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There are many situations in quality control of manufacturing processes in which the quality of a process 

is characterized by the spatial distribution of certain particles in the product, and the more uniform the 

particle distribution is, the better the quality is. To realize quality control and guide process improvement 

efforts, the degree of spatial uniformity of particle distributions needs to be assessed. On the other hand, 

many quantitative metrics have been developed in areas outside manufacturing for measuring uniformity 

of point patterns, which can be applied for this purpose. However, critical issues exist in applying existing 

metrics for quality control relating to which metrics to choose and how to use them in specific situations. 

To provide general guidelines on these issues, this research identifies popular uniformity metrics scattered 

in different areas and compares their performance in detecting nonuniform particle distributions under 

various practical scenarios through a comprehensive numerical study. Effects of different factors on the 

performance of the metrics are revealed and the best metric is found. The use and effectiveness of the 

selected metric is also demonstrated in a case study where it is applied to data from emerging material 

fabrication processes in nanomanufacturing and biomanufacturing.  

Keywords: Complete spatial randomness (CSR); Particle distribution; Point patterns; Spatial uniformity; 

Metal matrix nanocomposite (MMNC); Tissue-engineered scaffolds   

 

1. Introduction 

There is an increasing situation in manufacturing processes where the quality of a process or product 

is characterized by the spatial distribution of certain particles or components, and the more uniform the 

particle distribution, the better the quality. This is especially the case in some emerging manufacturing 

branches such as nanomanufacturing and biomanufacturing. For example, in the metal matrix 

nanocomposite (MMNC) fabrication processes where nano-sized ceramic particles are embedded into the 
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metal matrix [1, 2], a key quality characteristic is the dispersion of nanoparticles, as shown in the 

scanning electron microscope (SEM) image in Figure 1(a). The introduction of nanoparticles can 

significantly strengthen the metal matrix, and the more uniformly the nanoparticles disperse, the better the 

composite structure and thus the mechanical properties of the produced MMNC material [3]. Another 

typical example in biomanufacturing is the fabrication processes of tissue-engineered scaffolds, which are 

porous polymer matrices serving as temporary substrates for cells in developing engineered 

tissues/organs. Introduction on tissue-engineered scaffolds can be found in the literature [e.g., 4, 5, 6]. 

Figure 1(b) shows an SEM image of the cell distribution in the scaffolds. The uniformity of cell 

distributions is highly required to produce homogeneous tissues/organs, which is, correspondingly, 

considered as an important quality indicator of the scaffolds.  

 
                                                 (a)                                                           (b) 

Fig. 1. SEM images of nanoparticle distribution in MMNC (a) and cell distribution  

in tissue-engineered scaffolds (b) 

To conduct quality control and guide process improvement efforts in processes like the above 

examples, the degree of spatial uniformity of particle distributions needs to be assessed. However, 

currently, this is reported subjectively by human operators in most cases, which is neither convenient nor 

reliable. Obviously, quantitative metrics are needed to assess the degree of uniformity, and consistent 

product quality can be achieved through monitoring those metrics in the manufacturing process.  

Particles like the nanoparticles and cells can be treated as dimensionless points due to their small 

sizes compared to the study regions, i.e., the SEM images, and their distributions are formally referred to 

as spatial point patterns in the literature [e.g., 7, 8, 9]. Quantifying the uniformity/clustering of point 

patterns has been an extensively studied topic in areas such as geological, ecological, environmental, and 

material science studies, and many different types of metrics have been developed for typical point 

patterns in those areas such as the distribution of certain species of plants/insects within an interested 

region or the mixing of different components in material processing. These metrics can be directly applied 

to assess the uniformity of particle distributions in quality control of manufacturing processes. However, 

this endeavor is faced with three critical issues: (i) Selection of metrics: Little knowledge on the selection 
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of metrics under specific situations is available in the literature, which makes it very difficult for 

practitioners in manufacturing to decide the suitable metric to use in their process from the vast pool of 

available metrics. (ii) Specification of parameters: The use of uniformity metrics often requires specifying 

some parameters. For example, to decide if the observed patterns are uniform, a benchmark of uniformity, 

called critical value in process monitoring, should first be established. Also, to use metrics based on a 

division of the study region into small grids, the number of grids should be determined beforehand. 

However, there is a lack of guidance on how to specify such parameters. (iii) Robustness of metrics: The 

performance of existing metrics in some special cases in quality monitoring is unknown. For example, 

while a large number of points, e.g., several hundreds or more, are often available in patterns in 

geological, environmental and material science studies, patterns with a small number of particles might be 

a typical situation in some manufacturing processes. Therefore, it will be helpful to study the robustness 

of existing metrics in such cases.       

The only effort to address the above issues in the literature is the study by Zhou, et al. [10] which 

compares some uniformity metrics in assessing nanoparticle dispersion in MMNC fabrication processes 

through simulation. However, only a limited set of metrics is considered in that study, and the last two 

issues are not fully addressed. This paper will contribute by studying the performance of a broader set of 

metrics, encompassing those developed in various areas, and providing guidelines on all the three issues. 

The effects of factors that may affect the performance of the metrics are identified, and the best metric is 

found in terms of its performance in different scenarios of parameter setting. A case study is also 

provided to demonstrate the implementation of the best metric on image data from nanocomposite and 

tissue-engineered scaffold fabrication processes.    

