
Data-Driven Optimization for Minimizing the Environmental Impact of 
Airport Deicing Activities 

 
Huiyuan Fan1*, Prashant K. Tarun2, Victoria C.P. Chen3, Dachuan T. Shih4, 

Jay M. Rosenberger3, Seoung Bum Kim5, Dan Bergman6 

 

1Rolls-Royce Energy Systems Inc. 
105 North Sandusky Street 

Mount Vernon, OH 43050, USA 
 

2Steven L. Craig School of Business 
Missouri Western State University 

St. Joseph, MO 64507, USA 
 

3Department of Industrial and Manufacturing Systems Engineering 
University of Texas at Arlington 
Arlington, TX 76019-0017, USA 

 
4PFS, Tenet 

13737 Noel Road, Suite 100 
Dallas, Texas 75240, USA 

 
5Department of Industrial Systems and Information Engineering 

Korea University 
5-ga Annam-dong, Sungbuk-gu 

Seoul, Korea 
 

6Dallas-Fort Worth International Airport 
3200 East Airfield Drive 

DFW Airport, TX 75261, USA 
 

*Corresponding author 

Tel.: +1-740-3938519 
Fax: +1-740-3938336 

E-mail: huiyuanfan@yahoo.com 
 

 
 

COSMOS Technical Report 12-06 
 
 
 
 
 
 
 
 
 
 
 



 2 

Abstract 
This paper presents a data-driven deicing management framework to minimize the environmental 

impact of airport deicing activities at Dallas-Fort Worth International Airport.  Airplane deicing involves 

the use of aircraft deicing and anti-icing fluids with a high concentration of ethylene/propylene/diethylene 

glycol. The glycol shearing off the airplanes during taxiing and dripping to the runway runs off and mixes 

with the airport receiving waters, which causes an increase in bacterial growth and a subsequent reduction 

in dissolved oxygen (DO) endangering the aquatic lives in the receiving waters. While reducing the 

amount of deicing and anti-icing fluid or carefully selecting runways might be more direct ways of 

reducing the impact of deicing activities on DO, the airport does not control those decisions.  Rather, the 

only decision controlled by the airport is the assignment of airplanes to deicing pads.  The choice of 

deicing pad is indirectly related to the choice of runway since each deicing pad had different runway 

probability distributions. The proposed deicing management framework uses stochastic dynamic 

programming (SDP) to assign airplanes in each hour to deicing pad locations, so as to maximize DO 

concentrations in the receiving waters, subject to airport constraints. The SDP formulation initially had 

over three hundred state variables consisting of water quality variables at six monitoring sites of the 

receiving water system, glycol usage variables for each of the airport’s eight deicing pad locations, and 

number of airplanes deiced at each deicing pad location-runway combination. The state dimensionality 

was significantly reduced using a data mining process. The state transition equations in the SDP 

formulation were obtained using a two-phase statistical analysis based on artificially-generated and actual 

hourly data for the deicing activities. In particular, the hourly data were used to fit (i) decision tree models 

for the variables related to deicing activities, and (ii) multiple linear regression models for water quality 

variables and meteorological variables. The proposed deicing management framework was demonstrated 

using three cases during major deicing events.  Improvements in DO compared with actual DO recorded 

in the data were mixed; however, the results show a promise in tackling such a complex real world 

problem. 

 

Keywords: Data-driven optimization, Stochastic dynamic programming, Airport deicing, Water quality, 

Glycol, Dissolved oxygen



 3 

1.  Introduction 

Extreme winter causes ice formation on the airplanes threatening its operational safety. Therefore, 

deicing and anti-icing operations are performed on airplanes with utmost care during harsh winter 

conditions (Corsi et al. 2006, FAA Report 1996, Leist et al. 1997, Revitt and Worrall 2003, Revitt et al. 

2001, Switzenbaum et al. 1999). The aircraft deicing and anti-icing fluids (ADAF) typically used in 

airplane deicing/anti-icing contain a high concentration of ethylene/ propylene/diethylene glycol and 

other proprietary additives. ADAF adhering to airplane after deicing/anti-icing can trickle down to the 

ground or shear off during take-off, which can run off to receiving surface waters or into the groundwater 

system resulting in adverse environmental impacts. Due to a high biochemical oxygen demand (BOD) 

and chemical oxygen demand (COD) of glycols in ADAF, the dissolved oxygen (DO) level in the 

receiving waters decreases (Corsi et al. 2006; U.S. Environmental Protection Agency 2000).   

Every winter season Dallas/Fort Worth International Airport (D/FW Airport) experiences sporadic 

deicing periods requiring airplanes to be deiced/anti-iced in accordance with Federal Aviation 

Administration’s safety regulations. Deicing practices at D/FW Airport garnered a great deal of attention 

in the wake of an ecological disaster in 1999 when a significant amount of glycol flowed into Trigg Lake 

that receives D/FW Airport runoff and subsequently killed the fish in the lake. D/FW Airport responded  

by upgrading its ADAF collection facilities, which included construction of eight locations equipped with 

deicing source isolation pads (deicing pads) where ADAF runoff is streamed into the airport’s reverse 

osmosis wastewater treatment system. This system captures about 80% of the ADAF runoff, and the 

remaining 20% of the ADAF runoff occurs during taxiing and take-off that may still discharge into local 

receiving waters and impact both water quality and aquatic life adversely. To combat this, the airport took 

necessary measures elaborated in Fan et al. 2011. Furthermore, to monitor the water quality in the 

surrounding waterways DFW Airport joined forces with the United States Geological Survey (USGS) to 

set up nine monitoring sites at various locations for collecting the water quality data. A more detailed 

layout of the monitoring sites around the airport and the deicing pad locations at the airport can be found 

in Fan et al. 2011. 

