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Abstract

Multivariate adpative regression splines (MARS) provide aflexible statistical modeling method that employs forward

and backward search algorithms to identify the combinationof basis functions that best fits the data and simultaneously

conduct variable selection. In optimization, MARS has beenused successfully to estimate the unknown functions

in stochastic dynamic programming (SDP), stochastic programming, and a Markov decision process, and MARS

could be potentially useful in many real world optimizationproblems where objective (or other) functions need to

be estimated from data, such as in simulation optimization.Many optimization methods depend on convexity, but a

nonconvex MARS approximation is inherently possible because interaction terms are products of univariate terms.

In this paper a convex MARS modeling algorithm is described.In order to ensure MARS convexity, two major

modifications are made: (1) coefficients are constrained, such that pairs of basis functions are guaranteed to jointly

form convex functions; (2) the form of interaction terms is altered to eliminate the inherent nonconvexity. Finally,

MARS convexity can be achieved by the fact that the sum of convex functions is convex. Convex-MARS is applied to

inventory forecasting SDP problems with four and nine dimensions.
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1 Introduction

Computer modeling is having a profound effect on scientific research. Many processes are so complex that physical

experimentation is too time-consuming, too expensive or simply impossible. As a result, experiments have increasingly

turned to mathematical models to simulate these complex systems. Advances in computational power have allowed

both greater complexity and more extensive use of such models. The purpose of design and analysis of computer

experiments (DACE, Sacks et al. 1989; Kleijnen 2008; Chen etal. 2006) is to provide methods for conducting computer

experiments to build a metamodel that can be efficiently employed to improve the performance of a complex system. In

DACE, the computer experiment replaces the physical experiment by organizing computer model runs and observing

the model output of performance. A common DACE objective is to obtain a computationally-efficient response surface

approximation (a.k.a., metamodel) of the output. This metamodel may then be used to study and potentially “optimize”

the performance of the system. The effectiveness of an optimization method in using a metamodel to improve system

performance depends on the convexity of the objective function (Luenberger 2004). A nonconvex metamodel requires

a global optimization method, and in practice these cannot guarantee optimality. Consequently, if the true underlying

performance objective function is known to be convex, it is highly desirable for the approximating metamodel to share

this critical property.

Multivariate adaptive regression splines (MARS, Friedman1991) modeling has been applied in DACE-based

approaches for some large-scale optimization problems, including continuous-state stochastic dynamic programming

(SDP, Chen 1999; Chen et al. 1999; Tsai et al. 2004; Tsai and Chen 2005; Cervellera et al. 2007; Yang et al. 2007,

2009), Markov decision processes (MDP, Chen et al. 2003; Siddappa et al. 2007, 2008), and two-stage stochastic

programming (SP, Pilla et al. 2008, 2012; Shih et al. 2012). The DACE-based SDP and MDP approaches used an

experimental design to discretize the continuous (or near-continuous) state space, and then used MARS to approximate

the continuous value function over the state space. The MDP application studied an airline revenue management

problem with the objective of more accurately estimating the fair market value of a seat over time. The two-stage

SP problem studied an airline fleet assignment model that seeks an assignment of aircraft in the first stage, so that

swapping of crew-compatible aircraft can be achieved in thesecond stage to maximize expected revenue. The DACE

approach for SP was used to create a MARS approximation of thefirst-stage expected revenue objective function,

so as to speed up the first-stage optimization. MARS has been successful in these applications not only because of
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the flexibility of its modeling, but also its parsimony. Parsimony is critical in achieving computational-tractability

in large-scale complex problems. Shih et al. (2012) added a data mining variable selection phase that reduced the

dimension of the airline fleet assignment model from about 1200 to 400 variables prior to executing DACE, so as to

reduce the computational effort of DACE from 2.5 days to an estimated 0.5 days.