 The remainder of the paper is organized as follows. In Section 2, a review of the existing methods 

and metrics for assessing spatial uniformity of point patterns will be presented. Section 3 will introduce 

the conventional uniformity monitoring procedure in manufacturing process control practice, and discuss 

important factors affecting the performance of the metrics. The results of the numerical study will be 

given in Section 4. This is followed by a case study in Section 5 and summary in Section 6.   

2. Methods and Metrics for Assessing Spatial Uniformity of Point Patterns 

2.1. Methods for assessing spatial uniformity 

The basis for spatial uniformity assessment of point patterns is the concept of complete spatial 

randomness (CSR) represented by the pattern in Figure 2(a), which follows a homogeneous Poisson 

distribution. Using CSR as a reference, the degree of spatial uniformity of a pattern can be quantified by 

its departure from CSR, and a pattern which has a statistically significant departure will be concluded to 

be nonuniform in quality monitoring. As nonuniformity in a pattern is typically manifested by the 



4 

 

existence of clustering shown in Figure 2(b), the degree of uniformity is often inversely represented by 

the degree of clustering. Various methods have been developed to assess uniformity, which differ from 

each other in their definition of the departure from CSR and the way to calculate this departure.  

               
                (a) CSR                 (b) Clustering                   (a) Quadrat methods      (b) Distance methods 

                       Fig. 2. Point patterns                           Fig. 3. Existing methods for assessing uniformity 

In the high level, the existing methods can be roughly categorized into three classes: quadrat-based 

methods, distance-based methods and other methods. As illustrated in Figure 3(a), quadrat-based 

methods, such as those proposed by Fiser [11], David and Moore [12], Morisita [13], Lloyd [14], Douglas 

[15], Alemaskin et al. [16], and Greig-Smith [17], divide the study region into a number of small grids, 

called quadrats, and count the number of points falling into each grid. Consequently, the degree of 

uniformity can be quantified by the characteristics of these counts such as the parameters of their 

empirical distribution. Such methods are very popular in some areas such as ecological and environmental 

studies, for their simplicity and convenience in implementation. Their main drawback is that the spatial 

information contained in the pattern is lost since only the counts are used. In addition, the appropriate 

specification of the number of quadrats is case specific. Distance-based methods, illustrated in Figure 

3(b), focus on the distances between points, such as those between nearest neighbors or between 

randomly selected locations (indicated by the asterisk in the figure) to nearest points, and quantify the 

degree of uniformity using the characteristics of these distances. Cressie [7] gives an excellent review of 

these methods. Compared with quadrat-based methods, these methods utilize more spatial information, 

but choosing the distances between nearest neighbors instead of those between the second, third, etc., 

nearest neighbors, is arbitrary, as pointed out by Cressie [7]. They may also cause the “edge effect” 

problem when some points or the selected location is closer to the edge of the study region than to any 

other points within the region. The methods for edge effect correction are summarized in Diggle [8].  

Other methods for quantifying spatial uniformity include the methods based on coordinate projection 

proposed by Jun et al. [18], and Tong et al. [19], and the SADIE (spatial analysis by distance indices) 

methodology developed by Perry and Hewitt [20], and Perry [21]. The projection methods project the 

coordinates of the points onto a rotating axis and characterize the clustering of points by the distances 

between the projected values. This method is parameter-free and convenient, but it requires a relatively 

large number of points in the pattern. The SADIE methodology, originally developed for quantifying the 
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spatial variation of insect distribution in ecological studies, is essentially a hybrid of quadrat and distance 

methods. Basically, it divides the study region into quadrats and quantifies the uniformity by measuring 

the total efforts (in terms of distances moved), to rearrange the points in different quadrats to create a 

pattern as uniform as possible. This methodology not only bears the limitations of quadrat-based methods, 

but also involves complex optimization algorithms which are not convenient for quality control in 

practice. Therefore, the associated metrics will not be considered in this study.     

Table 1. Quadrat-based metrics for assessing spatial uniformity 

 

2.2. Metrics to compare 

Based on the methods described above, many uniformity/clustering metrics have been developed and 

widely used in different areas. Their definitions, formulas and decision rules in quality monitoring are 

listed in Table 1 and 2. Note that in the “Decision rule” column, “Upper-sided” means that an upper-sided 

critical value will be applied, i.e., an observed pattern with a metric value larger than the critical value 

will be concluded to be nonuniform. Similarly, “Lower-sided” and “Two-sided” mean that a lower-sided 

critical value and two-sided critical values, respectively, will be applied.                              

Quadrat-based metrics 

Table 1 displays the metrics resulted from quadrat-based methods. The quantity q in the formulas 

denotes the number of quadrats, i.e., the number of grids in Figure 3(a), xi is the count of points in grid i, 

i=1, 2,...,q, and x and s are the sample mean and sample standard deviation of the counts. These metrics 

can be further divided into three groups according to their principles: simple indices based on empirical 

distribution of counts (Group 1), spatial autocorrelation measures (Group 2), and entropic measures 

Name Formula Decision rule

Index of Dispersion Upper-sided

Skewness Index Upper-sided

Moran’s I Two-sided

Geary’s C Two-sided

Local Moran’s I Two-sided 

Local Gi Two-sided

Global Shannon Entropy Lower-sided

Global-local Shannon Entropy Lower-sided
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(Group 3). The first group is based on the fact that when the pattern is not uniform, the empirical 

distribution of the counts {x1, x2,...,xq} will be different from that under CSR. Correspondingly, the degree 

of uniformity is quantified by the discrepancy between the distribution of counts and that under CSR. The 

second group is based on the fact that when there is clustering, the counts of grids within spatial vicinity 

will bear some correlation instead of being independent under CSR. Thus, the degree of uniformity is 

indicated by the degree of correlation between counts of spatial neighbors. The third group is based on the 

fact that when the pattern is perfectly uniform, the counts of different grids will be the same, representing 

the highest uncertainty of information about the point locations, or the maximal value of the Shannon 

entropy. Accordingly, the degree of uniformity can be quantified by the discrepancy between the 

observed entropy and the entropy under CSR. More details of these metrics are provided as follows.   