This research develops a data-driven optimization framework for minimizing the environmental 

impact of deicing activities at D/FW Airport.  The framework seeks to accomplish this by maximizing 

expected DO concentrations in the receiving waters surrounding the D/FW Airport over a given time 

horizon. Alternatively, the framework could also minimize BOD or COD as objectives. However, the 

1999 fish kill event was primarily the result of low DO, making it a priority for the airport. In addition, 

BOD and COD collection requires manual sampling and testing, as opposed to the continuous sampling 
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(every 15-20 minutes) of DO via sensors. It should be noted that a relationship between BOD and DO 

exists in theory (Masters 1997, Corsi et al. 2006).  

To our knowledge, there is no health-based guideline threshold value for which DO should stay 

below. The highest DO values observed on airport grounds occur in waterways that are not affected by 

airport or urban activities.  The influence of airport and urban activities on DO tends downward.  For 

simplicity, we chose to maximize the total DO since higher total DO corresponds to reduced influence of 

airport activities on DO.  At the time of this study, the airport desired consideration of six monitoring 

sites in the waterways immediately surrounding the airport.  In future work, the airport will focus on a 

few problematic waterways and penalties will be implemented to ensure sufficient DO is maintained. 

To reduce the impact on DO, the amount of glycol used could be reduced or runways could be 

strategically selected, depending on wind conditions.  However, the airport controls neither of those 

decisions.  Rather the pilot controls the glycol usage decision, and the Federal Aviation Administration 

controls the runway decision. To indirectly affect the runway decision, the airport can control the 

assignment of airplanes to the various deicing pad locations.  The different deicing pad locations have 

different runway probability distributions.  While this setup is not ideal, the airport is the responsible 

party for protecting airport waterways.   

A myopic framework could simply optimize each decision independently.  However, the impact on 

DO is time-lagged, and the deicing pad locations each have limited capacity; hence, our framework 

utilizes stochastic dynamic programming (SDP) to enable constrained decisions that account for the 

future impact on DO. This SDP formulation involves over three hundred state variables, consisting of 

water quality variables at six monitoring sites in the airport’s receiving waters, glycol usage variables for 

each of the airport’s eight deicing pad locations, and the number of airplanes deiced at each deicing pad 

location-runway combination. The resulting SDP formulation apparently has the largest number of state 

variables in the current literature. While the optimization framework is quite generic in its applicability, 

our optimization prototype demonstrates results for three example cases.  The method presented in this 

paper may help improve upon the current deicing practices by providing appropriate guidelines on where 

to deice an airplane given the meteorological conditions, deicing pad traffic, and water quality in the 

airport’s receiving waters.  The goal of this study, however, is not to dictate how deicing activities should 

take place at D/FW Airport, but to explore more environmental-friendly options.  

 

2.  An Overview of the Model Features  

Figure 1 shows the outline of the real system and the optimization model to be built for this system. 

Assume that a decision is being made on an hourly basis. In time period (i.e. stage) ‘t’, all airplanes to be 
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deiced are assigned to eight deicing pad locations, DPi, i = 1, 2, …, 8, for deicing. The six monitoring 

sites, MSj, j = 1, 2, …, 6, in the airport’s receiving waters help monitor the local DO levels impacted by 

the airport deicing activities. Actually there are nine monitoring sites set up in the airport’s receiving 

waters, but only six sites were with the DO data and hereby are considered for our study. There are 

sixteen runways, RWk, k = 1, 2, …, 16, in D/FW Airport available for deiced airplanes to take off. Taxiing 

and take-off of airplanes after deicing allows the ADAF to discharge into the airport’s receiving waters 

due to drip and shear.  

The objective of the optimization problem specifies the primary goal, which in this study is to 

maximize DO.  This objective is subject to various airport constraints (deicing pad capacities, number of 

planes to be deiced).  The decision space (or action space) holds the set of possible decisions or actions, 

and the state space holds the set of variables needed to describe the state of the system, where the system 

in our case is the deicing activities system.  Uncertainty is represented by probability distributions.  An 

action takes place whenever we need to make a decision.  In this framework, a decision is made at the 

beginning of each hour, in which the airplanes that need to be deiced in the upcoming hour are assigned 

to deicing pad locations.  Since the D/FW Airport operates from 5:00 AM to 11:00 PM, there are 18 

stages in the SDP model indicating each hour of operation.  In every hour, the state of the system must be 

updated.  The mapping from the current state to the next state will be specified by a state transition 

equation, which is based on the statistical models.  A similar data-driven approach was utilized in a 

previous SDP air quality research (Yang et al. 2007 and Yang et al. 2009).    
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Figure 1. Schematic representation of the real system and the model to be built 
 
 
 

3.  Stochastic Dynamic Programming (SDP) Model Formulation 

The objective of our optimization problem is to maximize the sum of the expected hourly-average DO 

concentrations over the 18 stages indicating each hour of operations.  The stochastic dynamic 

programming (SDP) model for stage t  can be formulated as below:  

 