Under the assumption that an optimization functionf is convex, it is desired that the response surface metamodel

f̂ that estimatesf be convex as well. For example, in the above-mentioned SDP, MDP, and SP problems, the under-

lying function is theoretically convex. Convexity is not a typical assumption of statistical modeling methods, and a

specialized approach must be developed. There are several options for DACE metamodeling, including polynomial

response surface models (Box and Draper 1987), spatial correlation models, a.k.a., kriging (Sacks et al. 1989), MARS,

regression trees (Breiman et al. 1984; Friedman 2001), and artifical neural networks (Haykin 1999). None of these

guarantee convexity. Convex-MARS uses the modification of both the MARS basis functions and algorithms to build

a sum of convex functions; therefore, the final approximation will be convex.

2 Multivariate Adaptive Regression Splines (MARS)

Friedman (1991) introduced MARS as a statistical method forhigh-dimensional modeling with interactions. The

MARS model is essentially a linear statistical model with a forward stepwise algorithm to select model terms followed

by a backward procedure to prune the model terms. A univariate version (appropriate for additive relationships) was

presented by Friedman and Silverman (1989). The MARS approximation bends to model curvature at “knot” locations,

and one of the objectives of the forward stepwise algorithm is to simultaneously select variables and appropriate

knots. After selection of the basis functions is completed,smoothness to achieve a certain degree of continuity may

be applied. MARS is both flexible and easily implemented withthe computational effort primarily dependent on the

number of basis functions added to the model. The MARS approximation is a linear model:

f̂M (x;β) = β0 +
M
∑

m=1

βmBm(x),

whereBm(x) initially is a basis function of the form described below in equation (1) that later can be smoothed,M

is the number of linearly independent basis functions, andβm is the unknown coefficient for them-th basis function.
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In the forward stepwise algorithm, univariate basis functions are represented in the form of truncated linear functions,

b+(x; k) = [+(x − k)]+, b−(x; k) = [−(x − k)]+, (1)

where[q]+ = max{0, q} andk is a univariate knot. The set of eligible knots are assigned separately for each input

variable dimension and are chosen to coincide with input levels represented in the data. Interaction basis functions are

created by multiplying an existing basis function with a truncated linear function involving a new variable. Both the

existing “parent” basis function and the newly created interaction basis function are used in the MARS approximation.

Thus, the form of them-th basis function is

Bm(x) =

Lm
∏

l=1

[sl,m · (xv(l,m) − kl,m)]+ ,

wherexv(l,m) is the input variable corresponding to thel-th truncated linear function in them-th basis function,

kl,m is the knot value corresponding toxv(l,m), andsl,m is +1 or −1. Lm is the number of truncated linear functions

multiplied in them-th basis function. The search for new basis functions can berestricted to interactions of a maximum

order (e.g.,Lm ≤ 2 permits up through two-factor interactions). Using a generalized cross-validation lack-of-fit

criterion, basis functions are added in pairs, corresponding to the two forms in equation (1). The algorithm stops when

Mmax basis functions have been selected, whereMmax is user-specified. The original forward MARS algorithm is

represented in Algorithm 1, and the key to Convex-MARS is reconstruction of this forward algorithm.

The MARS backward algorithm was intended to eliminate overfitting, but due to the extremely low error variability

in most DACE applications, this can often be omitted to save computational effort. To compensate for the omission

of the backward algorithm, Tsai and Chen (2005) modified the MARS forward algorithm to incorporate an automatic

stopping rule (ASR) and seek more robust models with fewer high-order interaction terms. Instead of using the original

MARS stopping rule that depends on a user-specifiedMmax in the MARS forward stepwise algorithm, ASR stops

automatically based on the improvement in the coefficient ofdetermination or adjusted coefficient of determination.

This enables an automated implementation of MARS model fitting within optimization routines (Tsai and Chen 2005).

The robust component aims to obtain a MARS approximation that is less sensitive to extreme points by selecting the

lower-order terms over high-order ones given the contributions or fits are comparable. The actual implementation of

Convex-MARS is based on Robust ASR-MARS; however, for clarity, the presented Convex-MARS forward algorithm

will follow the structure of Algorithm 1.
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Friedman’s MARS provides a continuous first derivative everywhere by replacing the truncated linear basis func-

tions with cubic functions after completing the forward andbackward algorithms. To give MARS a continuous second

derivative everywhere, quintic functions derived by Chen (1993) are used in place of Friedman’s cubic functions. First,

define two side knotsk+ andk− (in addition to the original center knotk). Then define∆ = k+ − k−, ∆1 = k+ − k,

and∆2 = k − k−. The quintic functions can be written as:

