
A Multivariate Adaptive Regression Splines Cutting Plane
Approach for Solving a Two-Stage Stochastic Programming Fleet

Assignment Model. COSMOS Technical Report 10-06. The
University of Texas at Arlington. Arlington, TX.

VENKATA L. PILLA, JAY M. ROSENBERGER, VICTORIA C.P. CHEN, NARAKORN
ENGSUWAN, SHEELA SIDDAPPA

Abstract

The fleet assignment model assigns a fleet of aircraft types to the scheduled flight legs in an air-
line timetable published six to twelve weeks prior to the departure of the aircraft. The objective
is to maximize profit. While costs associated with assigning a particular fleet type to a leg are
easy to estimate, the revenues are based upon demand, which is realized close to departure. The
uncertainty in demand makes it challenging to assign the right type of aircraft to each flight leg
based on forecasts taken six to twelve weeks prior to departure. Therefore, in this paper, a two-
stage stochastic programming framework has been developed to model the uncertainty in demand,
along with the Boeing concept of demand driven dispatch to reallocate aircraft closer to the de-
parture of the aircraft. Traditionally, two-stage stochastic programming problems are solved using
the L-shaped method. Due to the slow convergence of the L-shaped method, a novel multivari-
ate adaptive regression splines cutting plane method has been developed. The results obtained
from our approach are compared to that of the L-shaped method, and the value of demand-driven
dispatch is estimated.

Keywords: Stochastic Programming, Airline Fleet Assignment model, L-shaped method

1. Introduction

In the airline industry, many airlines are confronted with increased competition from other car-
riers while they continue to address labor costs. Furthermore, high fuel costs have impacted the
entire industry. Therefore, airlines try to find ways to reduce costs, increase profits, and improve
load factors. One interesting option to reduce cost and increase revenues is to balance supply
(seats) and demand (passengers). If an airline assigns an aircraft with too much capacity, flights
will depart with empty seats. If an airline assigns an aircraft with insufficient capacity, this may
cause lost (spilled) customers because of seat shortage. Consequently, airlines use a Fleet As-
signment Model (FAM) in order to balance supply and demand. The objective of this model is
to maximize profit (revenue minus operating costs). FAM has been credited for saving costs and
improving airline operations. At American Airlines, improvement in operating margins increased
1.4% (Abara 1989). FAM has saved about $15M of operating costs at US Airways (Rushmeier and
Kontogiorgis 1997) and $100M at Delta (Subramanian et al. 1994). The accuracy of cost and profit
estimates is an important factor for the quality of a FAM solution. Cost estimates are relatively
stable and known whereas revenue estimates depend on demand predictions. There are several
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reasons to consider demand uncertain. It is challenging to assign the correct type of aircraft to
each flight leg in the schedule that is published six to twelve weeks prior to the departure of the
flight. One way of improving profit is to model demand stochastically and delay the fleet assign-
ment decision closer to departure, and stochastic programming and the Boeing concept of demand
driven dispatch concept of Boeing are very useful tools for this. Background knowledge for these
two topics are described in Sections 1.1 and 1.2

1.1. Overview of Stochastic Programming
Stochastic Programming (SP) is a framework for modeling optimization problems that include

uncertainty. SP involves uncertainty within decision making models and uses probability distri-
butions for random events. The purpose of SP is to maximize the expectation function of the
decisions based on random events. In this section, we present a two-stage SP with fixed recourse.
In the first stage, the decisions are made without full information on some random event. Then,
we solve the recourse problem (subproblem) based on the realization of random vectors and the
decision from the first stage to get the second-stage decision.

The two-stage stochastic linear programming with fixed recourse can be formulated as :

min z = cTx + Eξ[min q(ω)Ty(ω)] (1)
s.t. Ax = b,

T(ω)x + Wy(ω) = h(ω),

x ≥ 0, y(ω) ≥ 0,

where x ∈ Rn1 is the first-stage decision vector, y(ω) ∈ Rn2 is the vector of recourse or second-
stage decision variables, c ∈ Rn1 is the known objective coefficient vector of x, q(ω) ∈ Rn2

is a coefficient matrix of vector y(ω), and A is an m1 × n1 first-stage linear constraint matrix
with the known right-hand side b ∈ Rm1 . T(ω) and W are m2 × n1 and m2 × n2 matrices,
respectively, specifying the second-stage linear constraints on x and y with the right-hand side
vector h(ω) ∈ Rm2 . For a given realization of the stochastic variables, ω ∈ Ω, the second-
stage problem data, q(ω),h(ω), and T(ω), become known, and the second stage decision y(ω, x)
can be obtained. Let the vector ξT (w) represent a scenario with the different components of the
second stage, i.e., q(ω)T , h(ω)T , T(ω), such that ξ ∈ Ξ, where Ξ represent a set of scenarios. The
objective function in model (1) contains a deterministic term cTx and the expectation of the second-
stage objective q(ω)Ty(ω) taken over all realizations of the random event ω. We can formulate the
second-stage value function for a given ω as

Q(x, ξ(ω)) = min
y

[q(ω)Ty|Wy = h(ω)− T(ω)x, y ≥ 0]. (2)

Let the expected second-stage recourse function be defined as: =(x) = EξQ(x, ξ(ω)), then the
deterministic equivalent of the two-stage stochastic linear program can be written as

min z = cTx + =(x) (3)
s.t. Ax = b,

x ≥ 0.

One major challenge is determining the expected recourse function =(x). Each evaluation
of =(x) at a given vector of x requires solving many linear programming problems of the form
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in (2). For complicated problems, such as fleet assignment, the iterative approximation methods
described by Berge and Hopperstad (1993) can be very slow to converge because they normally
require a large number of scenarios to sufficiently represent the stochasticity of the second-stage
optimization problem in (2). Therefore, in each optimization iteration of the first stage, there is a
high computational cost for evaluating =(x) in the second stage, making the problem defined in
model (3) even harder to solve. Chen (2001) proposed discretization of the x-space to a finite set of
points and solving for =(x) only at those points, followed by a function approximation technique
to estimate the entire surface of =(x) in order to control the computational requirement. This
approximation, =̂(x), will be computationally trivial to evaluate in model (3). For discretization, it
is necessary to choose only those x values that result in a feasible solution in the second stage.

