( ,...,, BRMRMRM . The RM for unordered observations is calculated by  
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Finally, the threshold of the proposed feature selection method can be obtained by the following 

equation:  

                                             *
2

11 RM


  
.                                      (6) 

 A feature is reported as significant if the corresponding weighted PC loading exceeds the 

threshold  . 

 

2.3. Feature Validity Measures 

We used sensitivity and specificity as performance measures (Altman and Bland, 1994). 

Sensitivity and specificity can be expressed as follows:   

Sensitivity
FNTP

TP


 ,           (7) 

Specificity
FPTN

TN


 ,           (8) 

where TP is the number of true positives (number of true significant features identified), TN is 

the number of true negatives (number of true insignificant features identified), FN is the number 

of false negatives, and FP is the number of false positives. In short, sensitivity is the proportion 

of true positives correctly identified by the procedure.  Specificity is the proportion of true 

negatives correctly identified. The range of both sensitivity and specificity is between 0 and 1. 

The method that produces the largest sensitivity and specificity scores would be considered the 

better method.  
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3.  Simulation Study 

3.1. Simulated Data 

A simulation study evaluated the performance of the proposed method and compared it with 

other algorithms under various scenarios. Table 1 shows a summary of the simulated data used in 

this study.  

[Table 1 about here.] 

Each scenario contains the number of observations, the number classes, the number of 

true significant features, and different degrees of shifts in the mean.  Specifically, the simulated 

data in Scenarios 1 ~ 3 contain two class datasets in which the covariance matrix of each class is 

the identity matrix (1 = 2 = I). The mean of Class 1 equals zero, and the mean of Class 2 equals 

the mean of Class 1 plus the shift in mean as shown in the last column of Table 1. Other 

scenarios can be explained similarly.   

 

3.2. Simulation Results 

Table 2 presents the number of identified features, sensitivity, specificity, and computational 

time (CPU time) in the 10 simulation scenarios. The experiments were conducted on an Intel®  

Core™2 Duo @ 2.2 GHz computer with 2 GB memory. We compared the proposed weighted 

PC loading method with the LSE method (Mao, 2005), one of the existing unsupervised feature 

selection methods. In the LSE method, a subset of significant features was selected based on 

error reduction after adding additional features. The error reduction function was calculated 

based on PCs that were obtained from the PCA in the complete data. A sequential forward 

selection strategy was then used to determine a subset of significant features (Mao, 2005).  
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The results showed that across all simulation scenarios, the sensitivities and specificities 

of the proposed method were all one, implying that our method successfully detected all the true 

significant features.  The LSE method also yielded sensitivity and specificity results comparable 

with the proposed method. However, the LSE method tended to identify more numbers of 

features than the number of true significant features. More important, the LSE method imposes a 

high computational load compared with the proposed method. In particular, faced with more than 

3,000 features, the LSE method takes a significant amount of time to identify the significant ones.  

[Table 2 about here.] 

4.  Experiments with Real Data 

In addition to the simulation study, we used three real datasets (Wisconsin diagnostic breast 

cancer, wine, and leukemia microarray) to demonstrate the effectiveness of the proposed 

weighted PC loading method.  These datasets are available on the UCI database 

(http://archive.ics.uci.edu/ml/), and their summary is shown in Table 3.  

[Table 3 about here.] 

We evaluated the performance of the proposed method and compared it with the Baseline 

Case and the LSE method. The Baseline Case represents the use of all features for comparison. 

Table 4 shows feature selection results, classification accuracy derived from a classification 

algorithm, and CPU time on the real datasets. Classification accuracy is defined as the number of 

observations correctly classified divided by the total number of observations. To compute 

classification accuracy, we used a support vector machines (SVM) algorithm, one of the most 

widely used classification methods (Shawe-Taylor and Cristianini, 2000). The SVM 

classification accuracy reported here is the average value  standard deviation from 10-fold cross 

validation. Note that specificity and sensitivity were not reported here; their omission is because 
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information about the true clusters is unknown in real data. Moreover, we did not report CPU 

time for the Baseline Case because this case does not involve any feature selection process but 

instead uses all of the features.   

[Table 4 about here.] 

In the Wisconsin breast cancer data, our proposed method identified the smallest number 

of significant features but produced classification accuracy comparable to the Baseline Case and 

the LSE method.  In order to explore more about this outcome, Figure 2 shows the dot plots of 

two features identified by our proposed method according to the status of patient (malignant, 

benign). These two features are the mean area of the cell nucleus and the mean of the three 

largest area values. These features clearly distinguished between benign and malignant samples. 