Q(x|s = +1, k−, k, k+) =




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α+(x − k−)3 + β+(x − k−)4 + γ+(x − k−)5, k− < x < k+

x − k, x ≥ k+,

(2)

where,

α+ =
[6∆1 − 4∆2]

∆3
,

β+ =
[−8∆1 + 7∆2]

∆4
,
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k − x, x ≤ k−

α−(x − k+)3 + β−(x − k+)4 + γ−(x − k+)5, k− < x < k+

0, x ≥ k+,

(3)

where,

α− =
[4∆1 − 6∆2]

∆3
,

β− =
[7∆1 − 8∆2]

∆4
,

γ− =
[3∆1 − 3∆2]

∆5
.

3 Achieving Convexity in MARS

To guarantee MARS convexity, two major modifications are made: (1) coefficients are constrained, such that pairs

of univariate basis functions are guaranteed to jointly form convex functions; (2) the form of interaction terms is
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altered to eliminate the inherent nonconvexity. A preliminary version of Convex-MARS (Shih et al. 2006) essentially

incorporated these modifications to guarantee convexity. However the flexibility of this version was limited, so the

current paper presents an improved version. Convex-MARS requires the following algorithms: (i) Convex Interaction

Transformation Algorithm (CIT), to create the convex formsof the interaction basis functions, (ii) Forward Coefficient

Restriction Algorithm (FCR), to incorporate convexity restrictions on the model coefficients while selecting basis

functions, and (iii) Backward Pruning and Refitting Algorithm (BPR), to check for nonconvexities and eliminate

them. The BPR algorithm is needed because MARS basis functions are overlapping; hence, the addition of new basis

functions can alter the existing coefficients. However, a well constructed Convex-MARS approximation should make

minimal use of BPR.

3.1 Convex Univariate Terms

A univariate basis function is either unpaired or one of a pair added corresponding to the two forms in equation (1).

An unpaired univariate basis function takes on only one of the forms in equation (1). In this case, it will only form

a convex term in the MARS approximation if its coefficient is nonnegative. In the case of a pair of univariate basis

functions, the coefficients of a pair are considered together. For example, the top two plots in Figure 1 display two

forms in equation (1) withk = 0. The lower left plot in Figure 1 shows the sum of a pair of univariate terms that

yields a convex function while the lower right plot shows thesum of a pair that yields a concave function. The key is

the sum of the coefficients for the pair. For the convex function, the two coefficients are 1.0 and−0.5, which sums to

0.5. However, for the concave function, the two coefficients are1.0 and−1.5, which sums to−0.5. It can be seen that

the critical value of the sum is zero, so a convex function canbe guaranteed if that sum is nonnegative.

< Figure 1 here.>

3.2 Convex Interaction Terms

A nonconvex MARS approximation is inherently possible because interaction terms are products of univariate terms.

In this case, not only must the coefficient for the interaction basis function be constrained, but also a new convex form is

needed to successfully construct Convex-MARS. In particular, original MARS utilizes a simple routine for smoothing

each basis function to achieve continuous derivatives, andideally the new convex interaction basis functions would
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utilize the same smoothing routine. Thus, the Convex-MARS interaction basis functions are constructed so that the

smoothing in Section 2 can be applied. To achieve this, the variables involved in the interaction basis function are

transformed via a rotation of their axes, and univariate truncated linear basis functions are formed along the rotated

axes. Figure 2 illustrates two-way interaction terms for both original MARS and Convex-MARS. The nonconvexity of

the interaction terms of original MARS is clearly visible while our proposed modification eliminates this issue. Finally,

in addition to modifying the form of the interaction term, coefficients must be constrained in the same manner as

univariate basis functions in the previous section. Details on the algorithms for Convex-MARS are given in Section 4.