1.2. Demand Driven Dispatch
For crew scheduling and maintenance planning, many airlines specify their schedules in ad-

vance. Since airline schedules must be set early enough to allow ample time to create crew and
maintenance plans, these plans must be fixed at least six to twelve weeks prior to departure. A
more robust FAM method would include reallocation of aircraft much closer to departure since
most demand for flights is realized after the schedule is published. Berge and Hopperstad (1993)
proposed that the concept of demand driven dispatch (D3) be used for matching demand to aircraft
close to the departure of the flight. This method use two stages of decision making. The first
stage occurs six to twelve weeks prior to the departure of the flight, when the flight schedules are
published. During this stage, crew compatible families of aircraft (see in Pilla et al. (2008)) are
assigned to flights in the airline timeable. If they have the same cockpit model, the same crew
group could operate either aircraft type. Therefore, two aircraft are said to be crew compatible.
The second stage happens two weeks before the departure of flights when most of the demand is
known and individual aircraft are assigned within the crew compatible families based on demand.
In the second stage, swapping can occur with the assignment of specific flights in the second stage.
For example, Boeing 757 and 767 models are crew compatible, and a Boeing 767 has more pas-
senger seats than a Boeing 757. Suppose Flights A and B are firstly assigned to a 757 and 767,
respectively. Demand is higher than expected for flight A, while flight B has realized a lower de-
mand than expected two weeks before departure. In this case, the airline can swap the 757 and 767
without affecting the crew schedule. Because of this swapping, airlines can earn more revenue.
Berge and Hopperstad (1993) stated that profits increase 1-5% by using this idea.

1.3. Literature Review
The airline fleet assignment problem has been a popular research topic for the several years and

has been credited for increasing profits in many airlines. Sherali et al. (2006) described an extensive
review of various fleet assignment ideas, models, and algorithms. Major airlines increased their
flight schedules significantly and developed hub-and-spoke networks after the deregulation of the
US airline industry in 1978. This allowed them to provide more destinations with a lot of traffic
at the hubs making the fleet assignment problem much more complicated to solve. Farkas (1996)
demonstrated that Revenue Management (RM) has a great impact on passenger volume and mix.
Abara (1989) presented the first significant FAM application using an integer linear programming
model. Moreover, he first solved the FAM LP relaxation, fixed variables, and then solved a Mixed
Integer Programming (MIP) model. In order to determine solution quality, Abara (1989) noted
that the number of high demand legs, which were covered by larger aircraft, increased from 76%
to 90% and increased operating margin by 1.4%.

3



Hane et al. (1995) showed that a fleet assignment problem can be solved as a multi-commodity
network flow problem, which formed the basis for a large portion of later FAM research. More-
over, they constructed the FAM problem as an MIP model and used a time line network for each
airport and fleet type combination to formulate the constraints. Since these problems are often
degenerate, they proposed different methods, which include cost perturbation, dual steepest edge
simplex, an interior-point algorithm, model aggregation, branching on set-partitioning constraints,
and prioritizing the order of branching to decrease the time required to solve the problem. Hane
et al. (1995) reported run times twice as fast as a standard LP based branch-and-bound algorithm.

Subramanian et al. (1994) solved the fleet assignment problem at Delta Airlines by implement-
ing a coldstart model with many of the features described by Hane et al. (1995). The optimization
model did not require any initial fleeting and produced results based on a raw schedule, providing
the name coldstart. Talluri (1996) developed algorithms to solve a warmstart model that considers
an existing daily fleet assignment and then tries to improve it by using local swap opportunities.
Moreover, Gu et al. (1994) presented theoretical properties of the FAM problem. The solution of
FAM affects subsequent planning decisions like aircraft routing, crew scheduling, and maintenance
requirements. Consequently, extensions of FAM were considered in later research.

FAM was extended in Clarke et al. (1996) to address both maintenance and crew considera-
tions. Rushmeier and Kontogiorgis (1997) presented a FAM formulation to manage aircraft routing
issues. Barnhart et al. (1998) used the term strings to represent the assignment of a sequence of
legs to a single aircraft. They showed a single model and solution method to simultaneously solve
the fleet assignment and aircraft routing problems. Because of the possibility of numerous strings,
Barnhart et al. (1998) proposed a delayed column generation technique to generate maintenance
feasible routing solutions. Using a string based model, Rosenberger et al. (2003) developed a ro-
bust FAM that creates short hub-based strings, called rotation cycles, so that flight cancelations
and delays are less likely to disrupt the entire network.

Modeling the objective function is a significant component of a successful FAM. The objective
function of FAM can be maximizing revenue or minimizing passenger spill (lost revenue due to
assigning smaller aircraft), or minimizing the number of aircraft being used. For the objective,
the FAM models mentioned previously assume the demands for the different flight legs are inde-
pendent and deterministic. In practice, both the assumptions are invalid. In a multi-leg itinerary,
capacity of one flight leg affects the revenues of others, and the demand forecasts made early in
the planning process can have significant errors. Hence, FAM can provide sub-optimal solutions
by ignoring these effects.

Kniker (1998) augmented FAM with a Passenger Mix Model (PMM) to capture multi-leg pas-
senger itineraries. Given a schedule with known flight capacities and a set of passenger demands
with known fares, the combined FAM and PMM determines optimal demand and fleet assignments
to maximize revenue. This is also referred to as Origin Destination (O-D) FAM. PMM assumes
that demand is deterministic and that the airline has complete knowledge and control of which
passengers they accept. Kniker (1998) solved the problem using branch-and-price and utilized
sophisticated preprocessing techniques to reduce the computation involved. Barnhart et al. (2002)
developed an alternate model to solve the O-D FAM problem addressed by Kniker (1998) using
decision variables that assign a subset of legs to a fleet. They showed that by carefully selecting
subsets, the model is computationally tractable.

Jacobs et al. (1999) presented an O-D FAM stochastic formulation and used the L-shaped
method to solve it. Given an assignment solution, the revenue is estimated in the RM subproblem.
The revenue function is approximated in the master problem with a series of L-shaped cuts with
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each cut improving the accuracy. When a specified accuracy is reached in the relaxed master
problem, the assignment variables are changed to integer and an MIP is solved. Although this
method addresses both passenger flows in the network and demand uncertainty, Smith (2004)
states that this approach can suffer from slow convergence and high fractionality.