Group 1: Simple Indices based on empirical distribution of counts  

 Index of Dispersion (ID): This is the simplest and most widely used metric of spatial uniformity, 

which concerns variability of the empirical distribution of counts in the sense that when there is 

clustering, this variability will be larger than under CSR as quadrats near the center of the cluster 

will contain more points than others. Therefore, a large value of this index indicates nonuniformity 

or clustering. Under CSR, this index follows a χ
2
 distribution with (q–1) degrees of freedom.  

 Skewness Index (SI): This index is based on a similar idea, that is, when there is clustering, the 

count distribution will be biased, which is indicated by the skewness of the distribution.   

Group 2: Spatial autocorrelation measures 

 Moran’s I (MI) and Geary’s C (GC): These are the classic measures of spatial autocorrelation 

which can be found in Schabenberger and Gotway [22]. The quantity ωij in the formulas is the 

neighbor indicator of grid i and j, and ω.. is the sum of all the neighbor indicators, i.e., 
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The neighbor indicator can be defined in many ways, e.g., grid i and j are neighbors if they share a 

common border. Essentially, MI and GC are global correlation measures in the sense that they 

measure the global degree of correlation among spatial neighbors by averaging the local correlations 

between neighbors. As correlation has two directions, positive correlation (i.e., counts of neighbors 

are more similar than expected by chance) and negative correlation (i.e., counts of neighbors are 

more dissimilar than expected by chance), the decision rule in using these metrics is two-sided.      

 Local Moran’s I (LMI) and Local Gi (LG): To enhance the sensitivity of clustering detection, 

local indicators of spatial autocorrelation (LISAs) have been developed by authors such as Getis and 

Ord [23] to measure the degree of autocorrelation at each single grid, as represented by the quantities 
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in the square brackets in the formulas. These measures are designed to capture local clusters or “hot 

spots”. For quality control purpose, the maximum of the local measures will be monitored.     

Group 3: Entropic measures 

 Global Shannon Entropy (GSE): This is the commonly used entropic measure, where pi is the 

observed probability that a point falls into grid i. Under CSR, this probability is the same over all the 

grids, i.e., pi ≡1/q, and thus GSE=1. A small value of this measure indicates a large departure from 

CSR, or a low degree of uniformity. This measure has been applied by Camesasca et al. [24] and 

Alemaskin, et al. [25] to assess mixing quality in material processing.    

 Global-local Shannon Entropy (GLSE): Based on the similar idea as the LISAs, Ceccato and 

Karlström [26] propose the GLSE which takes the local information between spatial neighbors into 

consideration in measuring the entropy.  

Table 2. Distance-based metrics for assessing spatial uniformity 

 

Distance-based metrics  

Distance-based methods described in Section 2.1 have produced a series of functional summaries of 

the distances between points which are given in the third column of Table 2, where r>0 denotes the 

distance. The corresponding theoretical functions under CSR are given in the next column in the table, 

where “total area” denotes the total area of the study region, and n is the total number of points in the 

observed pattern. Details of these functions are given as follows.  

 F Function: F(r), represented by case I in Figure 3(b), is the cumulative distribution function of 

distances from a randomly selected location within the study region to its nearest point. Such 

distances are often referred to as empty space distances or void distances.   

 G Function: G(r), represented by case II in Figure 3(b), is the cumulative distribution function of 

distances from a randomly selected point to its nearest neighbor, called nearest neighbor distances.     

 J function: J(r) is a function of F(r) and G(r). Under CSR, F(r) and G(r) are the same, and thus J(r) 

is the constant 1.  

Name Formula Functional summary CSR reference Decision rule

F index Lower-sided

G index Upper-sided
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g index Upper-sided 

)()( rdPrF 
d: distance from a selected   

location to nearest point 







 n

r
rFCSR

area total
exp1)(

2

)()( rdPrG  d: distance from a selected 
point to nearest point 








 n

r
rGCSR

area total
exp1)(

2

)(1

)(1
)(

rF

rG
rJ




 1)( rJCSR



)(
)(

rN
rL 

N(r): number of points 
within distance r of  a 
selected point 

rrLCSR )(

r

rN
rg

2

)(
)(


 1)( rgCSR

N'(r): the derivative of N(r) 

 
D

CSR drrFrF
0

2)]()(ˆ[

 
D

CSR drrGrG
0

2)]()(ˆ[

 
D

CSR drrJrJ
0

2)]()(ˆ[

 
D

CSR drrLrL
0

2)]()(ˆ[

 
D

CSR drrgrg
0

2)]()(ˆ[



8 

 

 L Function: L(r), represented by case III in Figure 3(b), is related with the ratio of N(r), the number 

of points within distance r of a randomly selected point, and the intensity λ in the study region. 

