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Abstract

Control charts have been used effectively for years to monitor processes and detect abnor-

mal behaviors. However, most control charts require a specific distribution to establish their

control limits. The bootstrap method is a nonparametric technique that does not rely on

the assumption of a parametric distribution of the observed data. Although the bootstrap

technique has been used to develop univariate control charts to monitor a single process, no

effort has been made to integrate the effectiveness of the bootstrap technique with multi-

variate control charts. In the present study, we propose a bootstrap-based multivariate T 2

control chart that can efficiently monitor a process when the distribution of observed data

is nonnormal or unknown. A simulation study was conducted to evaluate the performance

of the proposed control chart and compare it with a traditional Hotelling’s T 2 control chart

and the kernel density estimation (KDE)-based T 2 control chart. The results showed that

the proposed chart performed better than the traditional T 2 control chart and performed

comparably with the KDE-based T 2 control chart. Furthermore, we present a case study to

demonstrate the applicability of the proposed control chart to real situations.

Keywords: Average run length, bootstrap, Hotelling’s T 2chart; kernel density estimation,

multivariate control charts



1 Introduction

Statistical process control (SPC) is a popular method used to maintain the stability of a

process and prevent its variation. A control chart, one of the SPC tools, is a graphical

process-monitoring technique used to evaluate a quality characteristic. The main purpose

of a control chart is the detection of an out-of-control signal so that process quality can be

maintained and production of defective products prevented.

Univariate control charts have been devised to monitor the quality of a single process

variable; multivariate control charts monitor a number of process variables simultaneously.

Usually, traditional control charts assume that monitoring statistics follow a certain probabil-

ity distribution. For example, the Shewhart x̄ and R control charts are efficient and reliable

when the process data are (nearly) normally distributed. However, process observations in

many modern systems frequently do not follow a specific probability distribution.

To address the limitation posed by the distributional assumption underpinning traditional

control charts, nonparametric (or distribution-free) control charts have been developed. In

particular, many studies have focused on the construction of nonparametric control charts

by using a bootstrap procedure. This procedure is favored because of its proven capabilities

to effectively manage process data without making assumptions about their distribution.

Bajgier (1992) introduced a univariate control chart whose lower and upper control limits

were estimated by using the bootstrap technique. Bajgier’s control charts tend to generate a

wide gap between the lower and upper control limits when the in-control process is unstable.

Seppala et al. (1995) proposed a subgroup bootstrap chart to compensate for the limitations of

Bajgier’s control charts. The subgroup bootstrap chart uses residuals, which are the difference

between the mean of jth subgroup obtained by a bootstrap technique and each observation
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in jth subgroup. The lower and upper control limits are determined by adding the mean of

the residuals to the grand mean. Liu and Tang (1996) proposed a bootstrap control chart

that can monitor both independent and dependent observations. To monitor the mean of

independent processes, a general bootstrap method was used with samples of the subgroup

data, and a moving block bootstrap was used to monitor the mean of dependent processes.

Jones and Woodall (1998) compared the performance of the above three bootstrap control

charts in nonnormal situations and found that they did not perform significantly better than

the traditional x̄ chart in terms of in-control average run length (ARL0).

Recently, Lio and Park (2008) proposed a bootstrap control chart based on the Birnbaum-

Saunders distribution. This chart better fits tensile strength and breaking stress data. In

particular, they proposed to use the parametric bootstrap technique to establish control limits

for monitoring a specified percentile of the Birnbaum-Saunders distribution. They showed

that their proposed parametric bootstrap method can accurately estimate the control limits

for Birnbaum-Saunders percentiles. Further, Park (2009) proposed median control charts

whose control limits were determined by estimating the variance of the sample median via

the bootstrap technique.

