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Abstract 

We show that any standard optimization criterion (SOC) has a scalar equivalence, i.e., is 

equivalent to the maximization of a real-valued function. We also demonstrate that a scalar 

equivalence of any SOC can be solved as one of any other SOC. In summary, all solutions and 

only solutions to an optimization problem involving one SOC can be obtained in terms of any 

other.  Thus all SOCs are directly equivalent. Finally, we consider optimization problems 

involving SOCs as formal decision problems and conjecture whether all decision problems can 

be solved by a real-valued maximization problem over a suitable feasible region. 
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1. Introduction 

An optimization criterion defines the notion of the term “best” in making a “best” decision. 

In this study, a standard optimization criterion (SOC) refers to Pareto (including the scalar case), 

satisficing, maximin, and standard cone-ordered optimization, as well as the more general notion 

of standard set-valued optimization. We show here that all SOCs are scalarizable. All solutions 



and only solutions for any SOC problem can be obtained by the maximization of a real-valued 

objective function subject to certain constraints.  No convexity or concavity assumptions are 

required either on the objective functions or feasible region. We further demonstrate that any 

SOC is equivalent to any other SOC; i.e., all solutions and only solutions to one SOC problem 

can be directly obtained as solutions to any other SOC. One type of optimization problem can be 

solved as any other. Finally, we note that many formal decision problems can be solved by real-

valued maximizations. The question then arises whether all formal decision problems can be 

solved in such a manner.  

2. Preliminaries 

In this section we define the SOCs to be studied and present definitions, notation, and results 

to be used later. 

2.1 Maximin Problem 

Let : n mf R R R  be a real-valued function. For each ,nRAx define the set mRB )(x

to be a nonempty feasible region. Assume that the function
( )

( ) min ( , )
mB R

g x f
 


y x

x y is well-defined 

for all .Ax The general maximin problem [3] can be stated as   

( )
max min ( , ).

B RA R mn
f

   y xx
x y  

Note that for different ,, 21
nRAxx the associated feasible regions )( 1xB and )( 2xB  are not 

necessarily identical. In another words, this formulation restricts the feasible choices of y 

depending on the certain choices of x. If BB )(x for all ,nA R x  the above problem takes 

the more familiar form 

max min ( , ).
B RA R mn

f
   yx

x y    

In particular, if {1,..., }B n R  for some given positive integer n, the problem becomes the 

standard discrete maximin problem   

max min{ ( ,1),..., ( , )}.
A Rn

f f n
 x

x x  

Example 2.1.1 Let RA  ]9,1[ and  1:],1[)(  yyxxyxB for each .Ax  Define

y

x
yxf ),( for , ( ),x A y B x  and consider the maximin problem  



.minmax
)(]9,1[ y

x
xByx 

 

In this example, the feasible region of variable y in minimization depends on the value of 

variable x given. For example, we have that ]3,1[)5( B , while ].4,1[)7( B   

2.2 Pareto Optimization 

Let mRA  be a set of feasible solutions and nm RRf : be an n-dimensional objective 

function ))(),...,(()( 1 xxx nfff  for all ,Ax where RRf m
i : is defined to be the ith objective 

function of the problem, .,..,1 ni   Then Pareto maximization, or vector maximization, can be 

stated as 

)).(),...,((Vmax 1 xx
x

n
A

ff


 

A feasible solution Ax is called a Pareto maximum, or efficient point, if there is no Ay

such that )()( yx ii ff  for all mi ,..,1 and if )()( yx jj ff  at least one index j. The set

{ ( ) :  are Pareto maxima over A}nf Rx x is called the Pareto frontier, or efficient frontier, of the 

problem. 

2.3 Goal Programming 

Goal programming is usually written as a scalar maximization or minimization of a function 

involving only the deviational variables for the goal constraints. However, we present here the 

more general definition as given in [7] in which goal programming is formulated as an 

equivalent Pareto maximization. 

Let RRf m
i : for ni ,...,1  be the goal functions and nbb ,...,1  represent the associated 

aspiration levels for objective 1 to n, respectively. Then the goal programming problem can be 

stated  

.