𝑉𝑡(𝑥𝑡) = max𝑎𝑡 𝐸{𝐷𝑂𝑡(𝑥𝑡 ,𝑎𝑡 , 𝜀𝑡;𝑢𝑡 ,𝑤𝑡) + 𝑉𝑡+1(𝑥𝑡+1)}
s.t.      𝑥𝑡+1 = 𝑓𝑡(𝑥𝑡,𝑎𝑡 , 𝜀𝑡;𝑢𝑡,𝑤𝑡)                                        

                                  (1) 

 

where 𝑡 = 1, 2, …, 18 correspond to deicing hours 6th (5:00-6:00 a.m.), 7th (6:00-7:00 a.m.), …, 23rd 

(10:00-11:00 p.m.). In the SDP formulation above, 𝑉𝑡(∙) is the future value function; 𝑥𝑡 and 𝑎𝑡  are state 

and decision vectors consisting of the state and decision variables, respectively; 𝜀𝑡  characterizes the 

stochastic nature of the system which is modeled by certain probability distributions; 𝐷𝑂𝑡(∙)  is an 
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objective function representing the DO averaged over the six monitoring sites; and 𝑓𝑡(∙) is the state 

transition equation. Vectors 𝑢𝑡 and 𝑤𝑡 represent some deicing variables and external parameters that are 

used for modeling the objective function and the state transition equation, but are not considered as state 

variables.       

To formulate the above SDP model for the D/FW Airport deicing system, the following additional 

assumptions are made: 

• At the beginning of each hour, the number of airplanes to be deiced in the hour and the runway 

assignment for each airplane are known in advance.  This is reasonable assumption given that the 

airplanes are present at the airport far in advance of deicing decisions, and the movement of 

airplanes is carefully orchestrated. 

• The meteorology is not considered to be a part of the state space. It is assumed to be a known 

external information up to the current hour.  This is also a reasonable assumption. 

• The same hourly state transition equation is employed for every hour of the day. This is a 

simplifying assumption, and future work will model nonstationary state transition functions. 

• A set of probability distributions, dependent only on meteorology, is used to estimate the amount 

of glycol applied to an airplane (See next Section 3.1.2).  This ignores the size of the airplane as 

this information was not available.  Future work will consider airplane size. 

• As no runway information has been provided, a fixed probability distribution is used to estimate 

the runway used given the deicing pad location (See next Section 3.1.3).  Actual runway 

information will be provided by the airport for future work. 

• The hourly capacity of a deicing pad location is based on the assumption that the time it takes to 

deice an airplane is constant.  This also ignores the size of the airplane.  Future work will build 

probability distributions for the service times based on actual data. 

• Only up to two time lags are used if a variable’s history is considered in the SDP model. The 

autocorrelation and partial autocorrelation analyses presented in Fan et al. (2011) support the use 

of only 2 time lags of history. Future work will consider the entire history of the day in 

constructing nonstationary state transition functions. 

 

A complete list of notations for the variables involved in the SDP model is given below: 

Abbreviations: 

DO =     Dissolved Oxygen Concentration [mg/l] 

WT = Discharge [m3/s] 
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DC = Water Temperature  [°F] 

GA = Glycol Amount [kg] 

GAPA = Glycol Amount per Airplane [kg] 

NAP = Number of Airplanes   

TNAP = Total Number of Airplanes  

AT = Air Temperature [°F] 

PP = Precipitation [mm] 

NSWS = North-to-South Wind Speed [m/s] 

EWWS = East-to-West Wind Speed [m/s] 

WD  Wind direction taking binary values 

(0—north-to-south; 1—south-to-north) 

 

Subscripts:    

𝐷𝐷𝑖  =      (i  = 1, …, 8) the deicing pad locations 

𝑀𝑀𝑗  =  (j = 1, …, 6) the monitoring sites 

𝑅𝑅𝑘  =  (k = 1, …, 16) the runways  

t = the current stage 

t-1 = the lag one of the current stage  

t-2 = the lag two of the current stage 

𝐷𝐷𝑖𝑅𝑅𝑘 = from the deicing pad location 𝐷𝐷𝑖  to the runway 𝑅𝑅𝑘 

 

3.1. Actual Data and the Artificial Data Indicating Stochastic Nature of the Model 

3.1.1. Actual Data  

An MS-ACCESS database was created for this study that contained six groups of data actually 

collected from different sources. Though the data from all six groups were dealt with during the previous 

data mining phase with regard to its potential impact on the optimization process, the variables finally 

utilized in the SDP model were from the following three groups: (i) D/FW and USGS Continuous 

Monitoring at 9 Sites: DO, discharge, water temperature, precipitation, etc; (ii) Airport Deicing Activities: 

number of airplanes, ethylene and propylene glycol usage, deicing pad usage, etc.; and (iii) Airport 

Meteorology: hourly air temperature, precipitation, dew point, wind speed/direction, etc. More details on 

the MS-ACCESS database and the previous data mining phase can be obtained from Fan et al. (2011). 

 

3.1.2. Modeling the Glycol Amount per Airplane as a Random Variable 
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The Airport Deicing Activities group contains daily number of airplanes. However, our SDP model is 

hourly based. This requires using the glycol amount per airplane as an intermediate variable to estimate 

the glycol usage for a deicing pad location as a potential state variable. Because of a lack of the actual 

hourly data, the glycol amount per airplane is defined as a random variable exhibiting the stochastic 

nature of the model. This variable was modeled by disaggregating the daily data approximately into 

hourly operational time slots.                    