< Figure 2 here.>

To solve the problem due to inherently nonconvex interaction terms in the original MARS algorithm, the convex

form of them-th interaction basis function for Convex-MARS is proposedas follows:

Bm(x) = [

Lm
∑

l=1

{sl,m · (xv(l,m) − kl,m)/(1 − sl,mkl,m)}]+ .

where the notation is the same as defined in Section 2. The convex form of interaction basis functions transforms the

multiple variables in the interaction to a one-dimensionalvariable via a linear combination. Given the set of variables

xv(l,m) for an interaction term and corresponding knotskl,m and signssl,m, define:

ω0(x) =

Lm−1
∑

l=1

{sl,m · (xv(l,m) − kl,m)/(1 − sl,mkl,m)} ,

ω1(x; sL,m) = sL,m · (xv(Lm,m) − kLm,m)/(1 − sL,m kLm,m) .

whereω0(x) represents the components of an existing basis function (parent term),ω1(x) represents the split com-

ponent on variablexv(Lm,m) that creates a new interaction term. SignsL,m (−1 or +1) determines two distinct

one-dimensional variable directions:

z+(x) = ω0(x) + ω1(x; sL,m = +1) ; z−(x) = ω0(x) + ω1(x; sL,m = −1) . (4)

To show thatz+ or z− are linear combinations of the input variables, re-write:

ω0(x) = a0 +

Lm−1
∑

l=1

al xv(l,m) , (5)

where,

a0 =

Lm−1
∑

l=1

kl,msl,m/(sl,mkl,m − 1) , al = sl,m/(1 − sl,mkl,m) , (6)

8



and

ω1(x; sL,m) = sL,mkLm,m/(sL,m kLm,m − 1) + sL,m/(1 − sL,mkLm,m) · xv(Lm,m) . (7)

Givenz+ or z−, we can now define pairs of univariate truncated linear functions, as in equation (1), with signφ

either+1 or−1 for each pair:

b+(z+; τ) = [+(z+ − τ)]+ , b−(z+; τ) = [−(z+ − τ)]+ or (8)

b+(z−; τ) = [+(z− − τ)]+ , b−(z−; τ) = [−(z− − τ)]+ . (9)

Because the transformation defined in equations (4)–(7) also transforms the multivariate knotk to τ = 0 in equa-

tions (8)–(9), the two candidate pairs of interaction basisfunctions for Convex-MARS are as follows:

Bm(x;φm = +1) = [z+]+ , Bm+1(x;φm = −1) = [−z+]+ or (10)

Bm(x;φm = +1) = [z−]+ , Bm+1(x;φm = −1) = [−z−]+ . (11)

To better understand the role ofφm, consider the two-way interaction example shown in Figure 3. Knots for the

two input variablesx1 andx2 are0.25 and−0.5, respectively, ands1,m = −1. The upper two contour plots set

s2,m = 1 and demonstrate the pair of two-way interaction basis functions withφm = +1, andφm = −1. Similarly,

the lower two contour plots sets2,m = −1 and show the pair of two-way interaction basis functions with φm = +1

andφm = −1.

< Figure 3 here.>

3.3 Convexity Proof

The convexity constraints on the coefficients were identified based on the truncated linear basis functions, but the final

MARS approximation employs the smoothed quintic functionsin equations (2) and (3). In this section, a convexity

proof is provided for the pairs of MARS univariate terms in quintic form. The proof of convexity of a pair of Convex-

MARS interaction terms in quintic form is identical for bothunivariate basis functions and interactions using the

transformed variablesz+ or z−. The goal is to prove that the combined pair of univariate terms:

Q = β1Q(x|s = +1, k−, k, k+) + β2Q(x|s = −1, k−, k, k+) (12)
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is a convex function on[k−, k+], whereβ1 andβ2 are coefficients of basis functions. As illustrated in Figure 1,

convexity is assured for the truncated linear functions ifβ1 + β2 ≥ 0. Without loss of generality, we express this case

asβ2 = −β1 + d, whered is a nonegative constant,d ≥ 0, and rewrite equation (12) as:

Q = β1Q(x|s = +1, k−, k, k+) − β1Q(x|s = −1, k−, k, k+) + dQ(x|s = −1, k−, k, k+). (13)