Under CSR, N(r) = λ·πr
2
, and thus L(r) is r.  

 g Function: g(r) is called pair correlation function which is related with the ratio of N´(r), the first 

derivative of N(r), and rλ. It can be roughly explained as the probability of observing a pair of points 

with the given distance r. Under CSR, this probability is the same for any value of r.  

As quality monitoring is typically based on univariate statistics, single-number summaries of the 

above functions need to be found. A common choice is the Cramer-von Mises statistic which measures 

the overall discrepancy between the observed function and its CSR reference 

                                                                   
D

CSR drrHrH
0

2)]()(ˆ[                    

where D is the maximum distance to be considered, )(ˆ rH  
is the observed function, and HCSR(r) is the 

corresponding CSR reference. 

Other metrics 

 Projection Index (PI): The detailed procedure for calculating this index can be found in Appendix 

A. Its value under CSR is 1, and larger values indicate a higher degree of clustering.   

3. Uniformity Monitoring in Quality Control of Manufacturing Processes 

3.1. Uniformity monitoring procedure 

Monitoring of spatial uniformity in manufacturing processes is typically based on image data like the 

SEM images shown in Figure 1, each representing an observed point pattern. The central goal is to 

determine whether an observed pattern is uniform or not. For this purpose, the critical value for the 

pattern must be first found based on the statistical (null) distribution of the metric under CSR. Given the 

specified type I error probability α, the critical value is the 100α and 100(1α) percentile of the null 

distribution for lower-sided and upper-sided decision rule, respectively. Then the metric value of the 

pattern will be calculated and compared with the critical value. Decision will be made based on the 

corresponding decision rule of the metric. The performance of the monitoring can be measured by the 

detection power, i.e., the probability that a nonuniform pattern is correctly detected.  

In this study, both the critical value and detection power of each metric will be determined by 

simulation. The use of simulations here is mainly due to the lack of asymptotics of uniformity metrics. In 

fact, simulation methods have been a popular way to evaluate uniformity of spatial patterns which is a 

very complex phenomenon [8, 9]. Specifically, to find the critical value for an observed pattern, a large 

number of CSR patterns will be generated, and the distribution of metric values for these simulated 

patterns will be used as the null distribution. To evaluate the detection power, a large number of 
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nonuniform patterns will be generated, and the percentage of these patterns that are correctly determined 

to be nonuniform will be used as estimate of the detection power.   

3.2. Factors affecting performance of uniformity metrics 

In general, the performance of uniformity metrics is affected by two sets of factors: 

(1) Characteristics of observed patterns. These include the number of points in the pattern, type of 

nonuniformity, and degree of nonuniformity. Patterns with various characteristics may be produced in 

manufacturing processes. For example, the number of particles may vary a lot from process to process, 

and from image to image; a nonuniform pattern may contain a single cluster, multiple clusters or line-

shape clusters; and different degrees of nonuniformity may be resulted, from very serious to weak. 

Accordingly, the performance of metrics should be evaluated for typical patterns that exist in the practice 

of manufacturing processes.  

(2) Parameters of the metrics. These include the parameters in calculating the metrics, i.e., the number of 

quadrats, q, for quadrat-based metrics and the maximal distance allowed, D, for distance-based metrics, 

and the critical value for each observed pattern in decision making. There are two methods to determine 

the critical value, depending on how CSR patterns are generated in finding the null distribution:  

 “fixed λ” method: the CSR patterns will be generated from a homogeneous Poisson distribution with 

intensity λ=n/W, where n is the number of points in the observed pattern, and W is the area of the 

study region. This method is commonly used in testing spatial uniformity, but it may not work well 

for some metrics when the number of points in the observed pattern, i.e., n, is very small. The reason 

is that under a small n and thus λ, a pattern generated from the homogeneous Poisson distribution may 

contain a very small number of points, e.g., below 10, which makes the calculated metrics 

meaningless or impossible. For example, if a CSR pattern only contains, say, 3 points, the counts of 

most grids in Figure 3(a) will be zero, and thus the metrics based on the empirical distribution of 

these counts does not make much sense.  

 “fixed n” method: the CSR patterns will be generated from a Binomial distribution with n points.   

Intuitively, this is equivalent to comparing the observed pattern with what it should be if the n points 

in it are arranged uniformly. Since this method does not involve the generation of numbers following 

a Poisson distribution, it is easier to implement and does not have the issue when n is very small.      

4. Numerical Study 

A comprehensive numerical study is done to evaluate and compare the performance of metrics 

described in Section 2.2. To show the effects of factors mentioned in Section 3.2, different cases of the 

observed patterns and settings of metric parameters are considered. The scenario design and computation 
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procedure in the simulations will be described in Section 4.1, specific concerns to address in this study 

will be given in Section 4.2, and results will be presented in Section 4.3 and summarized in Section 4.4.  

4.1. Scenario design and computation procedure 

Table 3 displays the scenarios considered in the simulations. The area of patterns is set to be 1×1 for 

convenience. The specific setting of the two sets of affecting factors is as follows:  

(1) Characteristics of observed patterns: 2 levels of average intensity, 100 and 30, are considered, 

representing the cases with a large and small number of points in each pattern; 4 types of nonuniform 

patterns are considered, as shown in Figure 4, including the single-cluster patterns with one single cluster 

in the center, Matern-cluster patterns with multiple clusters, Type I line patterns with three line-shape 

clusters, and Type II line patterns with multiple line-shape clusters. These patterns are popular in 

manufacturing practices. For example, the line patterns are a typical phenomenon in nanocomposite 

fabrication due to the intrinsic boundary effect of nanocomposites [3], while the multi-cluster patterns are 

common in scaffold fabrication. For each type of nonuniform patterns, 5 levels of the degree of 

nonuniformity are considered, with a decreasing trend from L5 to L1. Definition of these levels for each 

type of patterns can be found in Appendix B.  

