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Abstract 

We define here the notion of a general optimization criterion (GOC). A set of axioms for 

GOC is proposed and discussed, and a scalar equivalence is presented. Examples of optimization 

criteria are then presented, as well as a decision rule that is not one. Finally, the new optimization 

criterion “compromise” is developed. 
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1. Introduction 

Our previous paper [6] showed that any standard optimization criterion (SOC) is scalarizable. 

In other words, all solutions and only solutions of the problem can be achieved as the 

maximization (or equivalently a minimization) of a real-valued objective function subject to 

certain constraints. No further assumptions were required. In particular, Moreover, all SOCs are 

equivalent, and any problem involving one criterion can be formulated as a problem involving 

any other. This result provides the motivation to define a general optimization criterion (GOC), 

which includes all SOCs as special cases. Such work as [15] and [17], for example, is 

fundamentally different.  

We present an axiomatic definition of a GOC to provide a consistent framework in which to 

describe a decision as being a “best” one. Next we develop a scalar equivalence for a GOC in the 

following sense. All solutions of the original problem and only solutions to it can be obtained via 



the maximization of a related real-valued function, i.e., a scalarization of the original problem. 

SOCs are shown to be examples of GOC. We then show that not all familiar decision-making 

problems involve a formal decision criterion with a counterexample in voting. Finally we 

construct a new optimization criterion called “compromise” for multi-objective optimization.  

2. General Optimization Criteria 

In this section we state our GOC axioms for preference relations in terms of partial orders, 

then give some examples and results.   

2.1 Preference Orders 

Consider a binary relation   on nR , i.e., n nR R  , where it is not the case that

., nRyyy   Next extend the strict order  to   such that 1 2y y where 1 2, nRy y if either 

1 2y y or 1 2.y y  The order   is called a preference order [19]. In this definition, the strict 

relation 21 yy  may not exist. However 21 yy  can be defined whenever .21 yy   We say that 

2y is preferred at least as much as 1y whenever .21 yy   If 2y is preferred more than 1y , .21 yy    

2.2 General Optimization Problems  

Given a preference order   on nR and ,, 21
nRyy  2y dominates 1y  if 21 yy   and .21 yy   

A vector nRA1y is said to be non-dominated in A if there is no A2y such that 21 yy  and 

.21 yy   Denote the set opt A  as the set containing all non-dominated vectors in A with respect 

to the preference order .  

For a preference order  on ,nR  consider the general optimization problem 

opt  ( )
(G)   ,

s.t . m
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with objective function : m nf R R  and feasible region .A  We seek a vector mRA *x for 

which there is no vector Ax such that ),(*)( xx ff   or equivalently that )(*)( xx ff  and

).(*)( xx ff   Such an mRA *x is called an optimal solution to the problem. Denote 

)(opt Af as the set of all optimal objective values, which could be empty.  



Example 2.2.1 The Pareto maximization [12], [13], and [18], Vmax ( ),
A

f
x

x where nm RRf :

and ,mA R  is a special case of the general optimization problem where the preference order 

Pareto in nR  is defined as following: 1 1( ,..., ) ( ,..., )n Pareto na a b b if and only if i ia b for all i =1,…,n 

and j ja b for some index j where ,i ia b R for all i =1,…,n.
 

 2.3 Axioms for General Optimization Criteria
 

Given any optimization problem G in nR , “opt” is a formal   optimization criterion on nR  if 

the following two axioms are satisfied. 

Axiom 1: Axiom of Partial Order (APO) 

The preference order   in the objective space ( ) nf A R is a partial order [3]. Equivalently, 

  satisfies the following three properties. 

1. Reflexive property: xx  for all ( ).f Ax   

2. Antisymmetric property: If yx  and xy  for any ,  ( )f Ax y , then .yx    

3. Transitive property: If yx  and zy   for any  ( ), , f Ax y z , then .zx        

Axiom 2: Axiom of Scalarizability Property (ASP) 

G has a scalar equivalence. In other words, all solutions and only solutions of the 

optimization problem can be obtained by solving a real-valued maximization problem subject to 

appropriate constraints. 