Listes and Dekker (2002) used dynamic allocation for determining an optimal airline fleet
composition. Given an airline schedule and a set of aircraft types, the fleet composition problem
determines the number of aircraft of each type the fleet requires in order to maximize profit. They
developed a two-stage SP model to determine a single fleet composition that maximizes profit
in the first stage across all demand scenarios generated in the second stage. Similar to Berge
and Hopperstad (1993), in the second stage, they solved a deterministic FAM model for each
demand scenario allowing swapping to occur, and they employed a scenario aggregation approach,
which was presented by Rockafellar and Wets (1991), to solve fleet assignment and decrease the
computational complexity. They report a 90% runtime reduction and profit benefits up to 0.5
margin points. Even though the authors model the stochasticity of demand, the network effects are
still ignored.

Recently, Sherali and Zhu (2008) developed a two-stage stochastic mixed-integer program-
ming approach in which the first stage focuses on initial fleet assignment. Then, the second stage
performs subsequent family-based type-level assignments according to forecasted market demand
realizations like D3. They conducted polyhedral analysis of the proposed model and developed
solution methods based on the L-shaped method.

In Pilla et al. (2008), the FAM problem was constructed by using a two-stage SP framework.
Following a statistical perspective proposed by Chen (2001), Pilla et al. (2008) fitted a Multivari-
ate Adaptive Regression Splines (MARS) (Friedman 1991) approximation for the expected profit
function. However, they did not use the approximation function to optimize the two-stage SP FAM.

1.4. Contribution
The primary contribution of this is paper is a MARS cutting plane algorithm (MARS-CP) that

uses the approximation function from Pilla et al. (2008) to optimize the two-stage SP FAM. To do
so, we revise the two-stage SP FAM formulation, and we derive a gradient of the MARS function,
which is used to generate revenue cuts. We also compare MARS-CP with the traditional L-shaped
method, similar to the one in Sherali and Zhu (2008). Finally, we estimate the value of using the
D3 concept.

The remainder of this paper is organized as follows. Section 2 presents the two-stage SP FAM.
In Section 3, MARS-CP is discussed in detail. In Section 4, we describe the L-shaped method for
the two-stage SP FAM problem. Section 5 presents computational results of implementations of
MARS-CP and the L-shaped method. Finally, Section 6 concludes this paper with a discussion on
future research.

2. Two-Stage SP FAM Formulation

In Section 2.1, we summarize the two-stage SP FAM from Pilla et al. (2008), and we revise it
for MARS-CP and the L-shaped method in Section 2.2.

2.1. Original Two-Stage SP FAM
Given an airline schedule and a set of fleets of different aircraft that can fly each flight leg,

the fleet assignment problem allocates the fleet of aircraft to the scheduled flights subject to the
following operational constraints:
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Figure 1: Time Line

• Cover: Each flight in the schedule must be assigned to exactly one aircraft type.
• Balance: Aircraft cannot appear or disappear from the network.
• Plane Count: The total number of aircraft assigned cannot exceed the number of available

aircraft in the fleet.

The objective is to find a feasible assignment to maximize profit. Similar to models in Berge
and Hopperstad (1993) and Hane et al. (1995), the fleet assignment problem is formulated as an
integer multicommodity flow problem on a time line network. A time line is a graph that represents
the arrival and departure events occurring at each station over a specified time period as shown in
Figure 1.

Flights above the time line indicate departures, and flights below the time line indicate arrivals.
In addition, the numbers indicate the corresponding flight legs. A node in a time line starts on an
arrival and ends before the next arrival with at least one departure in between. In Figure 1, BC, DE
and FA represent nodes. Ground arc is the arcs that connect within these nodes, overnight arc is
the arc that connects the last arrival on the time line to the first departure. These arcs denote at least
one plane being on the ground at a station and are defined as continuous variables. Because once
all flight variables are integral, the values corresponding to these arcs will be integral as well. Any
flight, which arrives at a particular station, will not be available for departure immediately because
of the required time for fueling, cleaning, and loading passengers/baggage etc. As such, a turn
time is added to all the arrivals before they are ready to take off. The turn time is dependent on the
particular fleet type and the station. The sum of all the times corresponding to the arcs represent
the total ground time of the planes at that particular station. The overnight arc includes a plane
count hour (in general 4 A.M. EST) that is used for implementing the plane count constraints.

From Pilla et al. (2008), the assumptions for solving the two-stage SP FAM can be stated as
follows:

• Assumption 1: The mean and variance for each itinerary-fare class are known.
• Assumption 2: Spilled passengers are assumed to be lost by the carrier and are not recap-

tured.
• Assumption 3: The D3 swapping assignment variables are relaxed to be continuous.
• Assumption 4: Demand is known during D3 swapping. Practically, demand may change

even after swapping. Nevertheless, we assume that the airlines solve a deterministic D3

swapping problem with expected demand because no more swapping opportunities are avail-
able.
• Assumption 5: Fleet types within the same family can always be swapped.
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Let F denote the set of fleet types (indexed by f ). Let L be the set of flight legs (indexed by l), and
let H be the set of crew-compatible families (indexed by h), which can be used for each leg l ∈
L. Let e be a mapping from F to H (e : F → H). Because we assign crew-compatible families
in the first stage, for each leg l ∈ L and for each crew-compatible family type h ∈ H , let a binary
variable xhl be defined such that

xhl =

{
1 if crew-compatible family h is assigned to flight leg l,
0 otherwise.

Let xH represent the vector of first-stage binary variables. In the second stage, we assign specific
aircraft within the crew-compatible family. As such, for each leg l ∈ L, for each aircraft f ∈ F ,
and for each scenario ξ ∈ Ξ, let a binary variable xξfl be defined such that

xξfl =

{
1 if aircraft f is assigned to the leg l for scenario ξ,
0 otherwise.