(2) Parameters of the metrics: 5 different settings are considered for the number of quadrats q, while 4 

settings are considered for the maximum distance D. The two methods, “fixed λ” and “fixed n”, are used 

to determine the critical values.    

Table 3. Scenarios considered in the numerical study 

 

In the study, the detection power of each metric under each scenario in Table 3 is obtained through 

the following steps:    

Step 1: Generate 10000 patterns under this scenario. The detailed procedure to generate the patterns is 

given in Appendix B. Examples of the generated patterns are shown in Figure 4.  

Step 2: For each pattern, determine the critical value by the chosen method with type I error probability 

α=0.05. Then calculate the value of the metric, and determine if the pattern is uniform by the 

decision rules listed in Table 1 and 2.   

Characteristics of observed patterns

(1) Average intensity: High (100)/Low (30)

(2) Type of nonuniformity: Single/Matern/Line I/Line II

(3) Degree of nonuniformity: L5/L4/L3/L2/L1(serious → weak)

Parameters of metrics

(4) Parameters in calculation: q=9/16/25/36/49 (quadrat methods)

D=0.04/0.06/0.08/0.1 (distance methods)

(5) Critical value: Fixed λ/Fixed n
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Step 3. The detection power is calculated by w/10000, where w is the number of patterns among the 

10000 simulated patterns which are correctly determined to be nonuniform.     

 
  Fig. 4. Examples of nonuniform patterns generated in the simulations 

4.2. Concerns to address  

The obtained detection powers will be used to address the following concerns  

(i) What is the performance of each metric in uniformity monitoring, and which metric(s) is the best? 

Since the performance of the metrics depends on the value of their parameters q or D, the average and 

best detection powers over different settings of q or D will be used in the comparison.  

(ii) How robust is each metric to the specification of parameters, and which metric(s) is most robust?  

Such robustness is desirable in practice to provide reliable assessment of uniformity that is not 

significantly affected by the specification of parameters.  

(iii) What are the effects of the characteristics of observed patterns, i.e., the number of points, and the 

type/degree of nonuniformity, on the performance of these metrics? Information on this will help 

practitioners to find metrics fitting their process.   

(iv) What are the effects of the parameters of the metrics on their performance? In other words, what is 

the appropriate specification of q for quadrat-based metrics and D for distance-based metrics? Can the 

“fixed n” method be used instead of the “fixed λ” method in determining the critical values?  
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4.3. Results 

Average and best performance over different settings of parameters 

   
                                            (a)                                                                               (b)        

      
                                            (c)                                                                               (d)            

                                            
                                                                                      (e) 

Fig. 5. Average performance of quadrat-based metrics (Group 1: (a); Group 2: (b); Group 3: (c)), 

distance-based metrics (d) and projection index (e) 

Figure 5 displays the average detection powers of the metrics under each combination of type/degree 

of nonuniformity. Note that each point in Fig. 5(a)~(c) is the average over the 5 settings of q, while that in 

Fig. 5(d) is the average over the 4 settings of D. The projection index in Fig. 5(e) is parameter free, so the 
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points are not averages. The critical values used in obtaining these results are determined by the “fixed λ” 

method, and the average intensity of the observed patterns is 100. Similar characteristics exist in the 

results obtained using the “fixed n” method and patterns with intensity 30.  

The performance of quadrat-based metrics is shown in Figure 5(a)~(c). In Group 1, the index of 

dispersion performs significantly better than the skewness index under all cases. In Group 2, the two local 

metrics, LMI and LG, exhibit better performance in most cases, and LG is better than LMI. In Group 3, 

the global entropy measure works much better than the global-local entropy measure. Figure 5 (d) shows 

the performance of distance-based metrics, where the L index works the best in all cases. The 

performance of the projection index shown in Fig. 5(e) is comparable to the L index, but not so excellent 

as ID in Fig. 5(a) and GSE in Fig. 5(c).  

 
Fig. 6. Average performance of the best metrics in each group (intensity=100) 

To see differences among the best metrics in each group (i.e., ID, LG, GSE, L and PI), their average 

detection powers are compared in Figure 6. It is clear that ID and GSE outperform other metrics 

uniformly, with 100% detection power in most cases; the L index outperforms the other two in most 

cases; and LG and PI are better than each other in some cases. Between the two best ones, GSE always 

outperforms ID, except bearing a slightly worse but still excellent enough detection power for weakest 

single-cluster patterns. Overall, we can conclude that GSE is the best in terms of average performance.  