A twice differentiable function is convex if and only if its second derivative is≥ 0. To prove that equation (13) is a

convex function on[k−, k+], we take the second derivative ofQ with respect tox, and then we have the following

equation (please refer to the notation in Section 2:

Q′′ = β1

(

6[6∆1 − 4∆2][(x − k−)]

∆3
+

12[−8∆1 + 7∆2][(x − k−)2]

∆4
+

20[3∆1 − 3∆2][(x − k−)3]

∆5

)

−

β1

(

6[4∆1 − 6∆2][(x − k+)]

∆3
+

12[7∆1 − 8∆2][(x − k+)2]

∆4
+

20[3∆1 − 3∆2][(x − k+)3]

∆5

)

+

d

(

6[4∆1 − 6∆2][(x − k+)]

∆3
+

12[7∆1 − 8∆2][(x − k+)2]

∆4
+

20[3∆1 − 3∆2][(x − k+)3]

∆5

)

. (14)

Nonconvexities are produced in the cubic and quintic basis functions when the center knotk is not close enough

to the midpoint betweenk− andk+ (Chen 1993). Specifically, to avoid such nonconvexities, wemust constrain

∆1

∆
≥

2

5
and

∆2

∆
≥

2

5
. (15)

To simplify equation (14), we use the fact that∆2 = ∆ − ∆1:

Q′′ = 12d

(

(5∆1 − 3∆)(x − k+)

∆3
+

[15∆1 − 8∆][(x − k+)2]

∆4
+

[10∆1 − 5∆][(x − k+)3]

∆5

)

, (16)

and from equation (15) we constrain

2

5
≤

∆1

∆
≤

3

5
. (17)

Without loss of generality,∆ = 1 is specified, and equation (16) is reduced to:

Q′′ = 60d(1 − f){f [(∆1 −
2

5
) + f(1 − 2∆1)]},

wheref = (x − k−) and(1 − f) = (k+ − x). Sinced ≥ 0 and0 ≤ f ≤ 1, provingQ′′ ≥ 0 requires showing:

(∆1 −
2

5
) + f(1 − 2∆1) ≥ 0. (18)

Under the constraint in (17), the left-hand side of (18) is minimized atf = 1 and∆1 = 3
5 , at which it is equal to zero.

Hence, equation (18) holds, andQ is convex on[k−, k+].
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4 Algorithms for Convex-MARS

4.1 Convex-MARS Forward Coefficient Restriction Algorithm

In Convex-MARS, the forward stepwise procedure of originalMARS is modified to check the coefficients of newly

added basis functions according to the criteria described in Section 3.1 and Section 3.2. This modified algorithm

constrains the coefficients for the basis functions throughout the search process. Whenever there are basis functions

being added to the current set of basis functions, either a pair or an unpaired basis function (univariate or interaction)

is possible. In the first case, the sum of the two coefficients are constrained to be nonnegative. In the latter case,

the coefficient is restricted to be nonnegative. In the preliminary version of Convex-MARS (Shih et al. 2006), the

interaction basis functions were not added in pairs, limiting the flexibility of the Convex-MARS approximation.

The forward coefficient restriction algorithm (FCR) is shown in Algorithm 3. FCR incorporates the convex inter-

action transformation (CIT) in equations (4)–(7) that is shown in Algorithm 2. To improve the fit of Convex-MARS

interaction basis functions, FCR conducts a more flexible search for candidate pairs of basis functions. This is achieved

by considering both pairs in equations (10)–(11) into the search loop for interaction terms.

4.2 Convex-MARS Backward Pruning and Refitting Algorithm

Since MARS basis functions are overlapping, the coefficients may change each time new basis functions are added in

the model. The backward pruning and refitting algorithm (BPR) re-checks the coefficients after running FCR, searches

for convexity violations and removes them. Intuitively, ifthe true underlying function is convex, then basis functions

that introduce potential nonconvexity should not be needed. For a pair of basis functions that violate convexity, the

basis function with the smaller coefficient will be dropped;however, if both coefficients are negative, this pair will be

dropped completely. If any basis functions are dropped, then Convex-MARS must be refit with the remaining basis

functions. This process repeats until no more violations are found. It is then that the approximation can be guaranteed

to be convex.
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4.3 Convex-MARS Forward Coefficient Restriction Threshold Algorithm