We will refer to these variables as the D3 swapping assignment variables, and we let xξ repre-
sent the vector of D3 swapping assignment variables in scenario ξ. Because FAM and PMM are
combined in this paper, let the decision variable zξi represent the number of booked passengers for
itinerary-fare class i for scenario ξ. For additional notation of the two stage SP FAM, let

• S be the set of stations, indexed by s,

• I be the set of itinerary-fare classes, indexed by i,

• V be the set of nodes in the entire network, indexed by v,

• h(v) be the crew-compatible family associated with node v,

• f(v) be the fleet type associated with node v,

• Av be the set of flights arriving at node v,

• Dv be the set of flights departing at node v,

• Uf be the number of aircraft of type f ,

• Uh be the number of aircraft in crew-compatible family h,

• fi be the fare for itinerary-fare class i,

• Cfl be the cost if aircraft type f is assigned to flight leg l,

• aξv+ be the value of the ground arc leaving node v in scenario ξ,

• aξv− be the value of the ground arc entering node v in scenario ξ,

• av+ be the value of the ground arc leaving node v in the first-stage,

• av− be the value of the ground arc entering node v in the first-stage,

• Of be the set of arcs that include the plane count hour for fleet type f , indexed by o,

• Oh be the set of arcs that include the plane count hour for crew-compatible family h, indexed by o,
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• L0 be the set of flight legs in the air at the plane count hour,

• Capf be the capacity of aircraft f ,

• Dξ
i be the demand for itinerary-fare class i in scenario ξ.

The two-stage formulation can be written as:

max θ = Eξ

[
−
∑
l∈L

∑
f∈F

Cflx
ξ
fl +

∑
i∈I

fiz
ξ
i

]
(4)

s.t.
∑
h∈H

xhl = 1 ∀l ∈ L, (5)∑
f∈h

xξfl = xhl ∀l ∈ L, h ∈ H, ξ ∈ Ξ, (6)

aξv− +
∑
l∈Av

xξf(v)l −
∑
l∈Dv

xξf(v)l − a
ξ
v+ = 0 ∀v ∈ V, ξ ∈ Ξ, (7)∑

o∈Of

aξo +
∑
l∈L0

xξfl ≤ Uf ∀f ∈ F, ξ ∈ Ξ, (8)

∑
i3l

zξi −
∑
f∈F

Capf x
ξ
fl ≤ 0 ∀l ∈ L, ξ ∈ Ξ, (9)

0 ≤ zξi ≤ Dξ
i ∀i ∈ I, ξ ∈ Ξ, (10)

xξfl ∈ {0, 1} ∀f ∈ F, l ∈ L, ξ ∈ Ξ, (11)

xhl ∈ {0, 1} ∀l ∈ L, h ∈ H, (12)

aξv+ ≥ 0 ∀v ∈ V, ξ ∈ Ξ. (13)

The objective (4) is to maximize profit by assigning aircraft within the crew-compatible allocation
made in the first stage. In two-stage SP FAM, cover constraints are required for both stages.
Constraint set (5) includes the first-stage cover constraints that guarantee each flight is assigned
to a crew-compatible family. The constraints in set (6), which represent the second-stage cover
constraints, ensure that flight legs are reassigned within the crew-compatible family originally
assigned within the first stage. The balance constraints (7) are needed to maintain the circulation
of aircraft throughout the network. Then, we need to count the number of aircraft of each fleet
being used to formulate the plane count constraints (8). As such the ground arcs that cross the
plane count hour and the flights in air during that time are summed to assure that the total number
of aircraft of a particular fleet type does not exceed the number available. Constraints (9) limit the
number of booked passengers on different itineraries for a flight l to the capacity of the aircraft
assigned, and constraint set (10) limits the number of passengers over a fare class to the forecasted
demand. Constraint sets (11) and (12) require that the assignment variables be binary. As noted in
Assumption 3, the D3 swapping assignment variables in (11) will be relaxed to be continuous; that
is, constraint set (11) are replaced by

xξfl ≥ 0, ∀f ∈ F, l ∈ L, ξ ∈ Ξ. (14)

In practice most crew-compatible families include only one or two aircraft types, so integer so-
lutions result (Berge and Hopperstad 1993). An upper bound on the objective function can be
obtained for families with more than two aircraft types.
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2.2. Revised Two-Stage SP FAM
In the original two-stage SP FAM problem, the objective function and the constraints form a

block angular structure, and the standard L-shaped method can be applied to solve the problem.
The master problem makes a crew-compatible assignment, and each recourse subproblem solves
a particular D3 swapping assignment within the family assigned in the first stage. The revised
two-stage SP FAM is represented as follows:

max η (15)

s.t. av− +
∑
l∈Av

xh(v)l −
∑
l∈Dv

xh(v)l − av+ = 0 ∀v ∈ V, (16)∑
o∈Oh

ao +
∑
l∈L0

xhl ≤ Uh ∀h ∈ H, (17)

av+ ≥ 0 ∀v ∈ V, (18)
η ≤ θ(xH), (19)

xH satisfies (5) and (12),

where

θ(xH) = max Eξ

[
−
∑
l∈L

∑
f∈F

Cfl(x
ξ
fl) +

∑
i∈I

fiz
ξ
i

]
(20)

s.t. (xξ, aξ) satisfies (6), (7), (8), (9), (10), (13), and (14).

The master problem is (5), (12), and (15) - (19), while (6), (7), (8), (9), (10), (13), (14), and
(20) represent the D3 swapping recourse subproblem. Most of the revised two-stage SP FAM is
a straightforward application of the deterministic equivalent of two-stage stochastic programming
described in Section 1.1. However, constraints (16), (17), and (18) are the first-stage constraints,
which were not explicitly present in the original two-stage SP FAM formulation. Nonetheless, they
can be shown to be valid by aggregating the second-stage constraints within the crew-compatible
families. We will refer to constraints (16) and (17) as the first-stage balance constraints and the
first-stage plane count constraints, respectively. With Assumption 5, we know that for any xH that
satisfies the first-stage constraints, there exists a feasible assignment to the D3 swapping recourse
subproblem. By using these constraints, we can avoid infeasibility issues with the second-stage
recourse function θ(xh). Constraint (19) ensures that the objective value is no more than the
function θ(xh). The D3 swapping recourse subproblem can be decomposed by each scenario and
solved as in the standard L-shaped method. In both our MARS-CP approach and in the L-shaped
method, constraint (19) is replaced with linear cutting planes.