The disaggregation process first used a data set provided by D/FW Airport showing the hourly 

number of airplanes departing from the airport during a typical operation day to obtain the fractions of 

airplanes departing in each hour of operation. These fractions were further used to disaggregate the daily 

number of airplanes deiced into hourly operational time slots.  The number of airplanes for each 

operational day recorded in the data set was disaggregated by this process using the corresponding glycol 

usage data. This resulted in a sample data set for the amount of the glycol per airplane, denoted as 𝐺𝐴𝐷𝐴𝑡 

for the current hour t.      

A decision tree analysis was performed on a data set obtained by matching the 𝐺𝐴𝐷𝐴𝑡  data with 

corresponding meteorological data in order to examine the influence of meteorological variables on the 

amount of the glycol per airplane. The results indicated that the only meteorological variable that 

apparently affected the glycol amount per airplane was air temperature, 𝐴𝑇𝑡. Furthermore, the decision 

tree split the data into 3 homogeneous groups as shown in Table 1.  Groups 1, 2, and 3 have 22, 34, and 

657 observations, respectively. The resulting probability distributions of glycol amount per airplane for 

groups 1 and 2 are shown in Tables 2 and 3, respectively. On the other hand, a Lognormal distribution of 

glycol amount per airplane was fit to the group 3 data with a mean of  𝜇 = 3.1363 kg and a variance of 

𝜎2 =  0.7621 kg2. Given the air temperature in the hour an airplane needs to be deiced, 𝐴𝑇𝑡 , the 

appropriate group will be identified, and a realization of the glycol amount per airplane, 𝐺𝐴𝐷𝐴𝑡 will be 

sampled from the corresponding probability distribution. This strategy is similar to the two-phase method 

discussed in detail in Subsection 3.5.  

 

Table 1. Homogeneous groups for glycol amount per airplane. 

Group 𝐴𝑇𝑡 (in oF) 
1 ≤ 25.5  
2 (25.5, 27.5]  
3 > 27.5 

 

Table 2. Histogram results for Group 1   

Bin Interval of 𝐺𝐴𝐷𝐴𝑡 Frequency 
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in kg 
[0, 25] 4 
(25, 50] 2 
(50, 100] 1 
(100, 125] 2 
(125, 150] 4 
(150, 175] 5 
(175, 200] 3 
(200, 250] 1 
>250 0 

 

Table 3. Histogram results for Group 2   

Bin Interval of 𝐺𝐴𝐷𝐴𝑡 
in kg 

Frequency 

[0, 20] 5 
(20, 40] 7 
(40, 60] 6 
(60, 80] 3 
(80, 100] 6 
(100, 120] 4 
(120, 140] 3 
>140 0 

 

 
3.1.3. Estimating the Runway Selection Probabilities 

After deicing an airplane at a particular deicing pad location, it needs to move to a runway for takeoff.  

No data were available for the runway selections. At D/FW Airport, eastbound flights are assigned to 

runways on the east side and vice-versa for westbound flights.  We had planned to incorporate destination 

information in our optimization.  However, the airport instructed us to proceed with our optimization as a 

“what-if” analysis with the focus on DO. It is important to keep in mind that the results of the 

optimization are not intended to dictate airport decisions, rather the intention is to provide additional 

guidance. There are eight deicing pad locations and sixteen runways counting both directions for each of 

the eight runways at D/FW Airport.  

Since no data were available for the runway selections, an intuitive measure of the distance between 

the deicing pad location and the runway was used to determine the probability that an airplane uses a 

particular runway after being deiced at a particular deicing pad location.  As a result, we obtained a 

deicing pad location-runway matrix based on the premise that the smaller the distance between a deicing 
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pad location and a runway, the higher the probability value assigned to that deicing pad location-runway 

combination.  In other words, the probability of using a runway after being deiced at a deicing pad 

location is inversely proportional to the distance between the pad location and the runway.   We use a 

scale similar in philosophy to the Analytic Hierarchy Process (AHP) (Saaty 1980) to set the probability 

values in the deicing pad-runway matrix for a particular wind direction.  Table 4 describes the scale with 

the corresponding weights: 

 

Table 4. Description of the scale with corresponding weights 

Category for Distance between Deicing Pad 
Location and Runway Weight 

Distance Rating 1 (Lowest) 0.4 
Distance Rating 2 0.3 
Distance Rating 3 0.2 
Distance Rating 4 0.15 
Distance Rating 5 0.10 
Distance Rating 6 0.075 
Distance Rating 7 0.05 
Distance Rating 8 (Highest) 0.025 

 

Having assigned the weight values according to Table 4, the next step in AHP is normalization for 

each deicing pad location across the runways to obtain the probability that an airplane uses a particular 

runway after being deiced.  In summary, the three steps used to generate the runway probability 

distribution are: 1) assign the distance rating, 2) assign the corresponding weight values according to the 

above scale, and 3) normalize the results in Step 2. Table 5 presents the probability values assigned to 

deicing pad location-runway combinations with respect to wind directions.  