All of the methods discussed so far dealt with the nonparametric situations in univariate

processes. However, modern processes often involve a large number of process variables that

are highly correlated with each other. Although univariate control charts can be applied

to each process variable, this may lead to unsatisfactory results when multivariate problems

are involved (Bersimis et al., 2006). Polansky (2005) provided a general framework on con-

structing control charts for both univariate and multivariate situations. This paper used the

bootstrap technique to estimate a discrete distribution, used a density estimation method
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such as kernel density estimation to obtain a continuous distribution, and established the

control limits using a numerical integration approach. In the present study we mainly focus

on Hotelling’s T 2 control chart (T 2 chart) (Hotelling, 1947) that have been widely used in

multivariate processes. T 2 charts monitor T 2 statistics that measure the distance between

an observation and the scaled-mean estimated from the in-control data. Assuming that the

observed process data follow a multivariate normal distribution, the control limit of a T 2

control chart is proportional to the percentile of an F distribution (Mason and Young, 2002).

However, when the normality assumption of the data does not hold, a control limit based on

the F -distribution may be inaccurate because a control limit determined this way can increase

the rate of false alarms (Chou et al., 2001).

To address the limitations of T 2 control charts while retaining their desirable features,

Chou et al. (2001) proposed a nonparametric T 2 control chart based on a kernel density es-

timation (KDE) technique. The KDE-based T 2 control chart estimates the distribution of

T 2 statistics and determines the control limits without any reference to a normality assump-

tion. However, KDE is relatively complicated because it requires determination of several

parameters before its full construction. These include types of kernel functions, a smoothing

parameter, and the number of spaced points. Moreover, the KDE-based T 2 control chart

involves numerical integration to calculate the percentile value (i.e., control limit) of the

estimated kernel distribution.

In the present paper, we propose a bootstrap-based T 2 control chart as an alternate means

for a KDE-based T 2 control chart to establish the control limits of T 2 control charts when the

observed process data are not normally distributed. The control limits of bootstrap-based T 2

control charts are calculated based on the percentile of T 2 statistics derived from bootstrap
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samples. The proposed bootstrap-based T 2 control chart is easy to implement because it

requires neither specification of the parameters nor a procedure for numerical integration.

The absence of these requirements makes the bootstrap-based T 2 control chart easier to use.

The remainder of this paper is organized as follows. In Section 2, we describe Hotelling’s T 2

control chart and its control limits established by the F distribution, KDE, and the proposed

bootstrap approaches. Section 3 presents simulation studies to evaluate the performance of the

bootstrap-based T 2 control chart and compare it under various scenarios with traditional T 2

control charts and KDE-based T 2 control charts. Section 4 describes a case study undertaken

to demonstrate the feasibility and effectiveness of the proposed bootstrap-based T 2 control

chart in real situations. Section 5 contains our concluding remarks.

2 Hotelling’s T 2 Control Charts

Hotelling’s T 2 control charts have been widely used to monitor multivariate processes with

individual observations (Hotelling, 1947). Suppose that a dataset contains n observations,

and each observation is characterized by p process variables. Assuming that the dataset

follows a multivariate normal distribution with an unknown µ and a covariance matrix Σ.

The Hotelling’s T 2 statistics can be calculated by the following equation:

T 2 = (x− x̄)TS−1(x− x̄), (1)

where x̄ is a sample mean vector and S is a sample covariance matrix from an in-control

process. The control limits of T 2 can be computed by using the procedures that will be

discussed in the subsequent sections.
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2.1 F -Distribution

T 2 statistics follow the F -distribution with p and n-p degrees of freedom based on a mul-

tivariate normality assumption. The control limits of the T 2 control chart(CLT 2) can be

determined by

CLT 2 =
p(n + 1)(n− 1)

n2 − np
F(α,p,n−p), (2)

where n and p, respectively, are the number of observations and process variables. In other

words, the 100α% upper percentile of an F distribution is used as the control limit, where α is

the Type I error rate (false alarm rate) that often can be specified by the user. A Type I error

rate is estimated by the ratio of in-control observations that are incorrectly identified as out

of control to the total number of in-control observations. The control limit thus established

is used to monitor future observations. An observation is considered to be out of control if

the corresponding T 2 statistic exceeds the control limit.