The use of BPR is a necessary, but not ideal means of guaranteeing convexity. One practical approach to minimizing

the need for BPR is to require stricter convexity in FCR. In computational studies of Convex-MARS, we have observed

that pairs whose coefficients barely satisfy convexity are more likely to turn nonconvex in later iterations. Hence,

FCR was modified from Algorithm 3 to Algorithm 5 to employ a stricter thresholdon convexity. In FCR with a

stricter threshold (FCR-T), the candidate basis functionsare the same as FCR. However, instead of only requiring

nonnegativity on the sum of a pair of coefficients (or single coefficient for an unpaired case), a strictly positive threshold

is specified.

The challenge now lies in selecting athresholdvalue. One guideline is to run original MARS (with standardized

variables) on the data set, then set the threshold to be about1 ∼ 10% of the absolute value of the maximum estimated

coefficient. If thethresholdis set too high, then this can reduce flexibility since fewer candidate basis functions will

satisfy the stricter convexity constraint. If the selectedthresholdis too low, then there will be little difference between

FCR and FCR-T. In practice, if many basis functions are removed via BPR, then the threshold is too low.

4.4 Convex-MARS Smoothing Procedure

The smoothing routine in Convex-MARS uses the quintic functions presented in Section 2. For the interaction terms,

CIT transforms the multiple variables in the interaction term into a one-dimensional variablez+ or z−. Since the

transformed center knot is always zero for the interaction terms of Convex-MARS, the corresponding side knots can

be set symmetrically atκ and−κ, whereκ can be considered as a smoothing factor. The larger the smoothing factor

is, the smoother the quintic function will be. Assuming standardized units, one recommendation forκ is 0.5.

5 Inventory Forecasting Application

In this section Convex-MARS is tested on four-dimensional and nine-dimensional inventory forecasting SDP problems

studied by Chen (1999). The goal of the inventory forecasting problem is to minimize inventory holding and backorder

costs. The state of the system is represented by the inventory levels for the products and their demand forecasts. The

optimal value function, known to be theoretically convex, specifies the minimum expected cost to operate the system,
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and is a function of the system state. The versions of MARS arefit to data from the last time period of the three-period

inventory forecasting SDP.

5.1 Four-dimensional Inventory Forecasting Problem

In this inventory forecasting SDP problem, there are two products, each with one demand forecast. MARS was fit to

a data set of 125 points from the last period, using the same orthogonal array experimental design studied in Chen

(1999). Table 1 summarizes the parameter settings for original MARS, the preliminary version of Convex-MARS,

Convex-MARS and Convex-MARS-T (Convex version of MARS withcoefficient threshold constraint). A set of 100

randomly generated validation data points is used to compare the different models, and boxplots of the absolute errors,

computed using the formula|y − f̂ |, are shown in Figure 4, wherey is the actual cost of the system, andf̂ is the

MARS or Convex-MARS prediction.

< Table 1 here.>

< Figure 4 here.>

5.2 Nine-dimensional Inventory Forecasting Problem

In this inventory forecasting SDP problem, there are three products, each with two demand forecasts (for next time

period and the one after). MARS was fit to a data set of 1331 points from the last period, using the same orthogonal

array experimental design studied in Chen (1999). Table 2 summarizes the parameter setting for original MARS,

Convex-MARS and Convex-MARS-T. A set of 1000 randomly generated validation data points is used to compare the

three different models, and boxplots of the absolute errors, computed using the formula|y− f̂ |, are shown in Figure 5,

wherey is the actual cost of the system, andf̂ is the MARS/ Convex-MARS approximations for the actual cost.

< Table 2 here.>

< Figure 5 here.>

Table 3 shows different values for the threshold that were tested for both, the four-dimensional and the nine-

dimensional inventory forecasting problems. They were defined based on various percentages of the maximum ab-

solute coefficient of the MARS approximation. For the four-dimensional case, the minimum value for the median

absolute error was obtained from 5.78% to 8.00%. For the nine-dimensional case, a lower value for the median ab-
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solute error was obtained from 1.12% to 1.61%. Additionally, Convex-MARS code was not able to select any basis

functions when the threshold was defined using above 5%. As itwas mentioned previously, determining the threshold

value is still being studied.

