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Abstract

Multivariate adpative regression splines (MARS) provideaible statistical modeling method that employs forward
and backward search algorithms to identify the combinaifdrasis functions that best fits the data and simultaneously
conduct variable selection. In optimization, MARS has baead successfully to estimate the unknown functions
in stochastic dynamic programming (SDP), stochastic pnogning, and a Markov decision process, and MARS
could be potentially useful in many real world optimizatiproblems where objective (or other) functions need to
be estimated from data, such as in simulation optimizatMany optimization methods depend on convexity, but a
nonconvex MARS approximation is inherently possible beeaimteraction terms are products of univariate terms.
In this paper a convex MARS modeling algorithm is describdd.order to ensure MARS convexity, two major
modifications are made: (1) coefficients are constrainech that pairs of basis functions are guaranteed to jointly
form convex functions; (2) the form of interaction terms igeged to eliminate the inherent nonconvexity. Finally,
MARS convexity can be achieved by the fact that the sum of @offunctions is convex. Convex-MARS is applied to

inventory forecasting SDP problems with four and nine digiems.



1 Introduction

Computer modeling is having a profound effect on scientdmearch. Many processes are so complex that physical
experimentation is too time-consuming, too expensiveropi impossible. As a result, experiments have increagingl
turned to mathematical models to simulate these complerersygs Advances in computational power have allowed
both greater complexity and more extensive use of such modeie purpose of design and analysis of computer
experiments (DACE, Sacks et al. 1989; Kleijnen 2008; Chah €006) is to provide methods for conducting computer
experiments to build a metamodel that can be efficiently eyrgal to improve the performance of a complex system. In
DACE, the computer experiment replaces the physical exygeri by organizing computer model runs and observing
the model output of performance. A common DACE objective igtitain a computationally-efficient response surface
approximation (a.k.a., metamodel) of the output. This metdel may then be used to study and potentially “optimize”
the performance of the system. The effectiveness of an @atiimn method in using a metamodel to improve system
performance depends on the convexity of the objective fan¢t. uenberger 2004). A nonconvex metamodel requires
a global optimization method, and in practice these cannatantee optimality. Consequently, if the true underlying
performance objective function is known to be convex, itighly desirable for the approximating metamodel to share
this critical property.

Multivariate adaptive regression splines (MARS, Friednmi®91) modeling has been applied in DACE-based
approaches for some large-scale optimization problerokjdimg continuous-state¢achastic gnamic pogramming
(SDP, Chen 1999; Chen et al. 1999; Tsai et al. 2004; Tsai amth @B05; Cervellera et al. 2007; Yang et al. 2007,
2009), Markov decision processes (MDP, Chen et al. 2003jeipa et al. 2007, 2008), and two-stage stochastic
programming (SP, Pilla et al. 2008, 2012; Shih et al. 2012)e DACE-based SDP and MDP approaches used an
experimental design to discretize the continuous (or meatinuous) state space, and then used MARS to approximate
the continuous value function over the state space. The Mijfication studied an airline revenue management
problem with the objective of more accurately estimating fhir market value of a seat over time. The two-stage
SP problem studied an airline fleet assignment model th&iss@® assignment of aircraft in the first stage, so that
swapping of crew-compatible aircraft can be achieved irstend stage to maximize expected revenue. The DACE
approach for SP was used to create a MARS approximation diritestage expected revenue objective function,

so as to speed up the first-stage optimization. MARS has hemessful in these applications not only because of



the flexibility of its modeling, but also its parsimony. Fareny is critical in achieving computational-tractalylit
in large-scale complex problems. Shih et al. (2012) addedta w©hining variable selection phase that reduced the
dimension of the airline fleet assignment model from abo@01® 400 variables prior to executing DACE, so as to
reduce the computational effort of DACE from 2.5 days to amested 0.5 days.