   

Table 5. Probability of using a runway after being deiced at a particular deicing pad location 

  
  

𝑅𝑅1 𝑅𝑅2 𝑅𝑅3 𝑅𝑅4 𝑅𝑅5 𝑅𝑅6 𝑅𝑅7 𝑅𝑅8 
South-to-North Wind (WD = 0) 

𝐷𝐷1 0.038 0.302 0.038 0.226 0.151 0.057 0.075 0.110 
𝐷𝐷2 0.038 0.077 0.058 0.154 0.115 0.019 0.231 0.310 
𝐷𝐷3 0.019 0.154 0.038 0.308 0.231 0.058 0.077 0.120 
𝐷𝐷4 0.038 0.231 0.019 0.154 0.115 0.308 0.058 0.080 
𝐷𝐷5 0.058 0.077 0.019 0.154 0.115 0.038 0.231 0.310 
𝐷𝐷6 0.115 0.038 0.158 0.077 0.058 0.019 0.308 0.230 
𝐷𝐷7 0.038 0.077 0.058 0.154 0.115 0.019 0.231 0.310 
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  𝐷𝐷8 0.032 0.190 0.048 0.254 0.190 0.063 0.095 0.130 
  
  

𝑅𝑅9 𝑅𝑅10 𝑅𝑅11 𝑅𝑅12 𝑅𝑅13 𝑅𝑅14 𝑅𝑅15 𝑅𝑅16 
North-to-South Wind (WD = 1) 

𝐷𝐷1 0.058 0.154 0.038 0.308 0.231 0.019 0.077 0.120 
𝐷𝐷2 0.239 0.045 0.239 0.090 0.060 0.030 0.119 0.180 
𝐷𝐷3 0.115 0.308 0.038 0.231 0.154 0.019 0.058 0.080 
𝐷𝐷4 0.058 0.038 0.019 0.308 0.231 0.077 0.115 0.150 
𝐷𝐷5 0.154 0.019 0.058 0.115 0.077 0.038 0.231 0.310 
𝐷𝐷6 0.235 0.044 0.235 0.088 0.059 0.044 0.176 0.120 
𝐷𝐷7 0.302 0.038 0.113 0.075 0.057 0.038 0.151 0.230 
𝐷𝐷8 0.195 0.195 0.049 0.195 0.146 0.049 0.073 0.100 

 

3.2. State Variables 

The state of the system at a given stage of our SDP model must include the relevant history of water 

quality at the six monitoring sites (hourly-averaged DO, water temperature, discharge rate), glycol usage 

for each deicing pad location, and the number of airplanes deiced by deicing pad location-runway 

combination. The number of state variables determines the dimensionality of the SDP problem, which 

needs to be smaller for computational reasons. For a given stage (or hour), the number of state variables is 

computed as below: 

(6 sites)*(3 water qual. vars.) + (8 pad loc. glycol) + (8 pad loc. # airplanes)*(16 runways) = 154. 

Assuming a 2-hour history (lag 1 and lag 2) and adding a state variable for the number of airplanes to be 

deiced in an upcoming hour, the state vector would contain 2*154 + 1 = 309 state variables.  This is 

among the largest SDP problems in the literature, and is comparable to the air quality SDP problem of 

Yang et al. (2007) and Yang et al. (2009) that began with 524 state variables.  In both cases, a data mining 

phase was used for reducing the problem dimensionality.  For the air quality problem, the number of 

dimensions was reduced to 25 state variables. For the deicing activities optimization framework, the 

number of dimensions has been reduced to 45 state variables making it the largest SDP problem in the 

current literature. This problem is considerably larger than the current record of a 30-dimensional 

problem solved by Cervellera et al. (2006).  For the current deicing optimization framework, the 45 state 

variables resulting from a previous data mining phase (Fan et al. 2011) are listed below. 

• History of water quality at monitoring site, 𝑀𝑀6 (4 variables): 𝑅𝑇𝑀𝑆6,𝑡−1 , 𝑅𝑇𝑀𝑆6,𝑡−2 , 

𝐷𝐶𝑀𝑆6,𝑡−1, 𝐷𝐶𝑀𝑆6,𝑡−2 . 

• History of DO at six monitoring sites (12 variables): 𝐷𝑂𝑀𝑆𝑗,𝑡−1 , 𝐷𝑂𝑀𝑆𝑗,𝑡−2 for j = 1, …, 6. 

• History of glycol usage at seven deicing pad locations (13 variables): 𝐺𝐴𝐷𝑃𝑖,𝑡−1 for i = 1, …, 7 
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and 𝐺𝐴𝐷𝑃𝑖,𝑡−2 for i = 1, 2, 4, 5, 6, 7. 

• History of number of deiced airplanes by pad location and runway combinations (15 variables):  

𝑁𝐴𝐷𝐷𝑃𝑖𝑅𝑊𝑘,𝑡−1 for (i, k) = {(1,12), (2,4), (2,7), (3,2), (4,2), (4,5), (5,7), (7,9)}, 𝑁𝐴𝐷𝐷𝑃𝑖𝑅𝑊𝑘,𝑡−2 for 

(i, k) = {(1,12), (2,4), (2,7), (3,2), (4,2), (4,5), (7,9)}. 