< Table 3 here.>

5.3 Computational Results

The performance of the Convex-MARS versions is comparable to original MARS in both cases. In the four-dimensional

case, the preliminary version of Convex-MARS was also tested with the purpose of showing the improvement of the

newer version; the median absolute error is clearly higher than that of original MARS, while the median absolute

error of Convex-MARS is now just slightly higher, however both versions guarantee convexity. Most importantly,

the Convex-MARS-T version (with threshold) shows a comparable, but slightly superior fit than original MARS. For

reference, the mean true cost of the 100 validation points was 137.47. In the nine-dimensional case, the prelimi-

nary version of Convex-MARS was not considered in the absolute error plot since it did not show satisfactory results.

Convex-MARS and Convex-MARS-T versions demonstrate a similar median absolute error to the original MARS. For

reference, the mean true cost of the 1000 validation points was 376.33. Convexity must be assured to obtain the global

optimum for these inventory forecasting SDP problems, and future work will incorporate Convex-MARS within an

SDP numerical solution method. In terms of CPU time, all the tested MARS runs required less than 5 seconds on a

Quad 3.00-GHz 8GB RAM Dell Precision Workstation.

6 Conclusions

The major contribution of this research is a version of MARS that guarantees convexity without degrading the quality

of fit. Given the existing success of MARS in some complex, large-scale optimization problems, the convexity guar-

antee provides stronger motivation to employ Convex-MARS in problems with known convexity. Testing on inventory

forecasting SDP problems demonstrates a comparable fit to original MARS. While a significant structural modification

for interaction basis functions was required to guarantee convexity, Convex-MARS maintains most of the structure of

MARS, including a forward stepwise procedure that adds basis functions in pairs, the use of truncated linear functions,

and a smoothing routine to enable continuous derivatives. Some challenges that will be investigated in future work

14



include more study on setting the positive threshold for strict convexity discussed in Section 4.3 and alternate methods

for defining univariate directionsz+ or z− in Section 3.2.
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Algorithm 1 Original MARS Forward Algorithm

Initialize M = 1; maxIA = maximum # input variables in an interation.

while (m < Mmax) do

LOF =∞.

for all m = 0, . . .,M − 1 do

if basis functionm involves fewer than maxIA input variablesthen

for all v = 1 to n do

if v /∈ basis functionm then

for all k = 1 to K do

if basis functionm is nonzero atk then

Split basis function at knotk into 2 new basis functions.

Calculate lack-of-fit LOF.

if LOF < LOF* then

LOF = LOF*; savem∗, v∗, k∗.

end if

end if

end for k

end if

end for v

end if

end for m

Add basis functions(m∗, v∗, k∗); M+ = 2.

Orthnormalize new basis functions.

end while
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Algorithm 2 Convex-MARS Interaction Transformation Algorithm (CIT)

z = (φm / (1−φm * kLm,m) * (xv(Lm,m) − kLm,m)).

for all (l = 1, 2, . . .,Lm − 1) do

if sl,m==1 then

z += (xv(l,m) − kl,m)/(1−kl,m).

else ifsl,m==−1 then

z−= (xv(l,m) − kl,m)/(1+kl,m).

end if

end for

return z.
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Algorithm 3 Convex-MARS Forward Coefficient Restriction Algorithm (FCR)
Initialize M = 1; maxIA = maximum # input variables in an interation.

while (m < Mmax) do

LOF* = ∞.

for all m = 0, . . .,M − 1 do

if basis functionm involves fewer than maxIA input variablesthen

for all v = 1 ton do

if v /∈ basis functionm then

for all k = 1 toK do

for all candidate nonzero basis functionsdo

if (nonnegative coefficient from a unpaired basis function)∪ (nonnegative sum of coefficients from a pair of

basis functions)then

Calculate lack-of-fit LOF.

if LOF < LOF* then

LOF* = LOF; savem∗, v∗, k∗, φm∗.

end if

end if nonnegative

end for candidate basis functions

end for k

end if v

end for v

end if

end for m

Add basis functions(m∗, v∗, k∗, φm∗); M+=2.