3. MARS-CP

In this section, we describe MARS-CP. Section 3.1 overviews our statistical approach based on
Design and Analysis of Computer Experiments, and we describe how the MARS function was fit in
Pilla et al. (2008) in Section 3.2. In Section 3.3, we derive the gradient of the MARS function, and
Section 3.4 explains how the MARS function can be optimized using a cutting plane algorithm.
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3.1. Design and Analysis of Computer Experiments
Design and Analysis of Computer Experiments (DACE) can be used to optimize a complex

system (Chen et al. 2006; Tsai and Chen 2005). In a DACE approach, a computer model is used
to study a complex system. Design of Experiments (DOE) is used to specify inputs for a set of
computer model runs for which performance outputs are observed. Using these data, a meta-model
approximates the relationship between input variables (vector x) and an output variable y. In the
DACE literature, the computer model is typically a simulation model. However, DACE methods
have been developed for solving stochastic dynamic programming (Chen et al. 1999) and Markov
decision problems (Chen et al. 2003) effectively, and Chen (2001) first suggested applying DACE
to stochastic programming.

Figure 2 diagrams our DACE-based approach, where the computer model consists of the linear
programs that yield the recourse function θ in equation (20) of SP-FAM. The MARS-CP algorithm
developed in this paper is a DACE approach to solve a two stage SP-FAM. The approach is de-
picted in Figure 2. The left box in the figure is the DACE Phase, which was the subject of Pilla
et al. (2008), while the right box uses the MARS-CP algorithm in the Optimization Phase. In the
DACE Phase, since the first stage requires only the crew-compatible allocation (CCA) of aircraft, a
reduced state space corresponding to the crew group allocation is generated. Within this state space
(x = CCA), DoE can be used to select certain discretization points. Scenarios are generated based
on known probability distributions of passenger demand, and for each CCA, the objective values
of the LP relaxations of the second-stage FAM are collected and averaged as the computer model
output variable θ. A MARS statistical model, θ̂(x) is fit to these data to generate an approximate
second-stage recourse function, which can then be employed for more efficient future evaluations
in the Optimization Phase and optimized by dynamically generating revenue cuts. The MARS-CP
algorithm uses this MARS model θ̂(x) to conduct quick evaluations of the recourse function in a
cutting plane algorithm.

Figure 2: Two-Stage Stochastic Programming framework
Since a fit for the recourse function can be obtained well in advance of the six-to-ten week

period, we have utilized two phases to further reduce the computation involved, as shown in Figure
2.

3.2. Design of Experiments and MARS
In this section, we summarize the approach to fit the MARS approximation to the recourse

function in Pilla et al. (2008). The primary objective of the first-stage problem is to assign an initial
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crew-compatible allocation (CCA). Consider the following first-stage nonnegativity constraints
given by

xhl ≥ 0, ∀l ∈ L, h ∈ H. (21)

The experimental region in which the design is generated is the polytope defined by the continuous
relaxation of the first-stage constraints P ; that is,

P = {xH |xH satisfies (5), (16), (17), (18), and (21)}. (22)

For conducting the DoE method, these constraints must be preprocessed such that they form
a polytope defined by a system of linear inequalities Ax ≤ b. Preprocessing to reduce the state
space is employed by using the explicit equality constraints, as well as implicit equalities present
in the constraints. Savelsbergh (1994) presented preprocessing techniques that can be used to
reduce MIP problems. Let P := {x ∈ R|Ax ≤ b} be a nonempty convex polytope formed by the
first-stage constraints. Discretization points within this polytope can be generated to represent the
initial CCA, and any infeasible points created during the design can be projected onto the feasible
polytope.

The MARS (Multivariate Adaptive Regression Splines) algorithm was developed by Friedman
(1991) as a statistical modeling method for estimating a completely unknown relationship between
a single output variable (typically observed with uncertainty) and several input variables. The
MARS model is composed of a linear combination of basis functions; one univariate form can
been seen in Figure 3. The truncated linear form is characterized by a ”sign” φ and a single ”knot”
K at which the function bends. In general, the jth MARS basis function in the model is a product
of Tj truncated linear functions:

Bj(xH) =

Tj∏
l=1

[φl,j.(xv(l,j) −Kl,j)]+, (23)

where xv(t,j) is the predictor variable corresponding to the tth truncated linear function in the jth
basis function, Kt,j are knot locations at which the basis function bends, and φt,j is +1 or −1. The
MARS model is of the form

θ̂(xH) = β0 +
M∑
j=1

βj

Tj∏
t=1

[φt,j.(xv(t,j) −Kt,j)]+, (24)

where β0 is the coefficient for the constant basis function, M is the number of linearly independent
basis functions, βj is the coefficient of jth basis function

∏Tj

t=1([φt,j(xv(t,j) −Ktj)]) = Bj(x), and
xv(t,j) is the predictor variable. Because the MARS model is a statistical linear model, the standard
least squares formulas are applicable for estimating the model parameters βj . The quintic form,
also seen in Figure 3, is characterized by three knots and will be specified in the next section, where
we derive the gradient of a MARS model.

The MARS algorithm is adaptive because the basis functions are selected based on the data.
The original MARS algorithm of Friedman (1991) specifies a three-phase process. In the first
phase, a model is grown by sequentially adding truncated linear basis functions that best improve
the fit to the data until a ”sufficient” number of terms have been added (user-specified by a param-
eter Mmax). In the second phase, basis functions are deleted until a balance of bias and variance
is found. The greedy search procedures simultaneously select input variables and knots. The third
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phase converts the truncated linear basis functions to a smoother form. Friedman (1991) suggested
a cubic form that enables a continuous first derivative, and Chen et al. (1999) recommended the
quintic form we use in our research to additionally enable a continuous second derivative.

The run time for MARS is dependent upon the number of basis functions that the user specifies
with the parameterMmax. Motivated by the fact thatMmax requires some trial and error to identify,
and that the second phase of the MARS algorithm is computationally slow, a computationally faster
variant of MARS that automatically selects M and eliminates the second phase was developed by
Tsai and Chen (2005). This MARS variant is what we employed in this paper.