2.2 Kernel Density Estimation

The control limit of the traditional T 2 control chart is accurate only assuming that the T 2

statistic follows an F -distribution. To relax the need for this assumption, Chou et al. (2001)

proposed a nonparametric approach that uses KDE to estimate the distribution of T 2 statis-

tics. Given n values of T 2 statistics (T 2
1 , T 2

2 , . . . , T 2
n) computed from the in-control observa-

tions, the distribution of the T 2 statistics can be estimated by the following kernel function:

f̂h(t) =
1

n

n∑
i=1

K

[
(t− T 2

i )

h

]
, (3)

where K and h, respectively, are a kernel function and a smoothing parameter (Chou et al.,

2001). A number of kernel functions are available such as uniform, normal, triangular,
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Epachenikov, quadratic, and cosines. Of these, the standard normal kernel function is most

commonly used.

The control limit can be determined by a percentile of the estimated kernel distribution.

That is, CLkernel associated with 100·(1-α)th percentile can be calculated by

CLkernel = f̂h(t)
−1(1− α). (4)

To calculate CLkernel, we may use a proper closed form which can be found in tables of

integrals. However, from a practical point of view, it may not be efficient to use tables of

integral every time when one wishes to calculate the control limits. In the present study

we used the trapezoidal rule (Burden and Faires, 2000), one of the numerical integration

methods that approximate the value of a definite integral and calculated CLkernel. The degree

of approximation of the trapezoidal rule depends on the number of space points (trapezoids).

If the number of space points is large, the true integration result may not be significantly

different from the result derived from the trapezoidal rule. Figure 1 shows control limits from

KDE-based T 2 control charts with different numbers of spaced points when the dataset follows

the multivariate lognormal distribution. The result shows that the values of the control limits

fluctuated but stabilized after 1,000 spaced points.

The accuracy of the estimates derived also depends on choosing an appropriate smoothing

parameter capable of compromising between oversmoothness and undersmoothness of the

estimated kernel distribution (Silver, 1986). A number of methods are available to select

an optimal smoothing parameter (Sheather and Jones, 1991). However, no consensus exists

on the best method to satisfy all conditions. Figure 2 illustrates the control limits derived

from a KDE-based T 2 control chart with different values of bandwidths in situations in which

the dataset follows a multivariate lognormal distribution. The asterisk shown in Figure 2
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represents the optimal bandwidth obtained using MATLAB Statistics Toolbox that uses an

algorithm from pages 31-32 in Bowman and Azzalini (1997) .

2.3 Proposed Bootstrap Percentile Approach

As discussed above, KDE-based T 2 control charts require some effort to find the appropriate

modeling parameters and to perform the numerical integration that calculates the area of the

estimated kernel density. In particular, our experience was that if the distribution is highly

skewed (which is often the case), calculations of the area of the tail region become less accurate.

To avoid these cumbersome tasks, we propose in this study a bootstrap approach that can

be considered an alternate way of KDE (but is easier to use in practical applications) to

establish the control limits for T 2 control charts when the dataset is not multivariate normally

distributed. The bootstrap technique is one of the most widely used resampling methods

to determine statistical estimates when the population distribution is unknown (Efron and

Tibshirani, 1993; Efron, 1979). The bootstrap approach is more convenient than KDE as a

way to establish control limits because it does not involve any modeling process in specifying

the parameters.

Figure 3 illustrates an overview of the bootstrap procedure to calculate control limits, and

it is summarized as follows:

1. Compute the T 2 statistics with n observations from an in-control dataset using (1).

2. Let T
2(i)
1 , T

2(i)
2 , . . . , T

2(i)
n be a set of n T 2 values from ith bootstrap sample (i = 1, . . . , B)

randomly drawn from the initial T 2 statistics with replacement. In general, B is the

large number (e.g., B > 1,000).
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Figure 1: Control limits from KDE-based T 2 control charts with different number of spaced

points.
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Figure 2: Control limits from KDE-based T 2 control charts with different bandwidths.
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3. In each of B bootstrap samples, determine the 100·(1-α)th percentile value given a

users-specified value α with a range between 0 and 1.

4. Determine the control limit by taking an average of B 100·(1-α)th percentile values

(T̄ 2
100·(1−α)). Note that statistics other than the average can be used (e.g., median).