,0,

0
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The objective is to minimize the deviations ,i is s   to obtain a feasible x making the goal 

functions as close to the aspiration levels bi as possible. For more details, see [14] and [18]. 

2.4 Cone-ordered Maximization 

Definition 2.4.1 A nonempty set nRC  is called a cone if and only if Cc for all Cc and 

.0 The cone C is pointed if the set CC  contains only the vector of zero. Moreover, a 

convex cone C is a cone such that C 2211 cc  for all C21,cc and .0, 21   

Example 2.4.2 An important pointed convex cone in nR is the nonnegative orthant 

 1( ,..., ) : 0, 1,..., ,n
n iR x x x i n     for which Pareto optimization is cone ordered. 

Example 2.4.3 Another important cone is called the lexicographic cone [1] defining 

lexicographic optimization [15], where individual goals are ordered by priority so that any higher 

level goal preempts a lower level one. For example, in ,2R the lexicographic cone is defined as 

 2( , ) : 0,  or else 0 and 0L x y R x x y     . 

Notice that the lexicographic cone is a pointed and convex, but the line 2{( , ) : 0, 0}x y R x y  

is missing. 

Definition 2.4.4 Let C be a pointed convex cone in nR and define a relation order C on nR  as 

follows. For any ,, 21
nRyy we say that 21 yy C if .12 Cyy  Define 21 yy C if 21 yy C

and .21 yy  In particular, we say that 2y dominates 1y if 21 yy C  and .21 yy   A vector 

nRB 1y is said to be non-dominated in B if there is no B2y such that 21 yy C and .21 yy   

Denote the set BCmax as the set containing all non-dominated vectors in B with respect to the 

cone C. 

Example 2.4.5 For the lexicographic cone of Example 2.4.3, we construct the order induced by 

it. Let 2)}1,1(),0,1(),1,0(),0,0{( RB  and L be the lexicographic cone in .2R  Then  

).1,1()0,1( and ),0,1()1,0( ),1,0()0,0( LLL   

Definition 2.4.6 Let C be a pointed cone in .nR  A linear functional l is a function mapping nR  

into R, which satisfies the following property: 



)()()( 22112211 yyyy lll   for all ., and , 2121
nRR  yy  

A linear functional l is said to be strictly positive on C if 0)( cl for all non-zero vectors .Cc  

The dual cone associated with C is the collection of all strictly positive linear functionals l on C 

and denoted by   : ( ) 0,  , .C l l C    c c c 0  

Example 2.4.7 Consider 2R with the order induced by the nonnegative orthant cone

 .0,:),(2  yxyxR  We construct a linear functional RRl 2: given by yxyxl ),(  for all 

., Ryx   Then l is a linear functional such that 0),(  yxyxl for all non-zero 2( , ) ,x y R  so


 )( 2R .  

The following standard results are used. In particular, note that the pointedness of a cone is 

required for a strictly positive linear functional on C to exist. 

Lemma 2.4.8 Let C be a pointed cone in nR  and assume that .C  If 10 xx C then 

)()( 10 xx ll  for any .Cl  

Theorem 2.4.9 (cone separation theorem [2]). Let 21,SS  be closed convex cones in nR  such 

that },{21 0SS  and denote the topological dual of nR by ( ) .'nR Suppose that 
1S has nonempty 

interior in some topology which provides nR  as the dual of ( ) .'nR  Then there exists 0
1 )(   Ss

such that   1Ss and 0)( 1  ss for all non-zero vector .11 Ss   

Corollary 2.4.10 [6] If ,C then C is a pointed cone. 

It follows from Corollary 2.4.10 that pointedness is a necessary condition for existence of a 

strictly linear functional on C.  

Corollary 2.4.11[4] L where L is a lexicographic cone in .nR  

For the remainder of this paper we consider cone-ordered maximization only for a pointed 

convex cone C with C   with notable exception of the lexicographic cone L. 