3.3. MARS Gradient
To enable a continuous first and second derivative, Chen et al. (1999) replaced the truncated

linear functions with quintic functions as shown in Figure 3. For sign φ and knots K−, K,K+, the

Figure 3: Continuous derivative MARS function

quintic functions are defined as:

Q(x|φ = 1, K−, K,K+) =


0, x ≤ K−

ϑ+(x−K−)3 + ι+(x−K−)4 + κ+(x−K−)5, K− < x < K+

x−K, x ≥ K+,
(25)

and

Q(x|φ = −1, K−, K,K+) =


K − x, x ≤ K−

ϑ−(x−K+)3 + ι−(x−K+)4 + κ−(x−K+)5, K− < x < K+

0, x ≥ K+.
(26)
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where,

ϑ+ =
6K+ − 10K + 4K−

(K+ −K−)3
, (27)

ι+ =
−8K+ + 15K − 7K−

(K+ −K−)4
, (28)

κ+ =
3K+ − 6K + 3K−

(K+ −K−)5
, (29)

ϑ− =
(−1)(6K− − 10K + 4K+)

(K− −K+)3
, (30)

ι− =
(−1)(−8K− + 15K − 7K+)

(K− −K+)4
, (31)

κ− =
(−1)(3K− − 6K + 3K+)

(K− −K+)5
. (32)

Consider a univariate quintic MARS approximation represented as below.

θ̂(x) = β0 +
M∑
j=1

βjQj(x). (33)

The first derivative is given by

d(θ̂(x))/dx =
M∑
j=1

βjQ
′

j(x), (34)

where,

Q
′

j(x|φ = 1, K−, K,K+) =


0, x ≤ K−

3ϑ+(x−K−)2 + 4ι+(x−K−)3 + 5κ+(x−K−)4, K− < x < K+

1, x ≥ K+,
(35)

or

Q
′

j(x|φ = −1, K−, K,K+) =


−1, x ≤ K−

3ϑ−(x−K+)2 + 4ι−(x−K−)3 + 5κ+(x−K−)4, K− < x < K+

0, x ≥ K+.
(36)

For a two factor interaction,

θ̂(x) = β0 +
M∑
j=1

βjQj1(x1)Qj2(x2), (37)

The gradient is given by the following:

∇θ̂(x) =

[ ∑M
j=1 βjQ

′
j1(x1)Qj2(x2)∑M

j=1 βjQj1(x1)Q
′
j2(x2)

]
. (38)
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3.4. Optimization of MARS Function
For the two-stage SP FAM, the constraints are all linear, and under the assumption that the

MARS approximation θ̂(x) is concave, a variant of Kelley’s cutting plane method can be used to
solve the problem.

Specifically, a set of linear constraints may be used to represent constraint (19) as follows:

η ≤ θ̂(x̄H) + (xH − x̄H)T ∇ θ̂(x̄H), ∀x ∈ P, (39)

Constraint set (39) is similar to the optimality cuts in the L-shaped method, which are added
dynamically in each iteration. Likewise, the cutting plane algorithm will add constraints in (39)
dynamically, and we let P represent a subset of points in P . Algorithm 1 presents the cutting plane
algorithms to optimize the two-stage FAM problem using a MARS recourse function.

Figure 4: Cutting Plane Method using MARS approximation

Algorithm 1 Cutting Plane Algorithm for MARS
Step 0: Set v ← 0, ηv ← ∞ and let xvH be an initial feasible first-stage assignment. Go to Step
2.
Step 1: Set v ← v+ 1. Solve the restricted master problem (RMP) represented by equations (5),
(12), (15), (16), (17), (18), and (39) over the subset P to get a solution (xvH , η

v).
Step 2: Evaluate the MARS approximation θ̂(xvH).
if ηv ≤ θ̂(xvH) + ε then

Stop. xvH is an optimal first-stage solution.
else

Generate an optimality cut and set P ← P ∪ {xvH}. Go to Step 1.
end if

4. L-shaped method for Two-Stage FAM Problem

In the two-stage SP FAM in Section 2.2, the objective function and the constraints form a
block angular structure, and the traditional L-shaped method can be applied to solve the problem
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for comparison to our MARS-CP approach. Sherali and Zhu (2008) have applied an L-shaped
method algorithm for solving the two-stage SP FAM. While this section was written independently
of Sherali and Zhu (2008), the formulation in this paper is similar to theirs. The D3 swapping
subproblem can be decomposed by each scenario, and finally an average over the scenarios is
calculated to get the recourse function value θ. For a random realization ξ, let πξhl, γ

ξ
v , ρξf , δξl , and

µξi be the dual variables corresponding to the constraints (6), (7), (8), (9), (10), (11), and (13),
respectively. For a given ξ and x̄H , the dual of the subproblem is:

min
∑
l∈L

∑
h∈H

∑
ξ∈Ξ

πξhlx̄hl +
∑
f∈F

∑
ξ∈Ξ

ρξfUf +
∑
i∈I

∑
ξ∈Ξ

µξiD
ξ
i (40)

s.t. (π, γ, ρ, δ, µ) ∈ ∆, (41)

where ∆ represents the polyhedron formed by the dual constraints.
The following inequality has to be satisfied at optimality for each x̄H ∈ P and each (π, γ, ρ, δ) ∈

∆ as defined by constraint (19):

η ≤
∑
l∈L

∑
h∈H

∑
ξ∈Ξ

πξhlx̄hl +
∑
f∈F

∑
ξ∈Ξ

ρξfUf +
∑
i∈I

∑
ξ∈Ξ

µξiD
ξ
i ; (42)

otherwise, the master problem must be re-solved with an added L-shaped optimality cut. The
optimality cut is represented as:

η ≤
∑
l∈L

∑
h∈H

∑
ξ∈Ξ

πξhlxhl +
∑
f∈F

∑
ξ∈Ξ

ρξfUf +
∑
i∈I

∑
ξ∈Ξ

µξiD
ξ
i . (43)

The last two terms on the right hand side are constant, and they can be determined for any particular
ξ, once the dual values πξhl, ρ

ξ
f and µξi are known. For a given crew-compatible family solution x̄H ,

let θ̄(x̄H) be the average recourse function value over all scenarios (ξ), then the last two terms can
be calculated as: ∑

f∈F

∑
ξ∈Ξ

ρξfUf +
∑
i∈I

∑
ξ∈Ξ

µξiD
ξ
i = θ̄(x̄H)−

∑
l∈L

∑
h∈H

∑
ξ∈Ξ

πξhlx̄hl. (44)