5. Use the established control limit to monitor a new observation. That is, if the monitoring

statistic of a new observation exceeds T̄ 2
100·(1−α), we declare that specific observation as

out of control.

Although the bootstrap procedure does not involve an explicit process to determine param-

eters, the number of bootstrap samples used may affect the determination of control limits.

Figure 4 illustrates various bootstrap control limits as determined by different numbers of

bootstrap samples from 100 to 5,000. For each number of bootstrap samples, we calculated

the control limit 1,000 times. The triangular in the figure indicates the average value of

1,000 control limits at each specified number of bootstrap samples. As expected, variability is

greater when a small number of bootstrap samples are involved but stabilizes as the number of

bootstrap samples increases. Determination of the appropriate number of bootstrap samples

to use is not obvious. However, with reasonably large numbers of samples, the results vary

little. The computational time required has been perceived as one of the disadvantages of the

bootstrap technique, but this is not longer a significant issue because of the computing power

currently available. Moreover, it is worth noting that the bootstrap tends to work better for

statistics that are closer to being pivotal, such as the T 2 statistic that the we used in the

present paper. However, the bootstrap might not work so well if the process mean is the

statistic for the control chart.
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3 Simulation Study

3.1 Simulation Setup

Simulation studies were conducted to evaluate the performance of the proposed bootstrap-

based T 2 control chart and to compare it with the traditional T 2 and KDE-based T 2 control

charts. One thousand bootstrap samples (B = 1, 000) were used in this experiment. For KDE-

based T 2 control charts, we used the standard normal distribution as the kernel function.

We generated 1,000 in-control observations (n = 1, 000) as a training set based on mul-

tivariate normal (N), multivariate skew-normal (SN), multivariate lognormal (LogN), and

multivariate gamma (Gam) distributions. Each dataset was characterized by three process

variables. We used µ =

[
0 0 0

]
to simulate the multivariate normal, multivariate skew-

normal, and multivariate gamma distributions. In the multivariate lognormal distribution, µ

=

[
1 1 1

]
was used. Further, the following covariance matrix was used for the multivari-

ate normal, multivariate skew-normal, and multivariate lognormal distributions:

Σ =




1.00 0.70 0.60

0.70 1.00 0.10

0.60 0.10 1.00




.

In the multivariate skew-normal distribution, different degrees of skewness (λ) were considered

so as to observe the effects of these differences on the performance of the control charts.

We used an R package (www.r-project.org) to generate multivariate skew-normal data. For

illustrative purposes, Figure 5 shows two-dimensional skew-normal distributions with degrees

of skewness from zero to three. The zero degree skew-normal distribution shows the regular

normal distribution without any skewness. However, this figure also shows that as the degree

of skewness increases, the simulated data become more skewed. For more details about the
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Figure 3: An overview of the bootstrap procedure in calculating the control limits in T 2

control charts.
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Figure 4: Control limits with different number of bootstrap samples.
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multivariate skew-normal distribution, one can refer to Azzalini and Dalla Valle (1996). In

the multivariate gamma distribution, the shape and scale of the parameters were specified as

one.

3.2 Simulation Results

3.2.1 Comparison of Control Limits

We generated two sets of 1,000 in-control observations. The first set of 1,000 in-control

observations was used to determine the control limits of the T 2 control charts from the F -

distribution, KDE, and bootstrap percentile approaches. The second set of 1,000 in-control

observations was monitored on the control charts, which were based on the control limits

established by the first set of in-control observations. The control chart that produces a

similar value for the actual false alarm rate and the assumed false alarm rate would be

considered the better one.

Figure 6 displays T 2 control charts from the second set of 1,000 in-control observations that

use the normal distribution in conjunction with four different degrees of skewness. The control

limits were computed using the F -distribution, KDE, and bootstrap percentile approaches.

We specified a false alarm rate of 0.01. As illustrated, all three approaches yielded similar

control limits in the multivariate normal distribution with zero skewness. As skewness (λ)

increases, the control limits from the F -distribution tended to generate higher false alarm

rates. However, the KDE and bootstrap percentiles controlled the assumed false alarm rates

well. As can be seen from Figure 7, this behavior becomes much clearer in two nonnormal

distributions (e.g., lognormal and gamma). In these, we specified a false alarm rate of 0.01

and generated three different control limits. The results clearly show that the F -distribution
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approach failed to control the assumed false alarm rate and generated many false alarms.