Further, we also generated dot plots of two features that the LSE method identified but the 

proposed method did not (Figure 3). These features are the mean of texture and standard error of 

perimeter. It can be seen that these feature could not clearly differentiate between benign and 

malignant samples.  

[Figure 2 about here.] 

[Figure 3 about here.] 

In the wine data, the proposed weighted PC loading method algorithm identified only one 

significant (proline) feature out of 13. This one-feature result of SVM classification is not 

significantly worse in terms of accuracy than the three-feature performance of the LSE method 

(Table 4). Figure 4 displays the dot plot of the “proline” feature by the type of wine. A clear 

distinction can be observed between the first and the second and third types. However, this 

proline may not be a good feature for distinguishing between the second and third types of wine. 

Figure 5 shows a dot plot of the feature (alkalinity of ash) identified by the LSE method but not 
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by the weighted PCA loading method. There is an overlapping among the samples, indicating 

that the feature, alkalinity of ash may not play a significant role in discriminating the type of 

wine.  

[Figure 4 about here.] 

[Figure 5 about here.] 

In the microarray leukemia data, our proposed method with α = 0.05 identified 457 

features as significant out of 7,129 and produced an even better result than the Baseline Case 

(Table 4). The performance of the LSE method is not reported here because it requires a 

significant amount of time (more than 48 hours), which of itself is enough to disqualify it as a 

valid competitor with our proposed method.  

 

5. Conclusions 

We have presented a new method of unsupervised feature selection for identification of 

important features in high-dimensional datasets. The proposed method combines PCA 

techniques and a moving range-based thresholding algorithm. We first obtained the weighted PC, 

which can be calculated by the weighted sum of the first k PCs of interest. Each of the k loading 

values in the weighted PC reflects the contribution of each individual feature. To identify the 

significant features, we proposed a moving-range thresholding algorithm. Features are 

considered to be significant if the corresponding weighted PC loadings exceed the threshold 

obtained by a moving-range thresholding algorithm. Our experimental results with both 

simulated and real datasets demonstrated that the proposed method could successfully detect the 

true significant features. Moreover, compared with LSE, which is one of the existing methods of 
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unsupervised feature selection, the proposed method requires significantly lesser computational 

loads and thus can efficiently handle high-dimensional datasets.  

 Our study extends the application scope of both the PCA and control chart techniques. 

We hope that the procedure discussed here stimulates further investigation into development of 

better procedures for problems of unsupervised feature selection. 

 

 



15 

References 

1. Altman D.G. and Bland J.M. (1994), "Diagnostic tests. 1: sensitivity and specificity," BMJ, 

Vol. 308, p. 1552. 

2. Cadima, J. F. and Jolliffe, I. T. (1995), “Loadings and correlations in the interpretation of 

principal components,” Journal of Applied Statistics, Vol. 22 (2), pp. 203-214. 

3. Cadima, J.F. and Jolliffe, I. T. (2001), “Variable selection and the interpretation of principal 

subspaces,” Journal of Agricultural, Biological, and Environmental Statistics, Vol. 6 (1), pp. 

62-79. 

4. Cho, H.-W., Kim, S.B., Jeong, M., Park, Y., Ziegler, T. R., and Jones, D. P. (2008), “Genetic 

algorithm-based feature selection in high-resolution NMR spectra,” Expert Systems With 

Applications, Vol. 35, pp. 967-975. 

5. Dash, M. and Liu, H. (1997), “Feature selection for classification,” Intelligent Data Analysis: 

An International Journal, Vol. 1 (3), pp. 131-156. 

6. Dash, M., Liu, H., and Yao, J. (1997), “Dimensionality reduction of unsupervised data,” 

Proceedings Ninth IEEE International Conference on Tools with AI (ICTAI ’97), pp. 532-

539. 

7. Davis, R.A., Charlton, A.J., Oehlschlager, S. and Wilson, J.C. (2006), “Novel feature 

selection method for genetic programming using metabolomic H1 NMR data,” 

Chemometrics and Intelligent Laboratory Systems, Vol. 81, pp. 50-59. 

8. Ding, C. (2003), “Unsupervised feature selection via two-way ordering in gene expression 

analysis," Bioinformatics, Vol. 19 (10), pp. 1259-1266. 

9. Dy, J. and Brodley, C. (2000), “Feature subset selection and order identification for 

unsupervised learning," Proceedings of the 17th International Conference on Machine 

Learning, pp. 247-254. 

10. Guyon, I. and Elisseeff, A. (2003), “An introduction to variable and feature selection,” 

Journal of Machine Learning Research, Vol. 3, pp. 1157-1182. 

11. Handl, J. and Knowles, J. (2006), “Feature subset selection in unsupervised learning via 

multiobjective optimization,” International Journal on Computational Intelligence Research, 

Vol. 2 (3), pp. 217-238. 