Now the L-shaped optimality cut represented by equation (43) can be modified as:

η −
∑
l∈L

∑
h∈H

∑
ξ∈Ξ

πξhlxhl ≤ θ̄(x̄H)−
∑
l∈L

∑
h∈H

∑
ξ∈Ξ

πξhlx̄hl. (45)

Given this, the master problem can be reformulated as:

max η (46)

s.t. η −
∑
l∈L

∑
h∈H

∑
ξ∈Ξ

πξhlxhl ≤ θ̄(x̄H)−
∑
l∈L

∑
h∈H

∑
ξ∈Ξ

πξhlx̄hl ∀x̄H ∈ P (47)

xH satisfies (5), (16), (17), and (18)

As in MARS-CP, the first-stage constraints have been added to the master problem. As such, the
complete recourse of the problem is maintained, and no feasibility cuts are needed. If not all of the
first-stage constraints are added to the master problem, then the first-stage decision obtained might
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not be second-stage feasible. In that case, feasibility cuts can be added to the master problem. In
general, for a random realization ξ in which (π, γ, ρ, δ, µ) is a dual extreme ray, the feasibility cut
for the two-stage SP FAM is represented as:∑

l∈L

∑
h∈H

πξhlxhl +
∑
f∈F

ρξfUf +
∑
i∈I

µξiD
ξ
i ≥ 0. (48)

The L-shaped method for the two-stage SP FAM with complete recourse is presented in Algorithm
2.

Algorithm 2 L-shaped method algorithm for two-stage SP FAM
Step 0: Set v ← 0, ηv ←∞ and let xv be an intital feasible first-stage assignment. Let ξ ∈ Ξ be
the set of scenarios indexed by k. Go to Step 2.
Step 1: Set v ← v + 1. Solve the RMP represented by equations (5), (12), (15), (16), (17), (18),
and (47) over the subset P to get a solution (xvH , η

v).
Step 2:
for all k = 1, ..., K do

Solve the subproblem D3 swapping subproblem to obtain the recourse function value θvk and
the simplex multiplier πξkfl .

end for
Calculate:

θv(xvH) =
∑
k∈K

pkθ
v
k (49)

πξhl =
∑
k∈K

∑
f∈h

pkπ
ξk
fl (50)

where pk is the probability associated with the kth scenario.
if ηv ≤ θv(xvH) then

Stop. xvH is the optimal first-stage solution.
else

Generate an optimality cut and set P ← P ∪ {xvH}. Go to Step 1.
end if

4.1. Scenario Generation
Discrete distributions must be used to represent the scenarios in the two-stage SP FAM prob-

lems. The stochasticity of the demand is incorporated by generating demand scenarios for each
itinerary-fare class. There are two major issues:

• The number of scenarios must be small enough for the two-stage SP FAM to be solvable.
• The number of scenarios must be large enough to represent the underlying distribution or

data adequately.

5. Case Study Results

Our case study from a real airline carrier is the same as that described in Smith (2004) and Pilla
et al. (2008), with a weekly schedule containing 50 stations, 2358 legs, seven fleet types and four
crew compatible families. The three primary objectives for this research were to quantify:
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• The importance of using demand driven dispatch.

• The value of a two-stage model with respect to a single-stage model.

• How the MARS-CP approach developed in this paper compares to L-shaped method.

In this section, our DACE and MARS-CP method described in Section 3 is compared with the
L-shaped method described in Section 4.

A two-stage SP FAM problem was constructed similarly to the method discussed in Section
2.2 and solved by relaxing the second-stage LP. Scenarios for solving the FAM were generated
as described in Section 4.1. The objective of scenario generation is to provide an estimation of
the expected value, which is equivalent to numericalintegration. As in Smith (2004) and Pilla
et al. (2008), second-stage demand scenarios were generated using a truncated normal distribution
with known mean and standard deviation values for each itinerary fare class, where Pilla et al.
(2008) used a coefficient of variation (CV) of 0.05, and here we use a CV of 0.25. This higher CV
requires a higher number of scenarios. Pilla et al. (2008) used a confidence level approach to iden-
tify an appropriate number of scenarios. Allowing an approximate 0.1% error on profit with 95%
confidence, this approach recommended 60 scenarios. The number of scenarios for the L-shaped
method is debatable, as it is problem-specific and depends on the convergence of the recourse func-
tion value. For this research it was taken as 60, the same as that which was required for the MARS
approximation, but the L-shaped method might require more. Increasing the number of scenarios
will increase the time required for obtaining the L-shaped solution. In addition, some numerical
issues were encountered with the L-shaped method that caused infeasibility in the recourse prob-
lem. In order to maintain complete recourse, near integer numbers were rounded while generating
solutions in the first stage.

The DoE in the DACE Phase was identical to Pilla et al. (2008). Using the average profit re-
sponse values at the CCA DoE points, a MARS approximation was fit using an automatic stopping
rule as discussed in ?. The fit resulted in 64 basis functions with a coefficient of determination
(R2) of 99.306%, which was comparable to the MARS results in Pilla et al. (2008). The MARS
approximation was tested for its concavity by generating 1000 random points and checking the
following inequality for each pair of points (x1

H , x
2
H)

θ̂(x1
H) ≥ θ̂(x2

H) +∇θ̂(x2
H)(x1

H − x2
H). (51)

Since the first-stage assignment needs to be binary, MIP cuts were generated from the second
stage and added to the first stage in both methods. The stopping criteria used was:

(RMP objective - 0.025 * RMP objective) ≤ Recourse function value (52)

The initial 10 - 15 MIP cuts were very effective, but later the cuts were less valuable as can be
seen in Figure 5. In order to decrease the time required to solve the problem, we implemented two
methods. The first method was to relax the first stage to allow fractional values, and LP cuts were
added from the second stage. Once the criteria

(RMP LP objective - 0.001 * RMP LP objective) ≤ Recourse function value (53)

was met, MIP cuts were again added. Using this method the time required was reduced from
days to hours for the L-shaped method and was only minutes when using MARS-CP. The second
method was to increase the node limit in each iteration linearly, and once the stopping criteria for
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the MIP objective was reached, the problem was solved without any node limit. Another criteria
that can be used to speed up the process of solving the two-stage SP FAM is not solving the current
master problem to optimality but instead to terminate it as soon as a feasible solution is produced
that has a value below (upper bound - ε); thus this incumbent is an ε-optimal solution (Geoffrion
and Graves 1974; Adams and Sherali 1993).