Figure 7 shows the best detection powers of the metrics over different parameter settings. Note that 

the settings of q or D that achieved the best performance might be different under different scenarios. For 

example, for the local Moran’s I index in Figure 7(b), q=49 is the best setting for the cluster patterns, 

while q=9 is that for the line patterns. Again, the conclusion is that GSE is the best metric.  
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                                        (a)                                                                        (b) 

 
                                       (c)                                                                        (d) 

Fig. 7. Best performance of quadrat-based metrics (Group 1: (a); Group 2: (b); Group 3: (c)), distance-

based metrics (d) and projection index (e) 

Robustness to parameter specification 

The robustness of a metric to parameter specification, i.e., the setting of q for quadrat-based metrics 

and that of D for distance-based metrics, is inversely indicated by the variability of the detection power of 

this metric over different settings of the parameters. As there are only 5 settings of q and 4 settings of D 

considered in the study, the range, i.e., difference between the largest and smallest detection power over 

the settings, will be used as the measure of robustness. Values of this measure are shown in Figure 8. 

Note that the robustness issue does not exist for the parameter-free projection index.  

From Figure 8(a), we can see that ID is more robust than SI in that its detection power varies less 

under different settings of q in most cases. In Group 2 of quadrat-based metrics, the performance of all the 

metrics varies dramatically under different parameter settings, and the range of detection power of some 

metrics can be as large as close to 1 in some cases, meaning that these metrics can detect nonuniform 

patterns 100% surely when q is appropriately specified, but not so at all under other settings of q. In other 

words, they are very sensitive to parameter specification. In Group 3, the global entropy measure shows a 

much smaller variability and thus a much higher robustness than the global-local entropy measure. The 

robustness of GSE is even better than ID in Group 1. In Fig. 8(d), the G index and J index are the ones 
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with the best robustness to the specification of D among distance-based metrics, but in most scenarios, 

they are not so robust as GSE. Overall, GSE is the most robust metric to parameter specification.  

   
                                          (a)                                                                                 (b)  

   
                                          (c)                                                                                 (d) 

     Fig. 8. Robustness of quadrat-based metrics (Group 1: (a); Group 2: (b); Group 3: (c)), and distance-

based metrics (d) 

Effects of characteristics of observed patterns 

The effects of the characteristics of observed patterns on the performance of these metrics can be seen 

from Figure 5~7. To make the features clearer, the average performance of the best metrics in each group 

when the intensity of the patterns is 30 is given in Figure 9, which is the counterpart of Figure 6 where the 

intensity is 100. The following are the findings from the results in Fig. 6 and 9: 

(1) Effect of the number of points: For patterns with a smaller number of points, the detection power of all 

the metrics decreases. This is expected as clustering will not be manifested by a smaller number of points 

so clearly as by a large number of points, and thus is likely to be missed in the monitoring. 

Comparatively, GSE is still the best one in terms of average performance in this case.  

(2) Effect of type of nonuniformity: Matern-cluster patterns and Type II line patterns are more difficult to 

detect than the single-cluster patterns and Type I line patterns. Intuitively, this is because the Matern-

cluster patterns, which bear multiple clusters, and the Type II line patterns, which contain multiple line-
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shape clusters, have a wider spread within the study region and thus are closer to CSR. This can be seen 

clearly from the plots in Figure 4 where the Matern patterns and Type II line patterns are very similar to 

CSR especially when the degree of nonuniformity is weak.  

(3) Effect of degree of nonuniformity: In general, the higher the degree of nonuniformity, the higher the 

detection power of the metrics. When the degree of nonuniformity is very serious (e.g., at level L5), most 

of them exhibit satisfactory performance with detection power over 90% even when the number of points 

is small, while when the degree of nonuniformity is very weak (i.e., at level L1), even the most powerful 

ones, e.g., GSE, do not perform very well. In addition, there are several metrics which show opposite 

trends under some scenarios, that is, their detection power may increase as the degree of nonuniformity 

decreases. For example, in Fig. 5(b), the power of MI, LMI and GC shows such a trend for Type I line 

patterns. A possible explanation is that when the points form tight lines (i.e., at level L5), the correlation 

among spatial neighbors is actually weak because some neighbors may have no points falling in it, and 

thus the correlation measure will be low.   

 
     Fig. 9. Average performance of the best metrics in each group (intensity=30) 

Effects of parameters of metrics 

(1) Effect of q and D: Figure 8 implies that the performance of most metrics depends substantially on the 

value of their parameters, i.e., the number of quadrats, q, for quadrat-based metrics, and the maximum 

distance, D, for distance-based metrics. Thus, these parameters need to be chosen appropriately to achieve 

good performance. Based on the simulation results, it is found that the appropriate choices of q and D 

vary among metrics and scenarios. Table 4 gives the settings of q or D that lead to the highest detection 

power for the best metrics in each group. Note that when more than one setting of the parameters yield the 

highest detection power, the smallest setting is reported in the table.  
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          Table 4. Appropriate settings of parameters (q and D) for the best metrics in each group 

 

The results in Table 4 suggest that for ID and GSE, a small number of quadrats, such as 9, is adequate 

to yield excellent performance when the number of points in the pattern is large, and a little larger value, 

such as 16, should be chosen when the number of points is small. In fact, considering the robustness of 

these two metrics as indicated in Fig. 8(a) and (c), the setting of q will not have significant impact on their 

performance. For LG, the appropriate choice of q varies dramatically for different types of patterns. Since 

the type of an observed pattern is unknown in quality monitoring, there will be some difficulty in 

specifying the value of q in using LG. For the L index and g index, a large value of D should always be 

chosen, which provides convenience in using these two metrics in practice.  