2.4. Discussion of Axioms 

The goal of Axioms 1 and 2 is to provide a consistent decision-making framework that yields 

identical optimal decisions in identical situations for a large class of applications. In practice, 

people may make preference decisions using methods not satisfying our axioms, such as the 

voting scheme of Section 4.5. However, such methods are not considered as optimization criteria 

according to our definition.  

2.4.1 Axiom of Partial Order 

We first note that APO alone provides meaningful generalizations in [5] of the following two 

properties of real-valued maximizations. 



1. Inclusion property: Let A and B be subsets of mR such that .A B Then we have 

max ( ) max ( )
A B

f f
 


x x

x x where : .mf R R  

2. Triangle inequality for maximization:

max  ( )( ) max  ( ) max  ( ),  where , : .
m m m

m n

A R A R A R
f g f g f g R R

     
   

x x x
x x x  

Next, since no decision choice x should be preferred more or less than itself (i.e., xx  ), the 

preference order for a decision must have the reflexive property of a partial order. Finally, the 

difficulty of reasonable a reasonable choice without the nantisymmetric and transitive properties 

is illustrated in the following two examples.  

Example 2.4.1.1 Consider the relation order   on the set {3, 5} such that 3=3, 5=5, 53   and 

5 3.  This order lacks the antisymmetric property because 3 does not identically equal 5. Also, 

it is contradictory for the decision maker to simultaneously evaluate 53  and 5 3.  In addition, 

there is no “best” value or values to choose, though each value is compared to each value. Hence, 

the antisymmetric property seems a reasonable requirement.       

Example 2.4.1.2 Consider the relation order   on the set of {5, 8, 10} such that 5=5, 8=8, 

10=10, 85  , 108  , and 10 5  and is thus not transitive. Again, there is no best value or values 

to choose. In this case, the reason is that 8 is “better” than 5, 10 is “better” than 8, but 5 is 

“better” than 10. A decision maker using such a preference order would be inconsistent.  

Such intransitivity can occur in elections. A voter may prefer candidate A to B, B to C, and C to 

A. The difficulty is that if a selection were conducted by successive pairwise comparison, then a 

different “best” candidate would be chosen for different pairwise comparisons. it seems more 

reasonable that the simultaneous comparisons of candidates should give the same result as 

sequential pairwise comparisons in a decision framework that purports to select a “best” solution.  

The transitivity dictated by APO avoids such inconsistencies. Of course, decisions can be made 

without this property, but the term “optimal” cannot be applied within our framework.  

2.4.2 Axiom of Scalarizability Property (ASP) 

One reason that ASP seems reasonable is that one can always define a utility function on a 

set of choices [19]. Furthermore, all standard optimization criteria (SOC) are scalarizable [5], so 

ASP is a natural extension. The determining reason, though, was that we were unable to 



construct a problem G with respect to a partial order in nR  for which it could be proved that no 

scalar equivalence exists for finding all solutions and only solutions for G. The existence of such 

a counterexample remains an open question. One candidate is presented in Example 2.4.2.1, for 

which we could obtain all and only solutions of G by a family of scalarizations, not a single real-

valued maximization problem as required by ASP.   

Example 2.4.2.1 Define a be a partial order   on 2R  as  follows. For each ,2Rx  let 

2( ) { : }I R  x y x y be the set having x as the first element. Construct the collection )(xC

containing all chains in )(xI  with x as the first element by setting  ,:)()( )( xxxx  iIPC i  

where x is an index set and )( xiP  has the following properties:  

1. ,or  ),(, 122121 yyyyxyy  
iP  

2.  )(xx iP . 

According to Lemma 2.4.2.2 below, we have
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In other words, 

),( 2
R can be decomposed into an uncountable union of chains. 

Lemma 2.4.2.2 
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Proof.  By the above construction, 2)()( RIPi  xx for all ,2Rx  ,xi  and so

2
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x    To prove the opposite inclusion, let .2Ry  Since )(yy iP for all 

,yi  we have that 
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Now let 2( , ) ( , ),R x y



i.e., .yx  Then ( , ) ( ( ), )iP x y x  for some xi by definition. The conclusion now follows that 

2
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Consider the following general optimization A1, for which “opt” may not represent an 

axiomatically formal optimization criterion.   