In contrast, the control limits determined by the KDE and bootstrap approaches produced

similar values for the actual false alarm rate and for the assumed false alarm rate.

3.2.2 Comparison of In-Control Average Run Length

ARL is a performance measure that is widely used to evaluate control charts. In the present

study, in-control ARL (ARL0) was used to compare the performance of the control charts.

ARL0 is defined as the average number of observations required for the control chart to

detect a change under the in-control process (Woodall and Montgomery, 1999). In this study,

the average value of ARL0 was calculated from 10,000 replications. Under the normality

assumption, the actual ARL0 of the T 2 control chart is expected to be the same as or close to

the assumed ARL0. Tables 1 ∼ 4 show the assumed ARL0 values and the actual ARL0 values

as obtained by the F -distribution, KDE, and bootstrap percentile approaches in multivariate-

normal situations in which different degrees of skewness were used. This figure shows that

across the different approaches the actual ARL0 values are close to the assumed ARL0 values

when skewness is zero. However, as the degree of skewness increases, the differences between

the actual ARL0, as determined by the F -distribution and the desired ARL0, increases. In

contrast, KDE and the bootstrap percentile approaches in skew-normal situations generated

similar actual and assumed ARL0 results.

As with skew-normal situations, in the multivariate lognormal case (Table 5)and the mul-

tivariate gamma case (6)the actual ARL0 values from the KDE and bootstrap percentile

approaches are close to the assumed ARL0 values. Note that the average standard errors

shown in parentheses in Tables 1 ∼ 6 are small enough to permit a meaningful conclusion.
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Figure 5: The multivariate normal and multivariate skew-normal distributions with different

degrees of skewness in two dimensions.
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(c) Skew-normal Distribution (λ = 2)
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Figure 6: Control limits established by the F -distribution, KDE, and the proposed boot-

strap percentile on the multivariate normal and multivariate skew-normal distributions under

conditions of different degrees of skewness (α = 0.01).
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Table 1: ARL0 from the control limits established by using the F -distribution, KDE, and

the bootstrap percentile approaches from 10,000 simulation runs based on the multivariate

normal distribution (average standard errors are shown inside the parentheses).

Case α Desired ARL0 F -dist KDE Bootstrap

N 0.01 100.000 101.980 103.950 99.962

(1.012) (1.114) (1.074)

0.02 50.000 51.542 51.850 50.143

(0.517) (0.540) (0.521)

0.03 33.333 33.736 33.965 32.726

(0.331) (0.335) (0.323)

0.04 25.000 25.053 25.560 24.677

(0.248) (0.258) (0.250)

0.05 20.000 20.301 20.443 19.808

(0.199) (0.204) (0.198)

0.06 16.667 16.906 17.120 16.628

(0.163) (0.167) (0.163)

0.07 14.286 14.323 14.469 14.046

(0.138) (0.141) (0.137)

0.08 12.500 12.629 12.764 12.418

(0.122) (0.124) (0.121)

0.09 11.111 11.026 11.162 10.818

(0.104) (0.106) (0.103)

0.10 10.000 10.111 10.207 9.924

(0.098) (0.099) (0.096)
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Table 2: ARL0 from control limits established by using F -distribution, KDE, and bootstrap

percentile approaches from 10,000 simulation runs based on the multivariate skew-normal

distribution with λ = 1 (average standard errors are shown in parentheses).