Definition 2.4.12 Let C be a pointed convex cone in nR with C   and .: nm RRf   Suppose 

mRA  is a feasible region. Then cone-ordered maximization, or C-maximization, can be 

written as 

max ( )
A

C f
x

x  

The problem is to find all Ax for which ),(max)( Aff Cx for )()( x
x

fAf
A

  and 

nmax ( ) {All non-dominated ( ) in  for },C f A f R A x x i.e., to find non-dominated f (x) for all 

feasible solution .Ax  General optimality conditions are found in [9]. 

If a cone C is  1( ,..., ) : 0, 1,...,n
n iR c c c i n    , C-maximization becomes Pareto 

maximization with n objective functions.  

2.5 Lexicographic Maximization 

Definition 2.5.1 Let 1 1 1{( ,..., ) : 0}n
nL x x R x   and

1 1 1{( ,..., ) : 0, 0, 0}n
j n j jL x x R x x x     for j = 2,…,n. The cone

1,...,
[ ] { }j

j n
L L


 0  is called 

the lexicographic cone in .nR  Then cone-ordered maximization with respect L becomes the 

lexicographic maximization  

1Leximax( ( ),..., ),nmB R
f f

 x
x where : , 1,..., .m

if R R i n   

The problem now is to find a feasible solution Bx for which there is no other vector By such 

that .yx L  

Example 2.5.2 In Example 2.4.5, the set   2(0,0), (0,1), (1,0), (1,1) .B R    

Notice that (1,1) is the only non-dominated vector in B and therefore the solution to the 

lexicographic maximization.  

2.5.3 Scalarization for lexicographic maximization  

The nature of the lexicographic order allows us to construct a scalarization even though the 

dual cone L   as noted in Corollary 2.4.11.We illustrate in 3.R  The general case is similar.  

Consider the lexicographic maximization  

1 2 3Leximax ( ( ), ( ), ( ))

s.t. n

f f f

A R

  
 

   
x

x x x

x  
where RRf n

i : for 1, 2,3.i   



This problem can be solved in stages corresponding to the objective functions.  

Step 1: Solve )(max 1 x
x

f
A

and denote *
1f the optimal objective value of this problem. 

Step 2: Solve 
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and denote *
2f the optimal objective value of this problem. 

Step 3: Solve .
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Solutions from the scalar problem in Step 3 are solutions for the given lexicographic 

maximization and vice versa. Thus the maximization problem in Step 3 is a scalar equivalence 

for the given lexicographic maximization. Details about a more general lexicographic problem 

can be found in [7]. 

2.6 Set-Valued Optimization 

Definition 2.6.1 Let : 2
nm RF R  be a point-to-set map and C a pointed convex cone in .nR  The 

problem )(max x
x

F
A

is a set-valued maximization to find all feasible vector mRAx such that

,)(max)( AFF Cx where ( ) ( ),
A

F A F



x

x  i.e., of finding all feasible x for which there 

exists )(xy F and ).(max AFCy  Set-valued was defined in [11], where general optimality 

conditions were given, and generalizes cone-ordered maximization. We consider a set-valued 

maximization with a pointed convex cone for which .C    

Example 2.6.2 Let ,}0,,1:),{( 2
2121

2
21 RxxxxRxxA  and .2

 RC  Define

2
2121 ],0[],0[),( RxxxxF  for all ].1,0[, 21 xx  Notice that the function F is a point-to-set 

map, and the problem )(max x
x

F
A

is a set-valued maximization. The set of solutions the set

}.0,,1:),{( 2121
2

21  xxxxRxx  

3. Scalar Equivalence of SOCs 

We now show that any SOC optimization problem has a scalar equivalence. For example, a 

multiple-objective optimization problem is typically solved by transforming the original problem 



into the scalar maximization of a real-valued function in which certain parameters are varied to 

give alternate solutions to the original multiple-objective problem. See [7], [14], [15], [22], and 

[23].  

However, the most frequently used such scalarizations of Pareto optimization require 

assumptions about the convexity or concavity of functions to guarantee that a scalarization exists 

and yields all solutions to the original Pareto problem. Because of this limitation, we say that a 

non-scalar optimization problem is scalarizable if and only if all solutions and only solutions of 

the non-scalar problem can be obtained by a possibly parameterized scalar maximization 

problem called its equivalent scalarization. In that case, the scalarization is said to be scalar 

equivalent to the original non-scalar problem.  