,
 .s.t 

)( opt
:1




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 mRA

f
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x

x
x  where ,: 2RRf m  and 2R has a partial order .  

Construct the uncountable family 2A of scalar maximizations parameterized by 2Rw as  

max ( ( ))

2 : s.t. ( ) ( ) ,

i

i
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where 2 ,R i ww and ilw  is a real-valued function mapping from

2R with the following property. If )()( yx ff  for )()(),( wyx iPff  for each ww  iR ,2 , 

then )).(())(( yx ww flfl ii     

Theorem 2.4.2.3 If 0x solves A1 then 0x solves A2 for )( 0xw f and all .wi  

Proof. Assume that 0x solves A1. Since 0( ),fw x 0x  is a feasible solution to A2 for )( 0xw f

and any .wi  Let 1x  be any feasible solution to A2 for )( 0xw f and .wi  Since 0x solves 

A1, it must be that 1 0( ) ( ).f fx x  Thus every feasible point of )),((2 0 ifA x  is a solution as 

well. But 0x is a feasible to 02( ( ), ),A f ix so it solves 02( ( ), ).A f ix  

Theorem 2.4.2.4 If 0x solves A2 for nRw and any ,wi then 0x solves A1. 

Proof. Assume that 0x solves A2 for nRw and .wi  To obtain a contradiction, suppose that

).(opt )( 0 Aff x  Then there exists A1x such that 0 1( ) ( ).f fx x  Otherwise

).(opt )( 0 Aff x  Since 0( ) ( ),if Px w it follows that 1( ) ( )if Px w  by the definition of ( ).iP w  

Hence 1x is feasible to A2. But ),()( 10 xx ff   so ))(())(( 10 xx ww flfl ii  in contradiction to the 

optimality of .0x  



Definition 2.4.2.5 [4]. Let ),( nR be a partially ordered set. We say that the preorder   
is order 

separable in the sense of Cantor if there exists a countable subset nRZ  such that whenever 

,yx  there exists Zz such that .xzy   In particular, preorders [3] are binary relations that 

are reflexive and transitive.  

Theorem 2.4.2.6 [4]. Let ),( nR be a partially ordered set that is order separable in the sense of 

Cantor. Then there is a real-valued function f on nR  such that 21 yy  implies ).()( 21 yy ff   

Such a real-valued function f is called a strictly monotone functional on ).,( nR  

Under the existence of ilw for all iw and ,2Rw  problems A2 and A1are equivalent as a 

consequence of Theorems 2.4.2.3 and 2.4.2.4. All solutions and only solutions of A1 can be 

theoretically obtained by A2 and vice versa. According to Theorem 2.4.2.6, separability in the 

sense of Cantor of all chains )(wiP in 2R guarantees the existence of a strictly monotone function 

.ilw  However, the objective function ))(( xw fl i may obviously be different from ))(( xw fl j where 

wji, , or different from ))(( xy fl i where yi for .,, 2Rzyw  Therefore A2 is not 

considered as an equivalent scalarization of A1 since there is no common objective function for 

the family.  

3. A Scalarization for a General Optimization Criterion (SGOC) 

We now present a scalar equivalence for any GOC problem satisfying Assumption 3.1.1 

below.  In other words, all solutions and only solutions to a general optimization problem 

involving the original criterion can be obtained by certain scalar maximization problems and vice 

versa. Any such scalar equivalence is required to be a real-valued maximization subject to either 

(i) a fixed feasible region or (ii) a parameterized feasible region for which maximization are to be  

performed for all parameters in a given parameter set . In both (i) and (ii), the feasible region is 

usually determined by a set of constraints.  

The SGOC of this paper is motivated by the scalarization for the lexicographic optimization 

criterion given in [7]. Here we define a strictly monotone real-valued function corresponding to 

each of n components when the others are fixed. Using the fact that only partial orders   in nR  

are considered, we initially construct n induced orders corresponding, respectively, to the n 



component of .nR  We then utilize Theorem 2.4.2.6  to  provide a strictly monotone functional 

corresponding to each component in nR with the other components held fixed.  