12. Jain, A.K., Duin, R. P.W., and Mao J. (2000), “Statistical pattern recognition: a review,” 

IEEE Transactions on Pattern Analysis & Machine Intelligence, Vol.20, pp. 4-37. 

13. Jansen, J. J., Hoefsloot, H. C. J., Boelens, H. F. M., Greef, J. V. D., and Smilde, A. K. (2004), 

“Analysis of longitudinal metabolomics data,” Bioinformatics, Vol. 20, pp. 2438-2446. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-4PF1WCC-5&_user=108428&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059731&_version=1&_urlVersion=0&_userid=108428&md5=f5f4254f1a1364633cf634e36bc927fd
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V03-4PF1WCC-5&_user=108428&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000059731&_version=1&_urlVersion=0&_userid=108428&md5=f5f4254f1a1364633cf634e36bc927fd


16 

14. Johnson, R. A. and Wichern, D. W. (2001), Applied multivariate statistical analysis, 5
th

 

Edition, Prentice-Hall, Inc., New Jersey. 

15. Jolliffe, I. T. (2002), Principal Component Analysis, Springer-Verlag, New York. 

16. Kim, S.B. (2008), Features extraction and selection in high-dimensional spectral 

data, Encyclopedia of Data Warehousing and Mining (2nd Edition), J. Wang editor, IGI 

Global, Pennsylvania. pp. 863-869. 

17. Kim, S.B., Chen, V. C. P., Park, Y., Ziegler, T. R., and Jones, D. P. (2008), “Controlling the 

false discovery rate for feature selection in high-resolution NMR spectra,” Statistical 

Analysis and Data Mining, Vol.1, pp. 57-66. 

18. Kim, Y. and Gao, J. (2006), “Unsupervised gene selection for high dimensional data,” 

Proceedings of IEEE Symposium of Bioinformatics and Bioengineering (IEEE BIBE), pp. 

227-232. 

19. Mao, K. Z. (2005), “Identifying critical variables of principal components for unsupervised 

feature selection,” IEEE Transactions on Systems, Man, and Cybernatics - Part B: 

Cybernatics, Vol. 35 (2), pp. 339-344. 

20. Mei, Y., Kim, S.B., and Tsui, K.-L. (2009), “Identification of major metabolite features in 

high-resolution NMR spectra using linear-mixed effects models,” Expert Systems with 

Applications, Vol. 36, pp. 4703-4708. 

21. Morita, M., Sabourin, R., Bortolozzi, F., and Suen, C. Y. (2003), “Unsupervised feature 

selection using multi-objective genetic algorithms for handwritten word recognition,” 

Proceedings of the Seventh International Conference on Document Analysis and Recognition, 

Vol. 2, pp. 666-671. 

22. Shawe-Taylor, J. and Cristianini, N. (2000), Support Vector Machines and Other Kernel-

Based Learning Methods, Cambridge University, New York. 

23. Vermaat, M. B., Ion, R. A., Does, R. J. M. M., and Klaassen, C. A. J. (2003), “A comparison 

of Shewhart individuals control charts based on normal, non-parametric, and extreme-value 

theory,” Quality and Reliability Engineering International, Vol. 19, pp. 337-353. 

24. Woodall, W.H. and Montgomery, D.C. (1999), “Research issues and ideas in statistical 

process control,” Journal of Quality Technology, Vol. 31, pp. 376-386. 

 

 

http://www.igi-global.com/downloads/pdf/Wang863.pdf
http://www.igi-global.com/downloads/pdf/Wang863.pdf
http://www3.interscience.wiley.com/journal/117946386/abstract?CRETRY=1&SRETRY=0
http://www3.interscience.wiley.com/journal/117946386/abstract?CRETRY=1&SRETRY=0


17 

Table 1. Summary of the simulated data 

 

Data Number 

of features 

Number of 

observations 

Number 

of classes 

Number of true 

significant features 

Mean shift 

Scenario 1 500  200 2 10 5  

Scenario 2 100  200 2 10 3  

Scenario 3 1000  200 2 10  1  

Scenario 4 1000  400  4  100  1, 2, 3  

Scenario 5 1000  400  4  20  5, 10, 20  

Scenario 6 1000  400  4  20  0.5, 1, 2  

Scenario 7 3000  200  2  100  0.5  

Scenario 8 3000  200  2  20  2  

Scenario 9 3000  200 2 300  1, 2, 3  

Scenario 10 7000  200 2 300  1, 2, 3  
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Table 2. Number of identified features, sensitivity (Se), specificity (Sp), and CPU time in 10 

scenarios  

 

Scenario Method 

No. of 

true 

significant 

features 

# of identified 

features 
Se Sp 

CPU Time 

(Sec.) 