The notion of scalar equivalence stems then work of Corley [8] (see also [7] and [15]) in 

cone-ordered optimization, which includes Pareto and scalar optimization. This scalar 

equivalence involves no more effort to solve than scalarizations requiring various convexity or 

concavity assumptions on the original problem. It is now known as a hybrid method [7] from its 

relation to the Corley hybrid fixed point theorems of [10].  

3.1 Maximin 

We denote A1 below as a given maximin problem, where
( )

( ) min ( , )
B Rm

g f
 


y x

x x y for all .Ax  

The problem A2 is an obvious equivalence of A1 after introducing a real-value decision variable 

v to be the value of ).(xg  We prove that A3 is a scalar equivalence of the given maximin A1. We 

note that in A3 the variable y in the set of constraints is not a decision variable but is a parameter 

relating the constraints of A2 to the set B(x) for each feasible point x.   

A1: )(max x
x

g
nRA

 A2:



















RvRA

gv

v

n

v

,

)(s.t.

max
,

x

x
x

 

 

A3:












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


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RvRA

Bfv
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n
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,
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,
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xyyx
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Lemma 3.2.1 If ),( *
3

*
3 xv is a solution to A3, then *)*,(* 33 yxfv  for some ).(* *

3xy B  Thus 

*)(* 33 xgv  and ),( *
3

*
3 xv is also a feasible solution to A2.  

Proof. Assume that ),( *
3

*
3 xv is a solution to A3. With the feasibility, we observe that ),( *

3
*
3 yxfv 

for all ).( *
3xy B  To obtain a contradiction, suppose ),( *

3
*
3 yxfv  for all ).( *

3xy B  By the 



assumption that )( *
3xg exists, we have that ),(min)( *

3
)(

*
3 yxx

*
3xy

fg
B

 is a finite real number. Then it 

follows that ),(
2

),(min
*
3

*
3

)(

*
3 *

3 yx
yx

xy f
fv

B 


 for all ),( *
3xy B which implies that

),
2

),(min
( *

3

*
3

)(

*
3 *

3 x
yx

xy
fv

B


is a feasible solution of A3. However, we also have that

2

),(min *
3

*
3

*
3

yx
y

fv
v B


 , contradicting that *

3v  is the optimal objective value of A3. Thus, we can 

conclude that *),( *
3

*
3 yxfv  for some )(* *

3xy B and ),( *
3

*
3 yxfv  for *,yy  i.e., ).( *

3
*
3 xgv   ז 

Theorem 3.2.2 The point ),( ** xv is a solution to A2 if and only if ),( ** xv is a solution to A3. 

Proof. Suppose ),( ** xv is an optimal solution to A2. By the definition of the function g, we have 

that ),( ** xv is a feasible solution to A3 as well. To obtain a contradiction, suppose that ),( ** xv is 

not an optimal solution to A3. Then there is another feasible solution ),( *
3

*
3 xv of A3 such that

).(),,( *
3

*
3

*
3

* xyyx Bfvv 
 

Case 1: ),( **
3

*
3 yxfv   for some ).( *

3
* xy B  In this case * *

3 3( ),v g x  and hence ),( *
3

*
3 xv is a 

feasible solution to A2. However, we have that ,*
3

* vv  contradicting that ),( *
2

*
2 xv is an optimal 

solution to A2.  

Case 2: ).(),,( *
3

*
3

*
3 xyyx Bfv    Since

( )
( ) min ( , )

B R m
g f

 


y x
x x y  is well-defined for all 

,nRx  let ).(ˆ *
3xgv   By the construction, we have that ),ˆ( *

3xv is a feasible solution to A2. 

However, we also obtain the condition  ,ˆ*
3

* vvv   contradicting that ),( ** xv is an optimal 

solution to A2. Thus we conclude that ),( ** xv is an optimal solution to A3.  