3.1 Component Orders  

Consider a partial order   in .nR  For each ,1 nm  define an induced order m

 on R 

corresponding to the mth component of vectors in nR as follows. Denote  

m
m

m ba   if and only if )0,...,,...,0()0,...,,...,0( mm ba  for ., Rba mm   

We first show that the induced order m

 is partially ordered. 

Theorem 3.1.1 The induced order m

 is a partial order in R for any .1 nm   

Proof.  Let }.,...,1{ nm   We show that m

 is reflexive, antisymmetric, and transitive. 

(Reflexive). Let .Ram  Since   is a reflexive in ,nR  ).0,...,,...,0()0,...,,...,0( mm aa   Then by 

definition .m
m

m aa    

(Antisymmetric).  Let Rba mm , such that m
m

m ba  and .m
m

m ab   By definition, we have that 

)0,...,,...,0()0,...,,...,0( mm ba  and ).0,...,,...,0()0,...,,...,0( mm ab  Since   is antisymmetric, 

).0,...,,...,0()0,...,,...,0( mm ba   It follows that .mm ba   

(Transitive). Let Rcba mmm ,, such that m
m

m ba  and .m
m

m cb  By definition we also have 

)0,...,,...,0()0,...,,...,0( mm ba  and (0,..., ,...,0) (0,..., ,...,0).m mb c  Since   is transitive, 

(0,..., ,...,0) (0,..., ,...,0)m ma c and thus .m
m

m ca    

It now follows that m

 is a partial order in R for nm 1 . 

Since ),( mR  is separable in the sense of Cantor, whereas Rn is not, Theorem 2.4.2.6 provides 

an immediate corollary Theorem 3.1.1. 



Corollary 3.1.2. There exists a strictly monotone function RRl m :  with respect to the 

order m

 for any 1 .m n   

3.2 SGOC Formulation  

Our SGOC requires the partial order   
of  APO to satisfy Assumption 3.2.1 below. 

Assumption 3.2.1. Let  be a partial order on nR and m

 be its induced component order in 

Section 3.1 for all .1 nm   We assume that the following statements are true. 

If 1 2 1 2( , ,..., ) ( , ,..., ),n na a a b b b  
then .1

1
1 ba   

If ),...,,(),...,,( 2121 nn bbcaac  for some 1 ,c R  then .2
2

2 ba   

If ),...,,,(),...,,,( 321321 nn bbccaacc  for some 1 2, ,c c R  then .3
3

3 ba   

                                                  
If ),,...,,,(),,...,,,( 13211321 nnnn bccccacccc   for some 1 2 1, ,..., ,nc c c R   then .n

n
n ba   

It should be noted that the usual orders induced by the Pareto and lexicographic cones [1] 

satisfy Assumption 3.2.1. Moreover, SGOC will generalize the equivalent scalarizations of [6] 

for Pareto and lexicographic maximization. 

Let : , 1,..., , ,m m
if R R i n A R   and consider the GCOP B1: 1opt( ( ),..., ( )),n

x A
f f


x x whose 

associated partial order  satisfies Assumption 3.2.1. Then an equivalent SGOC scalarization 

problem for B1 is given by 

B2(y): 

1
1

1
1 1

1
1 1

max ( ( )) (0,...,0,1) ( ( ( )),..., ( ( )))

s.t. ( )

( ( )) ( )

( ( )) ( )

n T n
n n

n
n n

l f l f l f

f

l f a

l f a
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for all ),( Afy  

 

where ,1,...,1),(  nmam y  are the optimal objective function values of the following problems. 
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1max ( ( ))
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1
1 1

1
1 1

max ( ( ))

s.t. ( ( )) ( )
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m
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m
m m
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for 12  nm . 