Under the assumption that an optimization functfois convex, it is desired that the response surface metamodel
f that estimateg’ be convex as well. For example, in the above-mentioned SM,Mnd SP problems, the under-
lying function is theoretically convex. Convexity is notypical assumption of statistical modeling methods, and a
specialized approach must be developed. There are seyiah® for DACE metamodeling, including polynomial
response surface models (Box and Draper 1987), spatialabon models, a.k.a., kriging (Sacks et al. 1989), MARS,
regression trees (Breiman et al. 1984; Friedman 2001), gifit@ neural networks (Haykin 1999). None of these
guarantee convexity. Convex-MARS uses the modificatiorotti the MARS basis functions and algorithms to build

a sum of convex functions; therefore, the final approxinmatidl be convex.

2 Multivariate Adaptive Regression Splines (MARS)

Friedman (1991) introduced MARS as a statistical methodchfgh-dimensional modeling with interactions. The
MARS model is essentially a linear statistical model witlanwfard stepwise algorithm to select model terms followed
by a backward procedure to prune the model terms. A unieaviatsion (appropriate for additive relationships) was
presented by Friedman and Silverman (1989). The MARS ajpaiion bends to model curvature at “knot” locations,
and one of the objectives of the forward stepwise algoritertoisimultaneously select variables and appropriate
knots. After selection of the basis functions is completadpothness to achieve a certain degree of continuity may
be applied. MARS is both flexible and easily implemented wlidn computational effort primarily dependent on the

number of basis functions added to the model. The MARS ajfmiation is a linear model:
) M
far(@;8) = Bo + D B Bm(),
m=1

whereB,,, () initially is a basis function of the form described below guation (1) that later can be smoothéd,

is the number of linearly independent basis functions, @nds the unknown coefficient for the:-th basis function.



In the forward stepwise algorithm, univariate basis fumtsiare represented in the form of truncated linear funstion
b (z;k) = [+(z = B)|4, 07 (z3k) = [~(z — k)], @

where[g]+ = max{0, ¢} andk is a univariate knot. The set of eligible knots are assigmgrhsately for each input

variable dimension and are chosen to coincide with inputiterepresented in the data. Interaction basis functians ar
created by multiplying an existing basis function with antcated linear function involving a new variable. Both the
existing “parent” basis function and the newly createdriaxtéon basis function are used in the MARS approximation.

Thus, the form of then-th basis function is

m

Bun(@) = [[Istm - @uttmy — k)]s

=1

wherez,; ., is the input variable corresponding to thé¢h truncated linear function in the:-th basis function,
ki,m is the knot value corresponding Q; ,,), ands; ., is +1 or —1. L, is the number of truncated linear functions
multiplied in them-th basis function. The search for new basis functions cardiected to interactions of a maximum
order (e.g.,L,, < 2 permits up through two-factor interactions). Using a gaheed cross-validation lack-of-fit
criterion, basis functions are added in pagsrresponding to the two forms in equation (1). The alganistops when
Mmax basis functions have been selected, whifig,« is user-specified. The original forward MARS algorithm is
represented in Algorithm 1, and the key to Convex-MARS i®netruction of this forward algorithm.

The MARS backward algorithm was intended to eliminate otter§j, but due to the extremely low error variability
in most DACE applications, this can often be omitted to saympmutational effort. To compensate for the omission
of the backward algorithm, Tsai and Chen (2005) modified tHeR8 forward algorithm to incorporate an automatic
stopping rule (ASR) and seek more robust models with fewgr-oirder interaction terms. Instead of using the original
MARS stopping rule that depends on a user-specififgly in the MARS forward stepwise algorithm, ASR stops
automatically based on the improvement in the coefficiertetérmination or adjusted coefficient of determination.
This enables an automated implementation of MARS modeidittiithin optimization routines (Tsai and Chen 2005).
The robust component aims to obtain a MARS approximatiohishiass sensitive to extreme points by selecting the
lower-order terms over high-order ones given the contidimgtor fits are comparable. The actual implementation of
Convex-MARS is based on Robust ASR-MARS; however, for tfatfie presented Convex-MARS forward algorithm

will follow the structure of Algorithm 1.