(2) Effect of methods to determine critical value: It is found that the metrics form three groups in terms of 

their performance under the two methods to determine critical values: For ID, SI, GSE, GLSE, LMI and 

LG, the “fixed λ” method always yields a higher detection power, especially when the number of points in 

the observed patterns is small. As an example, Figure 10(a) shows the detection powers of GSE (intensity 

of patterns=30, single-cluster patterns, q=25) under these two methods. For the F index and J index, the 

situation is opposite. Figure 10(b) shows the detection powers of F index under the two methods. For the 

remaining, their performance under the “fixed λ” method and that under the “fixed n” method are similar.   

To find more details on the difference of metrics in the first two groups, their critical values for 

different values of n are obtained, as shown in Fig. 10(c) and (d). According to Fig. 10(c), the critical 

values of GSE determined by the two methods bear no considerable difference when the number of points 

in a pattern is large (>50), whereas the critical values resulted from the “fixed λ” method are higher than 

those from the “fixed n” method when the number of points is small, thus leading to a higher detection 

power as shown in Fig. 10(a) by the lower-sided decision rule used for GSE. For the F index, the critical 

values resulted from the “fixed λ” method are always lower than those from the “fixed n” method, leading 

to a uniformly lower detection power as shown in Fig. 10(b).  
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                                                    (a)                                                                (b) 

 
                                                     (c)                                                             (d) 

Fig. 10. Comparison of the two methods for determining critical values: detection power (a) and critical 

values (c) of GSE, and detection power (b) and critical values (d) of F index 

4.4. Summary of results and general guidelines 

The results of the numerical study provide the following answers to the concerns listed in Section 4.2:  

(i) The global Shannon entropy (GSE) measure is the best metric in terms of the average and best 

performance over different parameter settings.  

(ii) GSE is also the most robust metric to the specification of parameters.  

(iii) The performance of these metrics is significantly affected by the characteristics of the observed 

patterns. In general, a pattern with a larger number of points will be detected with a higher probability; 

Multiple-cluster patterns are more difficult to detect than single-cluster patterns; a pattern with a higher 

degree of nonuniformity will be captured more easily.  

(iv) The performance of these metrics is also significantly affected by the specification of parameters. In 

general, appropriate specifications vary from one metric to another and depend on the characteristics of 

the observed patterns as well. The exceptions include ID and GSE whose performance is quite stable in 

most cases, and the L index and g index for which a large value of the parameter, D, is always preferred. 

The two methods to determine critical values, “fixed λ” and “fixed n”, lead to similar performance for 

some metrics, and different performance for others. For ID, SI, GSE, GLSE, LMI and LG, the two 

methods yield similar performance when the number of points in the observed pattern is relatively large; 

otherwise the “fixed λ” method will produce a higher detection power. For the F index and J index, the 

“fixed n” method always yields a better performance.  
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Considering all the above aspects, the global Shannon entropy measure will be recommended for 

uniformity monitoring. This metric performs the best or among the best for all types of patterns, and is 

most robust to parameter specification. Such good features are not surprising since it is well known that 

entropic measures are powerful in characterizing information contained in random variables. However, 

several new findings regarding their performance are obtained in our study: the global Shannon entropy 

measure works better than the global-local entropy measure in uniformity monitoring; the global entropy 

measure, which utilizes only count information, performs better than the distance-based metrics which 

take the location information into consideration; and the performance of the entropy measure is not 

sensitive to the specification of the number of grids. These findings will add to the general understanding 

of entropy measures. 

To achieve the best performance when using the global Shannon entropy measure in uniformity 

monitoring, the following general guidelines are provided on the specification of its parameters: (1) When 

the number of points in the observed pattern is large, a small value can be specified for q; when the 

number of points is small, choose a relatively large value for q. (2) When the number of points is large, 

the “fixed n” method can be used to determine the critical value since it is simpler than the “fixed λ” 

method while yields similar performance; when the number of points is small, the “fixed λ” method 

should be used; when the number of points is extremely small and the “fixed λ” method fails, the “fixed 

n” method can be used as a substitute.       

5. Case Study 

To demonstrate the use and effectiveness of the metrics on uniformity monitoring, they are applied to 

two sets of image data from manufacturing processes. The first set, as shown in the upper panel of Figure 

11(a) and (b), is the SEM images from an ultrasonic-based aluminum nanocomposite fabrication process. 

Details of this process can be found in Yang et al. [27], and Yang and Li [28]. This process uses 

ultrasonic waves to distribute nanoparticles in order to achieve uniform particle distribution, which is a 

novel way for MMNC fabrication. The nanocomposite matrix used in this study was made of 99.8% 

(weight) aluminum and 0.2% titanium. To the alloy, 1% aluminum-oxide nanoparticles was added. These 

images have been used in the study of Zeng el al. [3] for assessing the boundary effect of the 

nanoparticles. The second set, as shown in the upper panel of Figure 11 (c) and (d), is the SEM images 

from a tissue-engineered scaffolds fabrication process based on urethaned-doped polyester elastomers 

(CUPEs). Details of this process can be found in Dey et al. [29], and Yang et al. [30]. The CUPEs is a 

novel class of biomaterial which has excellent materials properties to be used for fabricating scaffolds of 

soft tissues such as blood vessels and cardiac tissues. The white dots in the images are NIH 3T3 fibroblast 

cells in the scaffold. 
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Before applying the metrics, some image preprocessing procedures are applied to grayscale SEM 

images to obtain point patterns as shown in the lower panel of Figure 11. The preprocessing procedures 

consist of three main steps: (1) converting grayscale images to binary images, (2) morphological 

operations for particle separation, and (3) identifying mass centers of particles. These procedures have 

been extensively studied and numerous well-established methods are readily available in the area of 

computer image analysis. After preprocessing the SEM images, the particles in the images are denoted by 

their mass centers, and then they can be modeled as spatial point patterns. The calculated values of the 

global Shannon entropy measure are given in Table 5, where the critical value, C, of Image (a), (b) and 

(c) is determined by the “fixed λ” method with α=0.05, and that of Image (d) is determined by the “fixed 

n” method due to the small number of points in that image. A lower-sided decision rule is used here, 

which means that values of this metric smaller than the critical value will be concluded to be nonuniform.  