To establish the reverse implication, suppose ),( ** xv is an optimal solution to A3. By Lemma 

3.2.1, we have that ),( ** xv is a feasible solution to A2. To obtain a contradiction, suppose that

),( ** xv is not an optimal to A2. Then there is another feasible solution ),( *
2

*
2 xv of A2 such that 

.*
2

* vv   Since the feasible region of A2 is a subset of the feasible region of A3, it follows that



),( *
2

*
2 xv is a feasible solution to A3 such that .*

2
* vv 

 
This inequality is a contradiction because

),( ** xv is an optimal solution to A3. Thus we obtain that ),( ** xv is an optimal solution to A2. ז 

The next two corollaries follow immediately. 

Corollary 3.2.3 For ,: RBAf   an equivalent scalarization for the maximin problem 

max min ( , )
B RA R mn

f
   yx

x y is  
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Corollary 3.2.4 For RAfi : for all ni ,...,1 for a fixed positive integer n, an equivalent 

scalarization for the discrete maximin problem,
 

 11,...,
max min ( ),..., ( )ni nA Rn

f f
 x

x x is  
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It should be noted that the scalar equivalence for the discrete maximin of Corollary 3.2.4 has 

been used extensively in [5], [15], and [26], for example, with at most a reference to Dantzig 

[12] for the linear case.  

Example 3.2.5 Consider the following maximin problem.
  

 xxfxxf
Rx




)(,)(minmax 21                                            

Algorithms for solving the problem with a discontinuous objective function have been developed 

in [13], [26], and [27]). However, the following of Corollary 3.2.4 indicates that 0* x  

.
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3.3 Pareto Maximization 

For Pareto optimization with m-dimensional objective functions, where m is a positive 

integer, Corley [8] provided a scalar equivalence to the problem without assumptions such as 

convexity or concavity. It is discussed in [7] and [15]. This scalarization yields all solutions and 

only solutions for a given Pareto problem by solving a family of parameterized scalar problems.  

The scalar equivalence is stated as follows.  

1

1

max ( ( ),..., ( ))
( ) :

s.t. ( ( ),..., ( ))

m
A R

m

n
f f

B
f f C


 

  
 

   
x

x x
y

x x y
for all ,mRy where C is a pointed convex cone in mR , 

and  }{\,0: 0cc CRC m     for given positive integers n, and m.   

Example 3.3.1 Consider the following Pareto problem  

1 2
1 2
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Vmax ( , )
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The above scalarization B(y) in this problem becomes 
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To illustrate the parameterization, choose 1 2

1 1
,  and .

2 2
y y   Then solving the problem

1 1
( , )
2 2

P

gives 
1 1

( *, *) ( , ).
2 2

x y 
 
In theory we can similarly obtain all solutions of the Pareto problem, by 

solving ),( 21 yyP for all feasible choices of 1y and .2y  In practice, a reasonable number of such 

solutions will approximate the Pareto frontier. 

3.4 Standard Cone-ordered Maximization 

Let C be a pointed convex cone in nR with .C   An equivalent scalarization for the cone-

ordered maximization C1 below is C2.  



C1: max  ( )
A Rn

C f
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x        C2(w): ,)(s.t.
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where l C  for all nRw  

Theorem 3.4.1 If 1x is a solution of C1, then 1x solves C2(w) for ).( 1xw f  

 Proof. Assume that 1x solves C1. By the choice ),( 1xw f we know that 1x is a feasible solution 

to )).((2 1xfC  Let 2x  be any feasible solution to )).((2 1xfC We therefore have .)()( 12 Cff  xx

Since 1x solves C1, the only possibility is that ),()( 12 xx ff  so every feasible point of ))((2 1xfC

is a solution as well. Since 1x is a feasible to )),((2 1xfC it solves )).((2 1xfC  ז

Theorem 3.4.2 If 2x solves C2(w) for ,nRw then 2x is a solution of C1. 