Friedman’s MARS provides a continuous first derivative gwédrere by replacing the truncated linear basis func-
tions with cubic functions after completing the forward dradkward algorithms. To give MARS a continuous second
derivative everywhere, quintic functions derived by ChE993) are used in place of Friedman’s cubic functions. First
define two side knots andk_ (in addition to the original center kné). Then defineA =k, —k_, Ay = ky — &,

andA; = k — k_. The quintic functions can be written as:

0, r<k_
Qals = +1,k_. k. ki) = ap(z— k) + Bi(z — ko) + e (2 — ko), ko <o <ky 2)
r—k, x> kg,
where,
[6A1 — 4A,]
T A
_[=8A1 + TAY]
B+ = T AT
[BA1 — 3A,]
WE A
and
k—x, x<k_
Qals = —L k. k ki) = a_(x—ki)®+B_(z — k)t +v-(z — ky)5, ko <z <ky ®3)
0, xT Z k+,
where,
_ [4A; —6Ay]
T A
[TA; — 8A,)]
p- = AT
[3A1 — 3A,]
T TTAS

3 Achieving Convexity in MARS

To guarantee MARS convexity, two major modifications are enad) coefficients are constrained, such that pairs

of univariate basis functions are guaranteed to jointlynfaonvex functions; (2) the form of interaction terms is



altered to eliminate the inherent nonconvexity. A preliamnversion of Convex-MARS (Shih et al. 2006) essentially
incorporated these modifications to guarantee convexitwever the flexibility of this version was limited, so the
current paper presents an improved version. Convex-MARGimes the following algorithms: (i) Convex Interaction
Transformation Algorithm (CIT), to create the convex forofishe interaction basis functions, (ii) Forward Coeffidien
Restriction Algorithm (FCR), to incorporate convexity trétions on the model coefficients while selecting basis
functions, and (iii) Backward Pruning and Refitting Algbrit (BPR), to check for nonconvexities and eliminate
them. The BPR algorithm is needed because MARS basis funsctie overlapping; hence, the addition of new basis
functions can alter the existing coefficients. However, 8 eanstructed Convex-MARS approximation should make

minimal use of BPR.

3.1 Convex Univariate Terms

A univariate basis function is either unpaired or one of a pdied corresponding to the two forms in equation (1).
An unpaired univariate basis function takes on only one efftrms in equation (1). In this case, it will only form
a convex term in the MARS approximation if its coefficient mnnegative. In the case of a pair of univariate basis
functions, the coefficients of a pair are considered togetRer example, the top two plots in Figure 1 display two
forms in equation (1) witkk = 0. The lower left plot in Figure 1 shows the sum of a pair of uriae terms that
yields a convex function while the lower right plot shows then of a pair that yields a concave function. The key is
the sum of the coefficients for the pair. For the convex furctthe two coefficients are 1.0 ard).5, which sums to
0.5. However, for the concave function, the two coefficientslafeand—1.5, which sums to-0.5. It can be seen that
the critical value of the sum is zero, so a convex functionlmaguaranteed if that sum is nonnegative.

< Figure 1 here>

3.2 Convex Interaction Terms

A nonconvex MARS approximation is inherently possible hesesinteraction terms are products of univariate terms.
In this case, not only must the coefficient for the interathbasis function be constrained, but also a new convex form is
needed to successfully construct Convex-MARS. In padicariginal MARS utilizes a simple routine for smoothing

each basis function to achieve continuous derivatives,idgeally the new convex interaction basis functions would



utilize the same smoothing routine. Thus, the Convex-MARSraction basis functions are constructed so that the
smoothing in Section 2 can be applied. To achieve this, thiablas involved in the interaction basis function are
transformed via a rotation of their axes, and univariatadated linear basis functions are formed along the rotated
axes. Figure 2 illustrates two-way interaction terms fahlmriginal MARS and Convex-MARS. The nonconvexity of
the interaction terms of original MARS is clearly visible #ehour proposed modification eliminates this issue. Finall
in addition to modifying the form of the interaction term,efficients must be constrained in the same manner as
univariate basis functions in the previous section. Detail the algorithms for Convex-MARS are given in Section 4.
< Figure 2 here>
To solve the problem due to inherently nonconvex interact&mms in the original MARS algorithm, the convex

form of them-th interaction basis function for Convex-MARS is propossdollows:

L’V?L
Bm(m) = [Z{Sl,m : (fv(l,m) - kl,m)/(l - Sl,mkl,m)}]Jr .
=1
where the notation is the same as defined in Section 2. Thexdarm of interaction basis functions transforms the

multiple variables in the interaction to a one-dimensioralable via a linear combination. Given the set of variable

Ty(1,m) for an interaction term and corresponding knhts, and signss; ,,, define:
Ly—1
wO(w) - Z {Sl,m . (xq)(l,m) - kl,m)/(l - Sl,mkl,m)} 5
=1
w1 (SC, SL,m) =SLm " (xv(Lm,m) - kLm,m)/(l —SL.m kLm,m) .
wherewy () represents the components of an existing basis functiaerfpterm),w; () represents the split com-

ponent on variabler, . ) that creates a new interaction term. Sign,, (—1 or +1) determines two distinct

one-dimensional variable directions:
2 () = wo(x) + wi(x;spm = +1) 5 27 (x) = wo(x) + wi(T;80.m = —1) . 4

To show that* or 2~ are linear combinations of the input variables, re-write:

Lp—1
wo(x) = ap + Z ap Ty(rm) (5)
=1
where,
Lim—1
ag = Z kimsim/ (Stmkim — 1) 5 ar = Spm /(1 = symkim) (6)

=1



and
w1 (my SL,m) = SL,'kam,nL/(SL,m kLm,m - 1) + SL,m/(l - 3L,7rszm,7n) . xv(Lm,m) . (7)

Givenzt or z—, we can now define pairs of univariate truncated linear fonst as in equation (1), with sigh

either+1 or —1 for each pair:

DY) = [HET -l b)) == - 1))y or (8)

breim) =+ =1l bETT) = [-(T —1) ©)

Because the transformation defined in equations (4)—(9)tedsmsforms the multivariate knétto - = 0 in equa-

tions (8)—(9), the two candidate pairs of interaction b&sigtions for Convex-MARS are as follows:

By(@;¢m = +1) = [z7]y , Bpsi(xi6m = —1) = [-27]4 or (10)

Bon(x;0m =+1) =27 ]+, Bmypr(®;0m =—1)=[-2"]4 . (11)

To better understand the role ¢f,, consider the two-way interaction example shown in Figur&3ots for the
two input variablesr; andxz, are0.25 and —0.5, respectively, and; ,, = —1. The upper two contour plots set
s2.m = 1 and demonstrate the pair of two-way interaction basis fanstwith ¢,,, = +1, and¢,, = —1. Similarly,
the lower two contour plots set ,,, = —1 and show the pair of two-way interaction basis functionswif, = +1
and¢,, = —1.

< Figure 3 here>

3.3 Convexity Proof

The convexity constraints on the coefficients were idertifiased on the truncated linear basis functions, but the final
MARS approximation employs the smoothed quintic functionequations (2) and (3). In this section, a convexity
proof is provided for the pairs of MARS univariate terms inrgic form. The proof of convexity of a pair of Convex-
MARS interaction terms in quintic form is identical for botimivariate basis functions and interactions using the

transformed variables™ or ~. The goal is to prove that the combined pair of univariatenter

Q= B1Q(als = +1,k_ kb, k) + 52Q(als = —1,k_, k, k) (12)



is a convex function orfk_, k], where3; and 3, are coefficients of basis functions. As illustrated in Feydy,
convexity is assured for the truncated linear function$ if- 52 > 0. Without loss of generality, we express this case

asfs, = —f1 + d, whered is a nonegative constant,> 0, and rewrite equation (12) as:

Q=05Qls=4+1k_k ki) — Qs =—-1,k_,k ki) +dQ(x|s = =1, k_, k, k). (13)

A twice differentiable function is convex if and only if itesond derivative is> 0. To prove that equation (13) is a
convex function orfk_, k. ], we take the second derivative @f with respect tar, and then we have the following

equation (please refer to the notation in Section 2:

_— (6[6A1 —4alle k)] | 1280+ IO = ko] | 200381 =38 )
ﬁl<6[4A1—6i23M<x—k+n+12[m1—82§[<x—k+>2]+ [3A1—3A2 (2= ky)? >+
; (6[4& ~6dle — k)] | 12780 = 8Aflr —he] | 20038 = 32251[< k+)3]) o

Nonconvexities are produced in the cubic and quintic basistfons when the center knbtis not close enough

to the midpoint betweeh_ andk (Chen 1993). Specifically, to avoid such nonconvexitiespwist constrain

A2

Ay 2
“l>Zand=2>: (15)
A 25y =5
To simplify equation (14), we use the fact thiat = A — Ay:
5A1 —3A)(x — k 1541 — 8A][(z — ky)? 10A; — 5A][(z — k)3
o _ md(( 1= 30w =) | 150 = 8w = k)] | (1081 = 5w = k) ])7 16)
and from equation (15) we constrain
2 Ay 3
o< Z
5= A 5 (A7)
Without loss of generalityd = 1 is specified, and equation (16) is reduced to:
2
Q" = 60d(L — F{FI(Ar = 2) + F(1 = 2A0)]},
wheref = (x — k_) and(1 — f) = (k4 — x). Sinced > 0 and0 < f < 1, proving@” > 0 requires showing:
2
(A1*5)+f(1*2A1) = 0. (18)

Under the constraint in (17), the left-hand side of (18) isimized atf = 1 andA; = % at which it is equal to zero.

Hence, equation (18) holds, afdis convex onfk_, k].

10



4 Algorithms for Convex-MARS

4.1 Convex-MARS Forward Coefficient Restriction Algorithm

In Convex-MARS, the forward stepwise procedure of origiM@iRS is modified to check the coefficients of newly
added basis functions according to the criteria describeSeiction 3.1 and Section 3.2. This modified algorithm
constrains the coefficients for the basis functions throug/the search process. Whenever there are basis functions
being added to the current set of basis functions, eitheirapan unpaired basis function (univariate or interaction
is possible. In the first case, the sum of the two coefficiergscanstrained to be nonnegative. In the latter case,
the coefficient is restricted to be nonnegative. In the priglary version of Convex-MARS (Shih et al. 2006), the
interaction basis functions were not added in pairs, limgithe flexibility of the Convex-MARS approximation.

The forward coefficient restriction algorithm (FCR) is shoim Algorithm 3. FCR incorporates the convex inter-
action transformation (CIT) in equations (4)—(7) that iswh in Algorithm 2. To improve the fit of Convex-MARS
interaction basis functions, FCR conducts a more flexildectefor candidate pairs of basis functions. This is acldeve

by considering both pairs in equations (10)—(11) into thea®loop for interaction terms.

4.2 Convex-MARS Backward Pruning and Refitting Algorithm

Since MARS basis functions are overlapping, the coeffisiemy change each time new basis functions are added in
the model. The backward pruning and refitting algorithm (BRRchecks the coefficients after running FCR, searches
for convexity violations and removes them. Intuitivelytlie true underlying function is convex, then basis funcion
that introduce potential nonconvexity should not be needret a pair of basis functions that violate convexity, the
basis function with the smaller coefficient will be droppldwever, if both coefficients are negative, this pair will be
dropped completely. If any basis functions are dropped) envex-MARS must be refit with the remaining basis
functions. This process repeats until no more violatioesaund. It is then that the approximation can be guaranteed

to be convex.
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4.3 Convex-MARS Forward Coefficient Restriction Threshold Aborithm