 
               (a)                                (b)                                      (c)                                              (d) 

   Fig. 11. SEM images in nanocomposite fabrication ((a), (b)) and scaffold fabrication ((c), (d)) 

Table 5. Calculated values of the global Shannon entropy measure 

  

Since Image (a)~(c) contains a relatively large number of points, results under q=9 is reliable enough. 

Image (d) contains a small number of points, so results under q=36 and 49 will be used. Between the 

images from the nanocomposite fabrication process, (a) represents a case of serious nonuniformity, while 

(b) represents a case of weak nonuniformity. Consistent with this, the corresponding GSE value of (a) is 

1µm

n
q=9 q=16 q=25 q=36 q=49

C GSE C GSE C GSE C GSE C GSE

(a) 72 0.95 0.61 0.94 0.70 0.92 0.67 0.90 0.72 0.88 0.70

(b) 75 0.96 0.92 0.94 0.88 0.92 0.87 0.90 0.86 0.88 0.82

(c) 77 0.79 0.98 0.74 0.95 0.69 0.94 0.65 0.91 0.62 0.91

(d) 15 0.75 0.88 0.70 0.78 0.66 0.74 0.62 0.70 0.59 0.65
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considerably smaller than the critical value, and that of (b) is slightly smaller than the critical value. 

Between the images from the scaffold fabrication process, (c) is quite uniform, and this is validated by the 

corresponding GSE value which is much larger than the critical value. Image (d) exhibits weak 

nonuniformity, but the corresponding value of GSE is a little larger than the critical value, meaning that 

the nonuniformity is not captured. According to the numerical study, this is understandable since the 

number of points in the pattern is so small.  

6. Summary 

The need for assessing spatial uniformity of particle distributions widely exists in quality control of 

many manufacturing processes. The existing uniformity metrics that have been developed in many other 

areas can be applied for this purpose. To provide guidelines on the use of these metrics in uniformity 

monitoring, this study compares the performance of existing metrics in detecting nonuniform particle 

distributions under different practical scenarios through simulation. It is found that the performance of 

these metrics depends significantly on the characteristics of the observed patterns as well as the 

parameters of these metrics. The global Shannon entropy measure performs the best under all scenarios in 

terms of its average and best detection power over different parameter settings and robustness to 

parameter specification. Guidelines on the use of this metric are also provided. A case study is done in 

which this metric is applied to image data from two emerging manufacturing processes to demonstrate its 

use and effectiveness.  
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Appendices 

Appendix A: Procedure to calculate the projection index 

This index is developed based on projecting coordinates of points onto a 

rotating axis as illustrated in Figure A.1, with a coordinate system established at 

the center of the study region. The value of the projection index will be obtained 

following the steps below: 

Step 1: Rotate the x axis counterclockwise by θ, where θ = 0
°
, 1

°
, …, 179

°
. 

Project all points (xi, yi) in the observed pattern onto the axis and obtain the 

projected coordinates by 

                                                                niyxx iii ,...,1       sincos,  
 

Step 2: Denote vi,θ as the distance between each pair of adjacent points in xi,θ. Calculate the squared 

coefficient of variation for vi,θ 

                                                                    2

,, )/(  vvsSCV   

where sv,θ and µv,θ are sample standard deviation and mean of vi,θ, respectively.  

Step 3: Calculate all the 180 SCVθ at different angles and obtain the index as 
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Fig. A.1. Rotating axis
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Appendix B: Procedure to generate the patterns in Figure 4 

(1) Single-cluster patterns: These patterns are generated by the superimposition of two point patterns: a 

Poisson distribution with a high intensity generated within an ellipse at the center of the study region, and 

a Poisson distribution with a low intensity generated in the entire study region. Given the average 

intensity (100 or 30 in the numerical study), p% of the points are generated randomly within the ellipse in 

the center, while the remaining (100p)% points are generated within the entire region. 5 levels of p are 

considered in the simulations: 80(L5), 70(L4), 60(L3), 50(L2), 40(L1). 

(2) Matern-cluster patterns: These patterns are generated through two steps: First, a Poisson distribution 

of parent points is generated with intensity 1, and then each parent point is replaced by a random cluster 

of points of intensity 2, within radius rM of the parent point. In the simulations, 1=2=10, and 5 levels of 

rM are considered: 0.05(L5), 0.1(L4), 0.2(L3), 0.3(L2), 0.4(L1). 

(3) Line patterns: These patterns are generated through two steps: First, points following a Poisson 

distribution are generated on the line segments, and then each point is randomly jittered within a disc of 

radius rl centered at its original location. 5 levels of rl are considered for both the Type I and Type II line 

patterns: 0.02(L5), 0.05(L4), 0.1(L3), 0.15(L2), 0.2(L1).       
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