Proof. Assume that 2x solves C2 for some w. To obtain a contradiction, suppose that 2x does not 

solve C1. Then there exists A1x such that ),()( 12 xx ff C i.e.,  .\)()( 21 0xx Cff   It 

follows that 1x is a feasible solution of C2(w). Since l is a strictly positive linear functional on C, 

we have .0))()(( 21  xx ffl  The linearity of l now yields that 

.0))()(())(())(( 2121  xxxx fflflfl  Thus ))(())(( 21 xx flfl  in contradiction to the 

optimality of .2x  ז

We note that the dual cone L  for the lexicographic cone L in .nR Thus we cannot use 

Theorems 3.4.1 and 3.4.2 to construct an equivalent scalarization for lexicographic optimization. 

However, lexicographic maximization can be scalarizable with an alternate approach. 

3.5 Standard Set-Valued Maximization 

Denote the standard set-valued maximization below as D1. A scalar equivalence is presented 

in D2 for a convex, pointed cone nC R for which .C    

D1:  max ( )
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  for andl C  all .nRw  

 



An alternate scalarization for set-valued maximization has been proposed in [17]. However, 

the approach there requires assumptions involving convexity and concavity. A further 

scalarization is found in [20], but it gives only certain solutions.    

Lemma 3.5.1 If the problem D2(w) has a solution for some ,nRw the problem D1 has a 

solution as well. 

Proof. Suppose the problem D2(w), where ,nRw has a solution. Let ),( 22 tx be a solution of 

D2(w). By feasibility, we have )( 22 xt F and .2tw C  To obtain a contradiction, suppose that 

the set )(max AF is an empty set. Then there exists A1x  and )( 11 xt F for which ,12 tt C

otherwise ).(max2 AFt From the convexity of C, we have that 2tw C and 12 tt C implies

,1tw C so ),( 11 tx is feasible to B2(w). However, since ,12 tt C by Lemma 2.4.8 we have 

)()( 12 tt ll  in contradiction to the optimality of ).,( 22 tx  ז

Theorem 3.5.2 If 1x solves D1, then ),( 11 tx solves D2(w) for 1 1( ) max ( ).F F A w t x   

Proof. Assume that 1x solves D1. Then there exists 1 1( ) max ( ),CF F At x  and ),( 11 tx is a 

feasible solution of 12( ).D t Now let ),( 22 tx be any feasible solution to 12( ).D t Therefore it 

follows that )()( 22 AFF  xt and .12 C tt  However, this conclusion is a contradiction to 

)(max1 AFCt unless .12 tt  Thus every feasible solution of 12( )D t is also a solution. Since

),( 11 tx is a feasible solution of 12( ),D t  then, it solves 12( ).D t  ז

Theorem 3.5.3 If ),( 22 tx solves D2(w) for ,nRw then 2x is a solution of D1. 

Proof. Assume that ),( 22 tx solves D2(w) for .nRw To obtain a contradiction, suppose that 2x

does not solve D1, i.e., 2( ) max ( ) .F F A x   By Lemma 3.5.1, there exist a solution 1x of D1 

and a vector )( 11 xt F such that  .\21 0tt C  Since ),( 22 tx is feasible to D2(w), we have 

.2 Cwt  It follows that Cwt1 because of the convexity of C, so ),( 11 tx is feasible to 

D2(w).  However, by Lemma 2.4.8, )()( 12 tt ll  in contradiction to the optimality of ).,( 22 tx  ז

Example 3.5.4 Recall the set-valued maximization problem in Example 2.6.2 with the problem  
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The equivalent scalarization for this problem is  
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for all 1 2, .w w R  

In order to obtain all solutions and only solutions of the set-valued maximization, we can 

theoretically solve the problem 1 2( , )D w w for all feasible choices of ., 21 ww  For 
3

2
,

3

1
21  ww , 

the problem
1 2

( , )
3 3

P gives that )
3

2
,

3

1
,
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2
,

3

1
( *

2
*
1

*
2

*
1  ttxx is a solution for the set-valued 

problem. Again, a large number of such solutions can approximate the Pareto frontier. 