Orthnormalize new basis functions.

end while
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Algorithm 4 Convex-MARS Backward Pruning and Refitting Algorithm (BPR)

Initialize the full set ofm basis functions.

while not convexdo

for all basis functions⊆ current set (i = m,m − 1, . . . , 1) do

if negative coefficient∩ unpairedthen

Drop i-th basis function.

m = m − 1.

else if negative sum of coefficients for a pairthen

Drop one of the pair of basis functions (i-th andi + 1-th ).

m = m − 1.

else if negative coefficients for each of a pairthen

Drop the pair of basis functions (i-th andi + 1-th ).

m = m − 2.

end if

Refit Convex-MARS-II model if any basis functions have been dropped.

end for

end while

22



Algorithm 5 Convex-MARS-T Forward Coefficient Restriction Threshold Algorithm (FCR-T)
Initialize M = 1; maxIA = maximum # input variables in an interation.

while (m < Mmax) do

LOF* = ∞.

for all m =0,. . . ,M − 1 do

if basis functionm involves fewer than maxIA input variablesthen

for all v = 1 ton do

if v /∈ basis functionm then

for all k = 1 toK do

for all candidate nonzero basis functionsdo

if (coefficient> threshold from an unpaired basis function)∪ (sum of coefficients> threshold from a pair of

basis functions)then

Calculate lack-of-fit LOF.

if LOF < LOF* then

LOF* = LOF; savem∗, v∗, k∗, φm∗.

end if

end if threshold

end for candidate basis functions

end for k

end if v

end for v

end if

end for m

Add basis functions(m∗, v∗, k∗, φm∗); M+=2.

Orthnormalize new basis functions.

end while
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Table 1: Parameter settings for the versions of MARS on the four-dimensional inventory forecasting problem.

MARS Preliminary C-MARS C-MARS C-MARS-T

Robust/ tolerance: Robust/ 0.3 N/A N/A N/A

Threshold: N/A N/A N/A 23

Common Setting: knots: 3 points: 125 Mmax: 100

interactions: 3 ASR stopping tolerance: 0.02

Table 2: Parameter settings for the versions of MARS on the nine-dimensional inventory forecasting problem.

MARS C-MARS C-MARS-T

Robust/ tolerance: Robust/ 0.3 N/A N/A

Threshold: N/A N/A 31.5

Common Setting: knots: 9 points: 1331 Mmax: 300

interactions: 3 ASR stopping tolerance: 0.02
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Table 3: Comparison of various threshold values based on different percentages of the maximum absolute coefficient

from original MARS. Median absolute error is reported.

Four-dimensional Nine- dimensional

Percentage Threshold Median Percentage Threshold Median

2.00 7.15 5.68 1.12 15.00 7.73

5.00 17.88 5.68 1.49 20.00 7.73

5.59 20.00 6.04 1.57 21.00 7.92

5.87 21.00 4.76 1.61 21.5 7.92

6.00 21.45 4.76 1.72 23.00 8.02

6.43 23.00 4.76 1.87 25.00 17.27

7.00 25.03 4.76 2.00 26.78 17.27

8.00 28.60 4.76 2.24 30.00 9.96

8.39 30.00 5.62 2.61 35.00 36.00

9.00 32.18 5.62 5.00 66.96 -

9.79 35.00 5.62 8.00 107.14 -

10.00 35.76 5.62 10.00 133.93 -
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Figure 1: Pair of basis functions.
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Figure 2: Comparison of MARS interaction basis functions: (a) Original MARS, (b) Convex-MARS.
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Figure 3: Comparison of candidate pairs of Convex-MARS interaction basis functions.
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Figure 4: Comparison of boxplots (four-dimensional inventory forecasting problem) based on a validation set of 100

points: (1) MARS, (2) Preliminary Convex-MARS, (3) Convex-MARS, (4) Convex-MARS-T.
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Figure 5: Comparison of boxplots (nine-dimensional inventory forecasting problem) based on a validation set of 1000

points: (1) MARS, (2) Convex-MARS, (3) Convex-MARS-T.
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