The results for the two methods are shown in Table 1, where the computation of the DACE
Phase to generate the MARS recourse function is detailed in Table 2. The first-stage MIP assign-
ment obtained using the two approaches was used to get the recourse function values, and they
happen to be very similar (difference was within 0.1%). This can be attributed to the fact that the
objective function of an SP problem is typically flat, giving rise to similar objective values but
with different solutions, as mentioned in Survajeet and Higle (1996). Table 1 shows that there is a
significant reduction of time in the optimization phase by using the MARS approximation as the
recourse function. This can be attributed to the fact that the second-stage recourse evaluation is
based upon a closed-form formula as opposed to solving linear programs. However, the trade-off
is that the recourse function has to be generated earlier to do the optimization.

Figure 5: Convergence of the objective

The time required for generating the recourse function values can be decreased by considering
fewer variables and fewer design points. Some directions for future work are mentioned in Section
6. Using the node limit method, the total time required to solve the two-stage SP FAM is around
5.80 days using our MARS-CP method compared to 8.68 days for the L-shaped method.
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Table 1: Comparison of MARS and L-shaped methods by relaxing initially. CV = 0.25
MARS-CP L-shaped

Number of Scenarios 60 60
DACE Phase 5.80 days N/A

Number of LP cuts 95 1346
Time Required for LP cuts 99.6 sec 8.65 days

LP Objective 176,989,661.49 176,943,047.80
Number of MIP cuts 0 0

Cumulative Time Required for MIP cuts 3.07 min 8.68 days
Total Computational Time 5.80 days 8.68 days

MIP objective 176,923,299.66 176,851,699.50
Recourse function value 176,197,819.53 176,069,660.19

Table 2: Steps to generate first-stage solution using MARS approximation. CV = 0.25
Step No. Description Time required

1 Dimensionality Reduction 1.5 hours
2 Generate LH design using MATLAB 4.5 hours
3 Map the LH design to points 0.32 hours
4 Check for feasibility 0.43 hours
5 Use the L1 norm for projection 0.97 hours
6 To find the proximate extreme point 1.1 hours
7 Generate interior points 5 min
8 Generate recourse function values 5.4 days
9 Fit a MARS approximation 0.75 hours

10 Optimize to obtain a first-stage solution 0.3 hours
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In order to quantify the value of D3 and the two-stage model, a single-stage FAM plus the
PMM was constructed as shown below:

max κ =

[
−
∑
l∈L

∑
f∈F

Cflxfl +
∑
i∈I

fizi

]
(54)

s.t. av− +
∑
l∈Av

xfl −
∑
l∈Dv

xfl − av+ = 0 ∀v ∈ V, (55)∑
f∈F

xfl = 1 ∀l ∈ L, f ∈ F, (56)∑
o∈Of

ao +
∑
l∈L0

xfl ≤Mf ∀f ∈ F, (57)

∑
i3I

zi ≤
∑
f∈F

Capf xfl ∀l ∈ L, (58)

0 ≤ zi ≤ Di ∀i ∈ I, (59)
xfl ∈ {0, 1} ∀l ∈ L, f ∈ F (60)
av+ ≥ 0 ∀v ∈ V, (61)

where κ is the objective value of the single-stage model. Let x∗ss be the MIP solution to the single-
stage model, x∗2sm be the MIP solution to the two-stage model using MARS-CP, and x∗2sb be the
MIP solution to the two-stage model using the L-shaped method. Let Pfam(X) and Prec(X) be the
profit from the single-stage FAM objective function and from the recourse function, respectively.
Then the value of D3 can be calculated as: Prec(x∗ss) - Pfam(x∗ss), and the value of the two-stage
model using MARS recourse function is: Prec(x∗2sm) - Prec(x∗ss). Similarly the value of the two-
stage model using L-shaped method is given as: Prec(x∗2sb) - Prec(x∗ss).

For our airline example, Pfam and Prec values are shown in Table 3. The value of D3 is

Table 3: Solutions.
Profit

Pfam(x∗ss) $164,389,021.49
Prec(x∗ss) $175,471,734.38

Prec(x∗2sm) $176,197,819.53
Prec(x∗2sb) $176,069,660.19

$175,471,734.38 - $164,389,021.49 = $11,082,712.89; which is a 6.74% improvement. The value
of the two-stage SP FAM for MARS-CP is $176,197,819.53 - $175,471,734.38 = $726,085.15 (a
0.41% increase), and the value of the two-stage SP FAM for the L-shaped method is $176,069,660.19
- $175,471,734.38 = $597,925.81 (0.34% increase). From the result, the value of the two-stage SP
FAM for MARS-CP is greater than the value of the two-stage SP FAM for the L-shaped method.
However, these differences are within the tolerance of the stopping criteria of the computational
experiments.

6. Conclusion

This paper demonstrates and develops the MARS-CP algorithm to optimize a two-stage SP
FAM. In the first stage of the two-stage SP FAM, a crew compatible assignment is made, and the
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D3 concept of swapping aircraft within crew-compatible families to optimize revenue is achieved
in the second phase. The DACE approach to solve the two-stage SP FAM is decomposed into two
phases—the DACE Phase and the Optimization Phase. The DACE Phase, which was described in
Pilla et al. (2008), involves estimating the expected recourse function for the two-stage SP FAM
problem using a MARS approximation over a discretized first-stage decision space based on a Latin
hypercube design. This paper completes this method with the development of the Optimization
Phase in which we optimized the MARS approximation function using a cutting plane algorithm.
Using the two-stage SP FAM application from Pilla et al. (2008), we demonstrated an improvement
in computational effort over the L-shaped method . In future research, we will employ a multi-cut
algorithm to solve the two-stage SP FAM problem. In addition, the computation required by our
DACE-based approaches can be reduced via data mining techniques that reduce the dimension of
the first-stage decision space.
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