Lemma 3.2.2 If 0x solves B1, then 0x is feasible to B2(y) for ).( 0xy f  

Proof. Let 0x solve B1. By the optimality of 0x , whenever )()( 0xx ff  for Ax , then 

).()( 0xx ff   Thus 0x solves ( ,1), ..., ( , 1),B B n y y  where ).( 0xy f It follows that 

))(())(( 00 xyx fafl kk
k  for any .11  nk  Hence, 0 0( ) ( ),f fx x

 
so 0x is feasible to B2(y) 

for ).( 0xy f ■ 

Theorem 3.2.3 If 0x solves B1, then 0x solves B2(y) for ).( 0xy f  

Proof. Assume 0x solves B1. By Lemma 3.2.3, 0x  is feasible to B2( )( 0xf ); i.e.,  

,))((,...,))(( 101
1

101
1


  nn

n aflafl xx and ).()( 00 xx ff   
To obtain a contradiction, suppose 0x

does not solve 02 ( ).B f x Then there exists a feasible solution A1x such that 

)).(())(( 01 xx n
n

n
n flfl   Since 1x is feasible to 02 ( ),B f x then 1 0( ) ( )f fx x  and ).()( 01 xx ff   

It follows that ),()( 01 xx ff   in contradiction to the optimality of 0x . 

Theorem 3.2.4 If 0x solves B2(y) for )(Afy , then 0x solves B1. 

Proof. Suppose 0x solve B2(y) for ).( Afy Then 0x is feasible to B1 and )).(),...,(( 001 xxy nff  

Now let 1x be any feasible solution to B1 such that 1 0 0 1 1 1( ( ),..., ( ))  ( ( ),..., ( )).n nf f f f y x x x x 

From  Assumption 3.2.1, ).()( 11
1

01 xx ff  But },,)(:))((max{))(( 1
1

01
1 Afflfl  xyxxx  so 



).()( 1101 xx ff  Then again by Assumption 3.2.1, we get that 2
2 0 2 1( ) ( )f fx x from which 

2 2 1 1
2 0 2 0( ( )) max{ ( ( )) : ( ) , ( ( )) ( ( )), }l f l f f l f l f A  x x x y x x x

 
immediately yields 

).()( 1202 xx ff  By applying a similar argument sequentially, we obtain that

),()(),...,()( 101303 xxxx nn ffff  respectively, so 0x  solves B1.■ 

Example 3.2.5 

Consider the following Pareto maximization problem 

),(Vmax 2
2

2
1 xx

Ax
s.t. .}1,0,1:),{( 2

21
2

2
2

121 RxxxxxxA   

 

 

 

 

 

Figure 4.12 Pareto frontier of Example 3.2.6 

We solve this Pareto problem with SGOC as follows. Define the induced orders on each 

component by 1
1 1 1 1 if and only if ( ,0) ( ,0)Paretox y x y  for ,, 11 Ryx   and 

2
2 2 2 2 if and only if (0, ) (0, )Paretox y x y  for ., 22 Ryx   Formulate SGOC as   

1 2
1 2 2

,

1 1

2 2
1 2

1 1 1 2
2 2

1 2
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Select ).5.0,5.0(),( 21 yy  By solving 2(0.5,0.5)C , we obtain )5.0,5.0(1a 0.866. We then solve 

1(0.5, 0.5)C and obtain the optimal solution ).5.0,866.0(*)*,( 21 xx Notice that )5.0,866.0(  is on 

the Pareto frontier in Figure 4.12 above. To obtain all solutions, we would need to solve 

1 21( , )C y y for all values of 1y and .2y  However, a representative sample would approximate the 

Pareto frontier. 

4. Examples and Counterexample of GOC 

We now verify any SOC satisfies the requirements for a GOC. SOCs include standard cone-

ordered optimization [13], standard set-valued optimization [8], goal programming [7] and [16], 

and maximin optimization [9]. In particular, lexicographic optimization, Pareto optimization, and 

scalar optimization are special cases of cone-ordered optimization. Finally, an example of a 

decision rule that does not satisfy our axioms is presented as a counterexample. 

4.1 Standard Cone-Ordered Maximization 

The order in any standard cone-ordered maximization is a partial order because it is induced 

by a pointed convex cone [6]. Thus Axiom 1 (APO) is satisfied. In addition, if any standard 

cone-ordered optimization is scalarizable, then Axiom 2 (ASP) is satisfied. From results in [6], 

[8], and  [9], if the pointed convex cone is also closed as in the Pareto case, then a cone-ordered 

optimization is scalarizable. The only standard cone-ordered maximization for the which the 

cone is not closed is the pointed convex lexicographic cone. However, it is also scalarizable as 

shown in [7]. Thus, any standard cone-ordered maximization represents a GOC. 