Case α Desired ARL0 F -dist KDE Bootstrap

SN(λ = 1) 0.01 100.000 81.724 103.200 100.12

(0.827) (1.149) (1.112)

0.02 50.000 45.059 50.804 49.413

(0.453) (0.529) (0.514)

0.03 33.333 31.369 34.184 33.056

(0.316) (0.352) (0.339)

0.04 25.000 23.606 24.933 24.364

(0.231) (0.250) (0.243)

0.05 20.000 19.610 20.636 20.012

(0.194) (0.207) (0.200)

0.06 16.667 16.101 16.558 16.118

(0.159) (0.164) (0.160)

0.07 14.286 14.210 14.568 14.182

(0.138) (0.143) (0.139)

0.08 12.500 12.534 12.72 12.377

(0.120) (0.122) (0.118)

0.09 11.111 11.253 11.415 11.075

(0.107) (0.109) (0.106)

0.10 10.000 9.932 10.07 9.7786

(0.096) (0.098) (0.095)
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Table 3: ARL0 from control limits established by using the F -distribution, KDE, and boot-

strap percentile approaches from 10,000 simulation runs based on the multivariate skew-

normal distribution with λ = 2 (average standard errors are shown in parentheses).

Case α Desired ARL0 F -dist KDE Bootstrap

SN(λ = 2) 0.01 100.000 71.901 101.45 98.821

(0.719) (1.090) (1.051)

0.02 50.000 41.846 51.772 50.562

(0.423) (0.532) (0.520)

0.03 33.333 29.587 33.850 32.944

(0.294) (0.343) (0.331)

0.04 25.000 23.089 25.483 24.897

(0.228) (0.256) (0.250)

0.05 20.000 19.019 20.370 19.894

(0.185) (0.200) (0.195)

0.06 16.667 16.137 16.944 16.512

(0.157) (0.166) (0.163)

0.07 14.286 13.977 14.467 14.146

(0.136) (0.143) (0.139)

0.08 12.500 12.338 12.642 12.277

(0.120) (0.124) (0.120)

0.09 11.111 11.007 11.141 10.859

(0.106) (0.108) (0.105)

0.10 10.000 10.018 10.074 9.806

(0.096) (0.097) (0.094)
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Table 4: ARL0 from the control limits established by using F -distribution, KDE, and boot-

strap percentile approaches from 10,000 simulation runs based on the multivariate skew-

normal distribution with λ = 3 (average standard errors are shown in parentheses).

Case α Desired ARL0 F -dist KDE Bootstrap

SN(λ = 3) 0.01 100.000 69.605 103.410 101.050

(0.692) (1.106) (1.076)

0.02 50.000 39.696 50.037 48.928

(0.402) (0.591) (0.509)

0.03 33.333 28.982 33.824 33.02

(0.287) (0.347) (0.338)

0.04 25.000 22.744 25.183 24.668

(0.229) (0.256) (0.251)

0.05 20.000 18.712 20.090 19.612

(0.185) (0.197) (0.193)

0.06 16.667 15.961 16.834 16.404

(0.156) (0.164) (0.160)

0.07 14.286 14.064 14.661 14.273

(0.137) (0.143) (0.139)

0.08 12.500 12.214 12.479 12.193

(0.119) (0.121) (0.118)

0.09 11.111 11.360 11.553 11.254

(0.110) (0.112) (0.108)

0.10 10.000 10.078 10.143 9.899

(0.096) (0.097) (0.094)
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Table 5: ARL0 from control limits established by using F -distribution, KDE, and bootstrap

percentile approaches from 10,000 simulation runs based on the multivariate lognormal dis-

tribution (average standard errors are shown in parentheses).

Case α Desired ARL0 F -dist KDE Bootstrap

LogN 0.01 100.000 20.457 108.680 105.780

(0.208) (1.251) (1.142)

0.02 50.000 17.505 52.392 51.512

(0.172) (0.562) (0.527)

0.03 33.333 15.850 34.085 33.917

(0.155) (0.349) (0.342)

0.04 25.000 14.724 25.300 25.119

(0.143) (0.272) (0.251)

0.05 20.000 13.831 20.179 20.127

(0.137) (0.201) (0.200)

0.06 16.667 13.177 16.833 16.731

(0.130) (0.167) (0.163)

0.07 14.286 12.660 14.54 14.492

(0.126) (0.145) (0.145)

0.08 12.500 12.085 12.646 12.547

(0.117) (0.123) (0.121)

0.09 11.111 11.417 11.106 10.981

(0.111) (0.108) (0.106)

0.10 10.000 11.307 10.163 10.075

(0.110) (0.099) (0.098)
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Table 6: ARL0 from control limits established by using F -distribution, KDE, and bootstrap

percentile approaches from 10,000 simulation runs based on the multivariate gamma distri-

bution (average standard errors are shown in parentheses).