• Total number of airplanes to be deiced (1 variable):  𝑇𝑁𝐴𝐷𝑡 

  

The state variables primarily consist of two lags, lag 1 and/or lag 2, for water temperature and 

discharge at the sixth monitoring site, DO concentrations at all six monitoring sites, glycol usages at 

seven of the eight deicing pad locations, and number of deiced airplanes by pad location- runway 

combination. For most cases, lag 1 and lag 2 for a variable show up together, with two of them, 𝐺𝐴𝐷𝑃3,𝑡−1 

and 𝑁𝐴𝐷𝐷𝑃5𝑅𝑊7,𝑡−1, being exceptions with only lag 1. Of particular interest is the impact of glycol usage 

state variables and the runway-related state variables. The intricate relationship of the objective function 

and the state transition equation with decision variables is embedded in these variables, and is elaborated 

in the subsections next. The stochastic nature of the system can be seen in the use of the “best guessed” 

ad hoc probability distributions for sampling “data” for these variables. Consequently, these data are not 

guaranteed to represent reality.  

3.3. Decision Variables and Constraints 

There are eight decision variables in the current hour denoted as 𝑁𝐴𝐷𝐷𝑃𝑖,𝑡 for i = 1, …,8, one for each 

deicing pad location.  Given the number of airplanes that need to be deiced in the upcoming hour, each 

decision variable specifies the number of airplanes assigned to a deicing pad location. The deicing pad 

locations have the hourly capacities as shown in Table 6. Each decision variable must be positive and 

with an upper limit determined by the capacity of the corresponding deicing pad location. In addition, the 

total number of airplanes must be equal to the sum of the decision component, i.e. 𝑇𝑁𝐴𝐷𝑡 =

∑ 𝑁𝐴𝐷𝐷𝑃𝑖,𝑡
8
𝑖=1 .        

 

Table 6. The hourly capacities of deicing pad locations 

Pad location DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 

Capacity (number of airplanes) 6 6 8 16 22 6 8 6 
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3.4 Additional Deicing Variables and External Parameters 

Several deicing-related variables (generated using the glycol usage or runway selection probability 

distributions) and external parameters (mainly, for meteorology) are needed to model the objective 

function and the state transition equation, but they are not maintained as state variables.   

These additional deicing variables are affected by the decision in the current hour and are not part of 

the state history.  Specifically, the assignment of airplanes to deicing pad locations determines the number 

of airplanes being deiced at each pad location; which in turn affects the total glycol usage at each pad 

location and the subsequent runway selections. These 20 key variables are listed below. 

• Glycol usage in the current hour at deicing pad locations (7 variables): 𝐺𝐴𝐷𝑃𝑖,𝑡 for i = 1, …, 7. 

• Number of deiced airplanes in the current hour by pad location and runway (13 variables):  

𝑁𝐴𝐷𝐷𝑃𝑖𝑅𝑊𝑘,𝑡 for (i, k) = {(1,2),(1,12), (2,4), (2,7), (3,2), (3,4), (4,2), (4,5), (4,6), (4,12), (5,7), 

(5,14), (7,9)}. 

 

The external parameters include the binary variable for wind direction, WD, mentioned previously. 

The other external parameters are meteorological variables in the current hour and their histories (lag one 

and lag two). These 13 meteorological variables are listed below. 

• Wind direction (1 variable): WD 

• Air temperature (3 variables): 𝐴𝑇𝑡, 𝐴𝑇𝑡−1, 𝐴𝑇𝑡−2. 

• Precipitation (3 variables): 𝐷𝐷𝑡, 𝐷𝐷𝑡−1, 𝐷𝐷𝑡−2. 

• Wind speed (6 variables): 𝑁𝑀𝑅𝑀𝑡, 𝑁𝑀𝑅𝑀𝑡−1, 𝑁𝑀𝑅𝑀𝑡−2, 𝐸𝑅𝑅𝑀𝑡, 𝐸𝑅𝑅𝑀𝑡−1, 𝐸𝑅𝑅𝑀𝑡−2. 

 

3.5. State Transition Equation 

The state transition equation in Equation (1) determines how each state variable changes from one 

hour to the next. In this model, the state variables are with one or two time lags in the currently selected 

hour’s water temperature and discharge at the sixth monitoring site, DO concentrations at all six 

monitoring sites, glycol amounts at seven deicing pad locations, and number of deiced airplanes by pad 

location-runway combination. When the current hour’s variables are determined, a state transition 

equation can be obtained as follows: the state variables with lag one are transitioned from the 

corresponding current hour’s state variables and the state variables with lag two are transitioned from the 

corresponding lag one variables. Consequently, the state transition equation for the SDP model is actually 

defined by the transitions for certain state variables in the current hour. Without loss of generality, these 

models for state variables are referred to as state transition equations. For these to be state transition 

equations, these equations should be able to predict the current hour’s variables based on past histories 
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and the current hour’s decision.  In particular, the state transition equations that include decision variables 

are quite significant for the optimization process.  

Unfortunately, for the glycol amount related state variables and the runway-related state variables 

described in Subsection 3.2 due to a lack of the actual data, their current hour’s state variables were 

predicted using probability distributions and hence no past histories could be considered. Nevertheless, 

the decision in the current hour is utilized in estimating those variables. Once the deicing variables 

discussed in Subsection 3.4 are determined, the required transitions of these state variables can be 

estimated. For the variable total number of the airplanes deiced, 𝑇𝑁𝐴𝐷𝑡, transition is not required.  The 

remaining state variables are water temperature and discharge at the sixth monitoring site, and the DO 

concentrations at all six monitoring sites. The current hour’s values for these variables are predicted by 

statistical models built from the actual data and artificially generated data discussed previously. 