The use of BPR is a necessary, but not ideal means of guairsgntamvexity. One practical approach to minimizing
the need for BPR is to require stricter convexity in FCR. Impaoitational studies of Convex-MARS, we have observed
that pairs whose coefficients barely satisfy convexity aoeenlikely to turn nonconvex in later iterations. Hence,
FCR was modified from Algorithm 3 to Algorithm 5 to employ aister thresholdon convexity. In FCR with a
stricter threshold (FCR-T), the candidate basis functiamesthe same as FCR. However, instead of only requiring
nonnegativity on the sum of a pair of coefficients (or singleficient for an unpaired case), a strictly positive thodgh

is specified.

The challenge now lies in selectingltaesholdvalue. One guideline is to run original MARS (with standasedi
variables) on the data set, then set the threshold to be aboui% of the absolute value of the maximum estimated
coefficient. If thethresholdis set too high, then this can reduce flexibility since fewamndidate basis functions will
satisfy the stricter convexity constraint. If the seledta@sholdis too low, then there will be little difference between

FCR and FCR-T. In practice, if many basis functions are resdosa BPR, then the threshold is too low.

4.4 Convex-MARS Smoothing Procedure

The smoothing routine in Convex-MARS uses the quintic fiomst presented in Section 2. For the interaction terms,
CIT transforms the multiple variables in the interactionmento a one-dimensional variable™ or z~. Since the
transformed center knot is always zero for the interactawms of Convex-MARS, the corresponding side knots can
be set symmetrically at and—«, wherex can be considered as a smoothing factor. The larger the bingdactor

is, the smoother the quintic function will be. Assuming staized units, one recommendation £ois 0.5.

5 Inventory Forecasting Application

In this section Convex-MARS is tested on four-dimensiomal aine-dimensional inventory forecasting SDP problems
studied by Chen (1999). The goal of the inventory forecggtimblem is to minimize inventory holding and backorder
costs. The state of the system is represented by the inydietals for the products and their demand forecasts. The

optimal value function, known to be theoretically convepesifies the minimum expected cost to operate the system,

12



and is a function of the system state. The versions of MARSitstiedata from the last time period of the three-period

inventory forecasting SDP.

5.1 Four-dimensional Inventory Forecasting Problem

In this inventory forecasting SDP problem, there are twalpots, each with one demand forecast. MARS was fit to
a data set of 125 points from the last period, using the sathegonal array experimental design studied in Chen
(1999). Table 1 summarizes the parameter settings formalidflARS, the preliminary version of Convex-MARS,
Convex-MARS and Convex-MARS-T (Convex version of MARS wittefficient threshold constraint). A set of 100
randomly generated validation data points is used to coarpardifferent models, and boxplots of the absolute errors,
computed using the formulg — f|, are shown in Figure 4, whergis the actual cost of the system, aﬁds the
MARS or Convex-MARS prediction.

< Table 1 here>

< Figure 4 here>

5.2 Nine-dimensional Inventory Forecasting Problem

In this inventory forecasting SDP problem, there are thmeelypcts, each with two demand forecasts (for next time
period and the one after). MARS was fit to a data set of 1331tpdiom the last period, using the same orthogonal
array experimental design studied in Chen (1999). Tablen2nsarizes the parameter setting for original MARS,
Convex-MARS and Convex-MARS-T. A set of 1000 randomly gatext validation data points is used to compare the
three different models, and boxplots of the absolute eroonsputed using the formu|g — f\, are shown in Figure 5,
wherey is the actual cost of the system, afiis the MARS/ Convex-MARS approximations for the actual cost

< Table 2 here>

< Figure 5 here>

Table 3 shows different values for the threshold that wesgetefor both, the four-dimensional and the nine-

dimensional inventory forecasting problems. They werengeffibased on various percentages of the maximum ab-
solute coefficient of the MARS approximation. For the foimdnsional case, the minimum value for the median

absolute error was obtained from 5.78% to 8.00%. For the-dimensional case, a lower value for the median ab-

13



solute error was obtained from 1.12% to 1.61%. Additiondllgnvex-MARS code was not able to select any basis
functions when the threshold was defined using above 5%. Wwadtmentioned previously, determining the threshold
value is still being studied.