In Figure 3.3 we summarize our results that maximin problems, Pareto maximization, cone-

ordered maximization, and set-valued maximization have equivalent scalarizations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Scalar equivalence diagram. 
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4. Equivalences of SOCs 

Let A, B be any SOC of Section 3. For example, suppose A is the Pareto maximization 

criterion and B is the maximin. We establish equivalences between SOC type A and SOC type B. 

4.1 Criteria Equivalences of SOCs 

Any two SOC A and SOC B are said to be criteria equivalent if and only the following 

conditions hold: (1) Given any problem involving SOC A, all solutions and only solutions can be 

obtained by solving a problem involving SOC B. (2) Given any problem involving SOC B, all 

solutions and only solutions can be obtained by solving a problem involving SOC A. 

Lemma 4.1.1 Any SOC is criteria equivalent to Pareto. 

Proof.  The lemma is proved only for the maximin and Pareto case. The other cases are similar 

and established in [6]. 

Maximin as Pareto Maximization: Let E1 denote a given maximin problem, where 

 )(),...,(),(min)( 21 xxxx nfffg   for all mRx and RRf m
i : for all ni ,...,1 for fixed n.  
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The problem E2 is obviously equivalent to E1. Moreover, E3 is obviously equivalent to E2 

because the objective function of E3 is just a replication of the objective function of E2. 

Obviously any single optimization of a real-valued function can be transformed to an equivalent 

Pareto optimization in this way.  

Pareto Maximization as Maximin: Consider the following problems F1 and F2:  
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F1 is a given Pareto maximization problem, and the problem F2 represents an 

equivalent scalarization as in [8]. Consider now the maximin equivalence F3 of F2 
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obviously equivalent to F2. Therefore, we can solve F3 instead of F2. Thus Pareto maximization 

and a maximin problem are equivalent.■  

Lemma 4.1.1 and the results of [6] establish the following result. 

Theorem 4.1.2 Every SOC is criteria equivalent of every SOC. 

4.2 Equivalent Scalarizations of SOCs 

Let SA and SB be standard scalarizations of the given SOC A and SOC B respectively. It is 

said that both SA is an equivalent scalarization of SB and SB is an equivalent scalarization of SA if 

and only if they have same set of solutions. In other words, all solutions and only solutions of SA 

can be obtained by solving SB and vice versa. 

Corollary 4.2.1 Every scalar equivalence of one SOC is an equivalent scalarization to a scalar 

equivalence of any other SOC. 

Proof. Given any SOC problem, say SOC A. We denote the standard scalar equivalence of the 

SOC A as SA. Consider any other SOC, say SOC B. By Theorem 4.1.2, SOC A is criteria 

equivalent to SOC B. Therefore, there is a problem involving SOC B that provides all solutions 

and only solutions to the given SOC A. It follows that all solutions and only solutions of the 

SOC B can be obtained by solving SA. Hence, SA and SB have the same set of solutions. SA is an 

equivalent scalarization to SB and vice versa. Thus SB is also another scalarization to the given 

SOC A.■          

 



Example 4.2.2 Maximin Scalarization as Pareto Scalarization 

Let the problem G1 below be the equivalent scalarization to a given maximin problem.  
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where RRf n
i : for 1,...,i n . 

We write G1 as the equivalent scalarization G2 below of Pareto maximization. For  ,,...,1 ni   let  
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1 {( , ) : ( , ) is a feasible solution to 1}nA v R v G x x , so the set 1A is exactly the feasible 

region of G1. Now an equivalent scalarization for Pareto maximization of the n-objective 

function of ),...,( 1 ngg is given below as G2. 
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for all Ryy n ,...,1 . 

 

Example 4.2.3 Pareto Scalarization as Maximin Scalarization  

Let RRf m
i : for 1,..., ,i n where n is a positive integer. We write H1 below as the 

equivalent scalarization of [8] for Pareto maximization.  
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Define  2 1 1 1( ,..., ) :  is a feasible solution to 1( ,..., )n nA y y A H y y x x for Ryy n ,...,1 . 