 4.2 Set-Valued Maximization 

Consider the following standard set-valued maximization problem ),(max x
x

F
A

where

: 2
nm RF R  is a point-to-set map and the order in nR is induced by a closed pointed convex 

cone C in .nR  As before, APO and ASP are satisfied, so set-valued maximization is a GOC. 



4.3 Maximin A maximin optimization is a scalar maximization where the objective function is 

simply a minimization itself [6].  Thus it is a GOC. 

4.4 Goal Programming 

Goal programming can be defined as a Pareto maximization [7], which is a GOC as above. 

4.5 A Voting Counterexample 

Consider the well-known Condorcet Paradox [2] and [20] in voting. 

Table 4.1 Condorcet paradox. 

Individual Preference order 

Voter 1 A>B>C 

Voter 2 B>C>A 

Voter 3 C>A>B 

 

In this example, three voters, 1, 2, and 3 are asked to consider three alternatives A, B, and C. As 

shown in Table 4.1, Voter 1 prefers A to B to C; Voter 2 prefers B to C to A; and Voter 3 prefer 

C to A to B. It is obvious that two people prefer A to B, two people prefer B to C, and two 

people prefer C to A. A majority voting scheme immediately gives A < B and B < C, but C < A. 

This group preference order is thus intransitive and cannot be a partial order, so marity voting is 

not a formal optimization criterion. 

5. A New Optimization Criterion  

5.1 The Compromise Criterion 

We now define a new optimization criterion on nR that attempts to yield a compromise 

solution. This solution will also be shown to be a Pareto maximum.  

Let nm RRf : be a nonnegative objective function for which represents n outcomes. 

Assume that )(min x
x

i
A

f


 and 
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x
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A

f for all i. Denote )(max x
x
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 and 

).(min x
x

i
A

i fm


  Now define RAfTCompr )(: by 
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Define a strictly compromise order on )(Af  as follows.  



For any ),()(),( 21 Afff xx  )()( 21 xx ff Compr if and only if )).(())(( 21 xx fTfT ComprCompr   

Next, define the compromise order Compr by 

)()( 21 xx ff Compr if and only if )()( 21 xx ff Compr or ).()( 21 xx ff   

A compromising problem can be written as )( Compromise x
x

f
A

or )( Opt x
x

f
A

with respect to .Compr  

The problem is to find a vector XA *x for which there is no vector Ax such that 

),(*)( xx ff Compr  or equivalently that )(*)( xx ff Compr and ).(*)( xx ff   

Lemma 5.1.1 For any ),()(),( Afff yx  if )()( yx ff Pareto then )).(())(( yx fTfT ComprCompr   

Proof. Let ),()(),( Afff yx such that ).()( yx ff Pareto Then, )()(0 yx ii ff  for all ni ,...,1

and )()(0 yx jj ff  for some index j. Since all elements in )(Af  are nonnegative and 

definition of im and iM , we have 
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The next lemma shows that a compromise solution is also a Pareto maximum. 

Lemma 5.1.2 If ( ) Compromise  ( ),f f Ax  then ).(Vmax )( Aff x  

Proof. Let ).(  Compromise)( Aff x  To obtain a contradiction, suppose that 

).(Vmax )( Aff x Then there exist )()( Aff y such that ).()( yx ff Pareto By Lemma 5.1.1, it 

follows that )()( yx ff Compr which contradicts with optimality of ).(xf  We conclude that

).(Vmax )( Aff x ■   

Lemma 5.1.3 ).(Vmax )(  Compromise AfAf   

Proof.  It follows directly from Lemma 5.1.2. ■ 

Theorem 5.1.4 The preference order Compr is a partial order on ).(Af  

Proof. We show that Compr is reflexive, transitive, and antisymmetric. 



(Reflexive). Since ),()( xx ff   we have )()( xx ff Compr for any ).()( Aff x  

(Transitive). Let )()( yx ff Compr and )()( zy ff Compr for .,, Azyx  

Case 1: )()( yx ff Pareto and ).()( zy ff Pareto  

Since Pareto order is transitive, we have that )(xf  comparable to )(zf  and in particular 

).()( zx ff Pareto  Therefore, ).()( zx ff Compr  

Case 2: )()( yx ff Pareto and )(yf  are not Pareto comparable with )(zf  with 

)).(())(( zy fTfT ComprCompr   

Case 2.1: )(xf  is Pareto comparable with )(zf .  