< Table 3 here>

5.3 Computational Results

The performance of the Convex-MARS versions is comparaeginal MARS in both cases. In the four-dimensional
case, the preliminary version of Convex-MARS was also tkstith the purpose of showing the improvement of the
newer version; the median absolute error is clearly highan that of original MARS, while the median absolute
error of Convex-MARS is now just slightly higher, howevertbhaersions guarantee convexity. Most importantly,
the Convex-MARS-T version (with threshold) shows a complarebut slightly superior fit than original MARS. For
reference, the mean true cost of the 100 validation points 18Y.47. In the nine-dimensional case, the prelimi-
nary version of Convex-MARS was not considered in the alis@cror plot since it did not show satisfactory results.
Convex-MARS and Convex-MARS-T versions demonstrate aaimiedian absolute error to the original MARS. For
reference, the mean true cost of the 1000 validation poiats3v6.33. Convexity must be assured to obtain the global
optimum for these inventory forecasting SDP problems, amdré work will incorporate Convex-MARS within an
SDP numerical solution method. In terms of CPU time, all #ste¢d MARS runs required less than 5 seconds on a

Quad 3.00-GHz 8GB RAM Dell Precision Workstation.

6 Conclusions

The major contribution of this research is a version of MAR& guarantees convexity without degrading the quality
of fit. Given the existing success of MARS in some complexgdascale optimization problems, the convexity guar-
antee provides stronger motivation to employ Convex-MARBroblems with known convexity. Testing on inventory
forecasting SDP problems demonstrates a comparable figio@MARS. While a significant structural modification
for interaction basis functions was required to guarantewexity, Convex-MARS maintains most of the structure of
MARS, including a forward stepwise procedure that addssfasictions in pairs, the use of truncated linear functions,

and a smoothing routine to enable continuous derivativesneSchallenges that will be investigated in future work

14



include more study on setting the positive threshold factstonvexity discussed in Section 4.3 and alternate method

for defining univariate directions™ or 2~ in Section 3.2.
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Algorithm 1 Original MARS Forward Algorithm

Initialize M = 1; maxIA = maximum # input variables in an interation.
while (m < Mpmay) do
LOF = 0.
forall m=0,....M —1do
if basis functionn involves fewer than maxIA input variabléisen
forall v =1tondo
if v ¢ basis functionn then
forall £k =1to K do
if basis functionn is nonzero at: then
Split basis function at knat into 2 new basis functions.
Calculate lack-of-fit LOF.
if LOF < LOF* then
LOF = LOF*; savems, vx, kx.
end if
end if
end for k
end if
end for v
end if
end for m
Add basis functions*, vk, kx); M+ = 2.
Orthnormalize new basis functions.

end while
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Algorithm 2 Convex-MARS Interaction Transformation Algorithm (CIT)

2= (@m ! (I=Pm * kr,,.m) * (To(L,.m) — KL, m))-
forall (=1,2,...,L,, —1)do
if s; m==1then
Z+= @o,m) — kim) (1=K m).
else ifs; ,,==—1 then
Z == (To,m) — kim)(1+ki ).
end if
end for

return z.
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Algorithm 3 Convex-MARS Forward Coefficient Restriction Algorithm (RT
Initialize M = 1; maxIA = maximum # input variables in an interation.

while (m < Mmax) do
LOF* = 0.
forall m=0,...,.M —1do
if basis functionm involves fewer than maxIA input variablésen
forall v =1ton do
if v ¢ basis functionm then
forall k =1to K do
for all candidate nonzero basis functichs
if (nonnegative coefficient from a unpaired basis functiononnegative sum of coefficients from a pair of
basis functionsjhen
Calculate lack-of-fit LOF.
if LOF < LOF* then
LOF* = LOF; savems, v, kx, pm *.
end if
end if nonnegative
end for candidate basis functions
end for k
end if v
end for v
end if
end for m
Add basis functionsfux, v, kx, ¢mx); M+=2.
Orthnormalize new basis functions.