Furthermore, each of these state transitions is a function of water quality variables from hours t−1 and 

earlier, and decision variables from hours t and earlier. These equations, therefore, form the core of the 

state transitions for this optimization framework.       

For developing the state transition equations, the analysis was conducted in two phases combining 

decision tree and linear regression concepts, as in treed regression (Alexander and Grimshaw 1996, Kim 

et al. 2007):  

• The first phase uses decision tree models to incorporate the deicing activity variables: glycol 

amounts at each deicing pad location and number of planes by deicing pad location-runway 

combination. This phase helps the modeling process by decomposing a space into certain 

subspaces based on the terminal nodes in the decision trees, which facilitate modeling in the 

second phase.    

• The second phase refines the approximation from the first phase using stepwise linear regression 

on the water quality and meteorological variables for the terminal node data from the decision 

trees of the first phase.  Only the terminal nodes with sufficient data were used in this phase.  

Those terminal nodes with too few (less than 10) observations used the average value as the 

predicted value. 

The primary reason for this two-phase approach was to provide better opportunity for the deicing 

activity variables to appear in the models.  If, by some chance, no deicing variables appear in the models, 

then the optimization would have no means to control the system.  In both phases, only the important 

variables identified from a previous data mining phase are employed to build the equations, and only the 

variables identified as important by the tree modeling and stepwise regression procedures are maintained 

in the equations.  These state transition equations include state variables, deicing variables and external 

variables specified in Subsections 3.2, 3.3, and 3.4. CART software (www.salfordsystems.com) was used 

http://www.salfordsystems.com/
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to construct the first phase decision trees, and SAS software (www.sas.com) was used to build the second 

phase multiple linear regression models.  

In this section, we discuss the DO model for the first monitoring site in detail for demonstration 

purposes. Only a brief summary of the other models is given. The first phase decision tree model for 

𝐷𝑂𝑀𝑆1,𝑡 at the monitoring site 𝑀𝑀1 resulted in 8 terminal nodes representing 8 homogeneous groups, with 

split points specified in Table 7. In other words, the input space of  𝐷𝑂𝑀𝑆1,𝑡 was decomposed into 8 

subspaces. The second phase linear regression models and corresponding R2 values (where values close to 

1.0 indicate excellent fit) for the homogenous groups are shown in Table 8.  Note that groups 2 and 7 

were not used in the construction of the second phase linear regression models because there were too 

few observations to come up with a reliable linear regression model. 

 

Table 7. Homogeneous groups in the first phase decision tree for DO at the first monitoring site  

Group 1 2 3 4 5 6 7 8 
𝐺𝐴𝐷𝑃5,𝑡−2 ≤ 1.71  ≤ 1.71  ≤ 1.71  ≤ 1.71  ≤ 1.71  ≤ 1.71  ≤ 1.71 >1.71 

𝐺𝐴𝐷𝑃1,𝑡 ≤ 2.36  ≤ 2.36  ≤ 2.36  ≤ 2.36  ≤ 2.36  ≤ 2.36  ≤ 2.36    

𝑁𝐴𝐷𝐷𝑃4𝑅𝑊5,𝑡−2           ≤0.5 >0.5   

𝐺𝐴𝐷𝑃1,𝑡−1 ≤ 2.36  ≤ 2.36  ≤ 2.36  ≤ 2.36  > 2.36        

𝐺𝐴𝐷𝑃1,𝑡−2 ≤ 35.05  ≤ 35.05  ≤ 35.05  > 35.05          

𝐺𝐴𝐷𝑃6,𝑡−2 ≤ 14.64  ≤ 14.64  > 14.64            

𝐺𝐴𝐷𝑃5,𝑡 ≤ 5.0  > 5.0              
 

 

Table 8. Second phase results for estimated state transition equations for DO at the first monitoring site.    

Group R2 Estimated state transition equations for 𝐷𝑂𝑀𝑆1,𝑡 at 𝑀𝑀1 

1 0.9855 
𝐷𝑂𝑀𝑆1,𝑡 R = 0.302 – 0.00094348*𝐸𝑅𝑅𝑀𝑡−2 – 0.00197*𝐴𝑇𝑡 + 0.00127*𝐴𝑇𝑡−2  
                 + 1.21739*𝐷𝑂𝑀𝑆1,𝑡−1 – 0.23749*𝐷𝑂𝑀𝑆1,𝑡−2 – 0.00502*𝑅𝑇𝑀𝑆6,𝑡−2 

2  𝐷𝑂𝑀𝑆1,𝑡 = 12.653 

3 0.9997 
𝐷𝑂𝑀𝑆1,𝑡 = –0.41054 + –0.01646*𝐸𝑅𝑅𝑀𝑡−1 – 0.00465*𝑁𝑀𝑅𝑀𝑡−2   
                 +1.03229*𝐷𝑂𝑀𝑆1,𝑡−1  – 0.00209*𝐷𝐶𝑀𝑆6,𝑡−1 + 0.4778*𝑅𝑇𝑀𝑆6,𝑡−1  
                  – 0.46060*𝑅𝑇𝑀𝑆6,𝑡−2 

4 0.9734 𝐷𝑂𝑀𝑆1,𝑡 = 1.00432 + 0.95152*𝐷𝑂𝑀𝑆1,𝑡−1 – 0.04841*𝑅𝑇𝑀𝑆6,𝑡−2 

5 0.9856 
𝐷𝑂𝑀𝑆1,𝑡 = 0.15076 – 0.00367*𝑁𝑀𝑅𝑀𝑡−2 + 1.26217*𝐷𝑂𝑀𝑆1,𝑡−1 
                  – 0.27566*𝐷𝑂𝑀𝑆1,𝑡−2 