 LSE  11 1.000 0.998 36.02 

1 WPC + MR (α = 0.01) 10 10 1.000 1.000 4.38 

 WPC + MR (α = 0.10)  10 1.000 1.000 4.38 

 LSE  11 1.000 0.998 7.62 

2 WPC + MR (α = 0.01) 10 10 1.000 1.000 1.49 

 WPC + MR (α = 0.10)  10 1.000 1.000 1.49 

 LSE  11 1.000 0.998 65.16 

3 WPC + MR (α = 0.01) 10 10 1.000 1.000 10.33 

 WPC + MR (α = 0.10)  19 1.000 0.991 10.33 

 LSE  94 0.940 1.000 1663 

4 WPC + MR (α = 0.01) 100 100 1.000 1.000 10.73 

 WPC + MR (α = 0.10)  100 1.000 1.000 10.73 

 LSE  21 1.000 0.998 185.35 

5 WPC + MR (α = 0.01) 20 20 1.000 1.000 10.91 

 WPC + MR (α = 0.10)  20 1.000 1.000 10.91 

 LSE  21 1.000 0.998 176.89 

6 WPC + MR (α = 0.01) 20 20 1.000 1.000 10.97 

 WPC + MR (α = 0.10)  20 1.000 1.000 10.97 

 LSE  94  0.940  1.000  3830 

7 WPC + MR (α = 0.01) 100 100  1.000  1.000  64.82 

 WPC + MR (α = 0.10)  100  1.000  1.000  64.82 

 LSE  20  1.000  1.000  391.23 

8 WPC + MR (α = 0.01) 20 20  1.000  1.000  59.59 

 WPC + MR (α = 0.10)  47  1.000  0.991  59.59 

 LSE  287  0.957  1.000  47882 

9 WPC + MR (α = 0.01) 300 300  1.000  1.000  60.85 

 WPC + MR (α = 0.10)  300  1.000  1.000  60.85 

 LSE  378 1.000 0.988 215810 

10 WPC + MR @ α = 0.01 300 300  1.000  1.000  275.42 

 WPC + MR @ α = 0.10  300  1.000  1.000  275.42 
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Table 3. Summary of real datasets 

Data Number of 

features 

Number of 

observations 

Number of 

classes 

Wisconsin diagnostic breast cancer 30 569 2 

Wine 13 178 3 

Leukemia 7129 72 2 

 

 

Table 4. Comparison of unsupervised feature selection methods on the Wisconsin diagnostic 

breast cancer, wine, and leukemia datasets 

 

Data Method 

No. of 

Identified 

Features 

SVM 

Classification 

Accuracy (%) 

CPU Time 

(Second) 

Wisconsin 

Diagnostic 

Breast Cancer 

Baseline 30 97.37  2.89 - 

LSE 12 95.59  3.39 2.226 

WPC + MR (α = 0.01) 2 92.27  1.47 1.979 

WPC + MR (α = 0.05) 2 92.27  1.47 1.979 

Wine 

Baseline 13 97.19  4.72 - 

LSE 3 98.86  2.41 1.363 

WPC + MR (α = 0.01) 1 93.79  2.35 0.717 

WPC + MR (α = 0.05) 1 93.79  2.35 0.717 

Leukemia 

Baseline 7129 88.68  1.59 - 

LSE - - - 

WPC + MR (α = 0.01) 384 87.03  1.34 274.830 

WPC + MR (α = 0.05) 457 90.29  1.15 274.830 
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Figure 1. Weighted PC loading values of individual features. 
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(a) 

 

(b) 

Figure 2. Dot plots of two significant features for Wisconsin diagnostic breast cancer data. (a) 

mean area of cell nucleus, (b) mean of the three largest areas feature. The features were 

identified by both the proposed method and the LSE method according to patient types 

(malignant, benign). 
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(a) 

 

(b) 

Figure 3. Dot plots of two significant features for Wisconsin diagnostic breast cancer data. (a) 

mean of texture for cell nucleus, (b) standard error of perimeter feature. The features were 

identified by only the LSE method (not by the proposed method) according to patient types 

(malignant, benign). 

 

P
at

ie
n
t 

st
at

u
s 

Mean of texture for cell nucleus 

P
at

ie
n
t 

st
at

u
s 

Standard error of perimeter for cell nucleus 



23 

 

 
 

 

Figure 4. A dot plot of the proline feature by the type of wine. The feature was identified by the 

proposed method. 

 

 

 

Figure 5. A dot plot of the significant feature (alkalinity of ash) identified by only the LSE 

method (not by the proposed method) according to wine types. 
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