end while
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Algorithm 4 Convex-MARS Backward Pruning and Refitting Algorithm (BPR)

Initialize the full set ofm basis functions.
while not convexdo
for all basis functions current set{=m,m —1,...,1) do
if negative coefficient unpairedthen
Drop i-th basis function.
m=m — 1.
else if negative sum of coefficients for a pdiren
Drop one of the pair of basis functionsth andi + 1-th ).
m=m — 1.
else if negative coefficients for each of a pdien
Drop the pair of basis functions-th andi + 1-th ).
m=m — 2.
end if
Refit Convex-MARS-II model if any basis functions have beespged.
end for

end while
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Algorithm 5 Convex-MARS-T Forward Coefficient Restriction Thresholid@dtithm (FCR-T)
Initialize M = 1; maxIA = maximum # input variables in an interation.

while (m < Mmax) do
LOF* = 0.
forall m =0,... M — 1do
if basis functionm involves fewer than maxIA input variablésen
forall v =1ton do
if v ¢ basis functionn then
forall k =1to K do
for all candidate nonzero basis functichs
if (coefficient> threshold from an unpaired basis functianYsum of coefficients> threshold from a pair of
basis functionsjhen
Calculate lack-of-fit LOF.
if LOF < LOF* then
LOF* = LOF; savems, v, kx, ¢m *.
end if
end if threshold
end for candidate basis functions
end for k
end if v
end for v
end if
end for m
Add basis functionsfx, v, kx, ¢mx); M+=2.
Orthnormalize new basis functions.

end while
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Table 1: Parameter settings for the versions of MARS on the-dimensional inventory forecasting problem.

MARS Preliminary C-MARS C-MARS C-MARS-T
Robust/ tolerance: Robust/ 0.3 N/A N/A N/A
Threshold: N/A N/A N/A 23
Common Setting: knots: 3 points: 125 Mmax: 100
interactions: 3 ASR stopping tolerance: 0.02

Table 2: Parameter settings for the versions of MARS on the-dimensional inventory forecasting problem.

MARS C-MARS C-MARS-T
Robust/ tolerance: Robust/ 0.3 N/A N/A
Threshold: N/A N/A 315
Common Setting: knots: 9 points: 1331 Mmax: 300
interactions: 3 ASR stopping tolerance: 0.02
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Table 3: Comparison of various threshold values based eréift percentages of the maximum absolute coefficient

from original MARS. Median absolute error is reported.

Four-dimensional

Nine- dimensional

Percentage

2.00

5.00

5.59

5.87

6.00

6.43

7.00

8.00

8.39

9.00

9.79

10.00

Threshold

7.15

17.88

20.00

21.00

21.45

23.00

25.03

28.60

30.00

32.18

35.00

35.76

Median

5.68

5.68

6.04

4.76

4.76

4.76

4.76

4.76

5.62

5.62

5.62

5.62
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Percentage

1.12

1.49

1.57

1.61

1.72

1.87

2.00

2.24

2.61

5.00

8.00

10.00

Threshold

15.00

20.00

21.00

215

23.00

25.00

26.78

30.00

35.00

66.96

107.14

133.93

Median

7.73

7.73

7.92

7.92

8.02

17.27

17.27

9.96

36.00



Q@riginal MARS, (b) Convex-MARS.
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Figure 3: Comparison of candidate pairs of Convex-MARSrattBon basis functions.
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Figure 4: Comparison of boxplots (four-dimensional ingeptforecasting problem) based on a validation set of 100

points: (1) MARS, (2) Preliminary Convex-MARS, (3) ConvBIARS, (4) Convex-MARS-T.
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Figure 5: Comparison of boxplots (nine-dimensional ineepforecasting problem) based on a validation set of 1000

points: (1) MARS, (2) Convex-MARS, (3) Convex-MARS-T.
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