We claim that ).()( zx ff Pareto  Suppose that ).()( xz ff Pareto  By Lemma 5.1.1., we have 

)).(())(( xz fTfT ComprCompr  Since )()( yx ff Pareto and by Lemma 5.1.1, we have 

)).(())(( yx fTfT ComprCompr  Therefore we obtain ))(())(( yz fTfT ComprCompr  in contradiction to 

the assumption that )).(())(( zy fTfT ComprCompr  We conclude that ).()( zx ff Pareto  Thus

).()( zx ff Compr  

Case 2.2: )(xf  is not Pareto comparable with ).(zf  

Since )()( yx ff Pareto by Lemma 5.1.1, we have )).(())(( yx fTfT ComprCompr   

Combining with )),(())(( zy fTfT ComprCompr  we obtain )),(())(( zx fTfT ComprCompr   i.e., 

).()( zx ff Com  

Case 2.3: )()( zy ff Pareto and )(xf  are not comparable with )(yf  with 

)).(())(( yx fTfT ComprCompr  The proof is similar to Case 2.1. 

From Cases 1 and 2, we obtain ).()( zx ff Compr  

(Anti-Symmetric). Let )()( yx ff Compr and ).()( xy ff Compr We must have ).()( yx ff   

To obtain a contradiction, suppose that ).()( yx ff  Immediately we have )()( yx ff Compr and 

).()( xy ff Compr  

Case 3: )(xf  is Pareto comparable to ).(yf  



Since )()( yx ff Compr , we obtain ).()( yx ff Pareto  Since ),()( xy ff Compr  we obtain 

),()( xy ff Pareto which contradicts the previous conclusion. 

Case 4: )(xf  is not comparable to ).(yf  

Since ),()( yx ff Compr we have )).(())(( yx fTfT ComprCompr   Also, since ),()( xy ff Compr  

we have )),(())(( xy fTfT ComprCompr  contradicting the fact that )).(())(( yx fTfT ComprCompr  From 

Cases 3 and 4, we conclude that ).()( yx ff   

It follows that Compr is a partial order on ).(Af ■ 

An obvious scalar equivalence of the compromise optimization problem is   

.
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5.2 An Application in Multi-objective optimization  

In a Pareto maximization problem, a decision maker often selects a non-dominated point 

satisfying some secondary criteria such as choosing the largest summation of the objective 

function values. The secondary criterion here will be to select a solution equitably distributes the 

benefit among all objectives. Indeed, the compromise solution applied to the objective function 

can accomplish both the primary Pareto and secondary fairness criteria because of Lemma 5.1.2. 

Consider the following Pareto maximization  
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The Pareto frontier is shown in Figure 5.1 below. 

 

 

 

 

 

 

 

Figure 5.1 Pareto frontier. 
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compromise transformation function thus becomes  
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The compromise problem with the order Compr  is thus 
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An equivalent scalarization is as follows. 
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The solution is )707.0,707.0(*)*,( 21 xx with objective value of 0.729.  

 

 

 

 

 

 

 

Figure 5.2 The compromise solution. 

6. Conclusions and Future Work 

We have unified the notion of an optimization criterion within a general axiomatic 

framework to include all standard optimization criteria as special cases. One requirement for an 

optimization criterion is the scalarizability property. Hence all optimization criteria are 

2x

1x  

 (0.707,0.707) 

1

1



equivalent to solving similar scalar maximization problems, and all are equivalent in a significant 

sense. In particular, a scalar equivalence for GOCs has been proposed under appropriate 

assumptions. Examples of GOC include standard optimization criteria because they satisfy our 

axioms. Moreover, the group decision making of a majority voting scheme was shown not to 

represent an optimization criterion in our general framework. Finally, we defined a criterion 

based on the notion of compromising. Future work should concentrate on two areas. First, 

computational methods should be studied for the GSOC presented so that actual decisions can be 

readily made. Second, new optimization criteria should be developed to provide further models 

for decision making.    
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