Case α Desired ARL0 F -dist KDE Bootstrap

Gam 0.01 100.000 20.939 105.650 103.050

(0.207) (1.164) (1.114)

0.02 50.000 16.995 50.437 50.169

(0.162) (0.518) (0.514)

0.03 33.333 14.572 33.472 33.338

(0.141) (0.341) (0.338)

0.04 25.000 13.253 25.142 25.147

(0.129) (0.249) (0.250)

0.05 20.000 12.215 20.214 20.105

(0.119) (0.201) (0.200)

0.06 16.667 11.158 16.675 16.563

(0.107) (0.163) (0.162)

0.07 14.286 10.452 14.210 14.132

(0.100) (0.139) (0.138)

0.08 12.500 10.054 12.604 12.537

(0.097) (0.122) (0.121)

0.09 11.111 9.298 11.041 10.982

(0.089) (0.109) (0.108)

0.10 10.000 8.91 9.965 9.909

(0.086) (0.097) (0.096)
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4 Case Study

The proposed bootstrap-based T 2 control chart was implemented by applying it as a case

study to a real multivariate process in a power generation company. The ultimate goal of this

case study was to develop an efficient monitoring and diagnostic tool for early detection of

abnormal behavior and performance degradation in a power company. The dataset contains

2,000 observations collected over a period in which each observation was characterized by 18

process variables. Further, the power company’s process experts confirmed that this dataset

is in control and stable. To check its multivariate normality, we conducted Royston’s H

test (Royston, 1983). The p-value, which measures the plausibility that the dataset follows

multivariate normal distribution, was almost zero. This strongly indicates that this dataset

does not come from the multivariate normal distribution.

Figure 8 shows the T 2 control charts whose control limits were estimated by the F -

distribution, KDE, and proposed bootstrap approaches with a false alarm rate (α) of 0.01. As

shown, the actual false alarm rates from both the KDE and bootstrap percentile approaches

are 0.0095, which is similar to the assumed false alarm rate (0.01). On the other hand, the

actual false alarm rate from the F -distribution is 0.052, resulting in a lower control limit and a

higher false alarm rate. This demonstrates the effectiveness of the proposed bootstrap-based

T 2 control chart in a real situation in which the process does not follow the multivariate

normal distribution.
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(a) Lognormal Distribution Case
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(b) Gamma Distribution Case

Figure 7: Control limits established by the F -distribution, KDE, and the proposed bootstrap

percentile on the multivariate lognormal and the multivariate gamma distributions (α = 0.01).
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Figure 8: Control limits established by the F -distribution, KDE, and proposed bootstrap

percentile approach on the real dataset.
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5 Concluding Remarks

This study proposed a bootstrap approach as a way to determine the control limits of a T 2

control chart when the observations do not follow a normal distribution. KDE is an existing

method used to establish the control limits of T 2 control charts in nonnormal situations.

We want to emphasize again that the purpose of the present study is not to outperform the

KDE approach. Rather, we proposed an alternate way for a KDE-based T 2 control chart

to deal with nonnormal situations. Nevertheless, the proposed bootstrap-based T 2 chart is

a model-free approach and thus easier to implement without recourse to a strong statistical

background. The simulation study showed that the proposed bootstrap-based T 2 control

charts outperformed the traditional T 2 control charts in both skew-normal and nonnormal

cases and were comparable in ARL performance with the KDE-based T 2 control charts. With

normally distributed data, all three approaches produced comparable ARL performance. This

result clearly indicates that the proposed bootstrap-based control chart is efficient in both

normal and nonnormal situations. Further, we used the proposed control chart to monitor a

real multivariate process in a power generation company and obtained results consistent with

the simulation study. We believe that the fundamental value of the present study includes the

integration of the bootstrap method with traditional Hotelling’s T 2 control charts to extend

their applicability in nonnormal situations.
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