Obviously, the set ),...,( 12 nyyA is the set of feasible solutions of 11( ,..., )nH y y for .,...,1 Ryy n   

Consider the following n functions    
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According to Sections 4.1 and 4.2 above, we summarize our results in Figure 4.1 below.  

1. Given any problem involving SOC A, we can formulate a problem of SOC B to provide 

the same set of solutions. Therefore, all solutions and only solutions of the given SOC A 

can be obtained via an SOC B. On the other hand, all solutions and only solutions of a 

given problem of SOC B can be also obtained via an SOC A.  

2. We can find all solutions and only solutions of the scalar equivalence of SOC A by 

solving a scalar equivalence of SOC B. On the contrary, we can solve the scalar 

equivalence of SOC B by solving the scalar equivalence of SOC A. Consequently, all 

solutions and only solutions of any given SOC can be obtained by solving a scalar 

equivalence of any type of SOC.      

 

 

 

 

 

Figure 4.1 Equivalence Diagram 
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5. SOCs as Decision Problems  

Since an optimization problem is a decision making problem for obtaining the “best” 

outcome according to a specific criterion, we consider here an SOC problem as a formal decision 

problem.  In computability theory a decision problem [16] is a question in some formal logical 

system that can be answered by a yes-or-no answer. For example, the satisfiability problem SAT 

is a decision problem, whose instance is a Boolean expression using only AND, OR, NOT, 

variables, and parentheses. The question is then, given such a formula, is there some assignment 

of TRUE and FALSE values to the variables that will make the entire expression true?  If the 

answer is “yes,” the formula is satisfiable. If not, the formula is unsatisfiable. SAT is NP-

complete [16] and thus may be solved as an 0-1 integer programming (IP) problem [24], which is 

simply a scalarization of SAT. All solutions of this 0-1 IP yield corresponding truth values of the 

Boolean variables that make the formula true, and only solutions of the IP correspond to truth 

values of the Boolean variables making it true. Another example of a formal decision problem is 

the halting problem. For a given computer program, the problem is to decide if the program will 

stop or continue running forever. It is well known that the halting problem is undecidable [25]; 

i.e., there is no an efficient algorithm that always provides a correct yes-or-no answer to the 

problem.  

In a somewhat similar fashion, any SOC has a corresponding decision problem that asks 

whether there is a feasible solution yielding an objective function value of 0z or better in the 

appropriate mathematical space. This question can be answered as “yes” or “no.” Thus varying 

z0 and solving a series of the associated decision problems provides either an arbitrarily close 

approximation to the answer of the SOC problem or gives an exact answer. To connect 

scalarization and formal decision problems at a more fundamental level, one may tentatively 

assert that scalarization is explicitly or implicitly a natural part of any decision-making process. 

As noted in [21] and [19], it is a standard human approach for making judgments by quantifying 

the options in a decision. Thus the converse question arises: can any formal decision problem be 

evaluated as a scalar maximization problem as in the case of SAT?  

Let D be the set of decision problems, and let S be the set of decision problems that can be 

solved or deemed undecidable by the scalar maximization of a real-valued function over an 

appropriate feasible set. The question can then be restated as: does D = S? If S is a strict subset of 

D, one can ask whether a particular decision problem d in D is a member of S. Thus the fact that 



any SOC is equivalent and scalarizable leads to significant new questions in computability 

theory.  

6. Conclusions and Future Work 

For the SOCs maximin, Pareto optimization, goal programming, cone-ordered optimization, 

and set-valued optimization, scalar equivalences have been proposed here without convexity or 

concavity requirements. We have also shown that there is a direct equivalence between two 

SOCs. Thus all solutions and only solutions of any SOC problem can be obtained by solving a 

problem involving any other SOC. In addition, we have shown that a scalar equivalence of any 

SOC is similarly equivalent to any scalar equivalence for another SOC. Finally, we considered 

SOC problems as decision problems and asked the open question if any formal decision problem 

is scalarizable, i.e., can be solved by a real-valued maximization over an appropriate feasible 

region. Future research will unify the notion of an optimization criterion within a general 

axiomatic framework and seek new optimization criteria with meaningful applications.  
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