6 0.9870 𝐷𝑂𝑀𝑆1,𝑡 = 0.45669 – 0.00515*𝐴𝑇𝑡−2 + 1.30756*𝐷𝑂𝑀𝑆1,𝑡−1 

http://www.sas.com/


 17 

                  – 0.32843*𝐷𝑂𝑀𝑆1,𝑡−2 

7  𝐷𝑂𝑀𝑆1,𝑡 = 15.007 

8 0.9732 
𝐷𝑂𝑀𝑆1,𝑡 = 0.90857 + 1.41939*𝐷𝑂𝑀𝑆1,𝑡−1 – 0.47743*𝐷𝑂𝑀𝑆1,𝑡−2 
                  – 0.02447*𝑅𝑇𝑀𝑆6,𝑡−1 

 

 

As can be seen in Tables 7 and 8 for the first monitoring site, the deicing activity-related variables are 

used to identify the group and the water quality and meteorological variables are used to predict the DO 

concentration in the group. It is important to note that such a model overall defines a target state variable 

as a function of all the variables involved in the two phase process. As a result, the model for  𝐷𝑂𝑀𝑆1,𝑡 

can be a function of fifteen variables, including seven deicing activity-related variables, and eight water 

quality-related variables, as shown in Tables 7 and 8 and further listed in Table 9.   

Similar models were built for DO at other five monitoring sites, and for water temperature and 

discharge at the sixth monitoring site. These models are also summarized in Table 9. It can be seen from 

the table that: (a) each model has certain state variables, decision variables, deicing variables and external 

parameters; (b) a current hour’s variable is related with its history; and c) decision and stochastic nature 

are implicitly represented with the deicing activity-related variables.     

 

Table 9. Summary of the state transition models for DO at all six monitoring sites and for water 
temperature and discharge at the sixth monitoring site.  

State 
variable 

Number of 
homogeneous 
groups in the 
decision tree 

Variables 
in the first phase 

Variables 
in the second phase 

Glycol 
amounts 

Combinations 
of deicing pad 
locations vs. 

runways 

Water quality 
variables 

Meteorological 
variables 

𝐷𝑂𝑀𝑆1,𝑡 8 𝐺𝐴𝐷𝑃1,𝑡 
𝐺𝐴𝐷𝑃1,𝑡−1 
𝐺𝐴𝐷𝑃1,𝑡−2 
𝐺𝐴𝐷𝑃5,𝑡 
𝐺𝐴𝐷𝑃5,𝑡−2 
𝐺𝐴𝐷𝑃6,𝑡−2 

𝑁𝐴𝐷𝐷𝑃4𝑅𝑊5,𝑡−2 𝑅𝑇𝑀𝑆6,𝑡−1 
𝑅𝑇𝑀𝑆6,𝑡−2  
𝐷𝑂𝑀𝑆1,𝑡−1  
𝐷𝑂𝑀𝑆1,𝑡−2 

𝐴𝑇𝑡 
𝐴𝑇𝑡−2 
𝑁𝑀𝑅𝑀𝑡−2  
𝐸𝑅𝑅𝑀𝑡−2 

𝐷𝑂𝑀𝑆2,𝑡 6 𝐺𝐴𝐷𝑃1,𝑡 
𝐺𝐴𝐷𝑃1,𝑡−1 
𝐺𝐴𝐷𝑃1,𝑡−2 
𝐺𝐴𝐷𝑃2,𝑡 

 𝑅𝑇𝑀𝑆6,𝑡−1 
𝑅𝑇𝑀𝑆6,𝑡−2  
𝐷𝑂𝑀𝑆2,𝑡−1  
𝐷𝑂𝑀𝑆2,𝑡−2 

𝐴𝑇𝑡 
𝐴𝑇𝑡−2 
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𝐺𝐴𝐷𝑃3,𝑡 
𝐷𝑂𝑀𝑆3,𝑡 7 𝐺𝐴𝐷𝑃1,𝑡 

𝐺𝐴𝐷𝑃1,𝑡−2  
𝐺𝐴𝐷𝑃4,𝑡−1  
𝐺𝐴𝐷𝑃6,𝑡 
𝐺𝐴𝐷𝑃6,𝑡−2 
𝐺𝐴𝐷𝑃7,𝑡−1 

 𝑅𝑇𝑀𝑆6,𝑡−1  
𝑅𝑇𝑀𝑆6,𝑡−2  
𝐷𝐶𝑀𝑆6,𝑡−2  
𝐷𝑂𝑀𝑆3,𝑡−1  
𝐷𝑂𝑀𝑆3,𝑡−2 

𝐴𝑇𝑡 
𝐴𝑇𝑡−2 
𝑁𝑀𝑅𝑀𝑡 
𝑁𝑀𝑅𝑀𝑡−1  
𝐸𝑅𝑅𝑀𝑡−1  

𝐷𝑂𝑀𝑆4,𝑡 11 𝐺𝐴𝐷𝑃1,𝑡−1  
𝐺𝐴𝐷𝑃3,𝑡−1  
𝐺𝐴𝐷𝑃6,𝑡−1  
𝐺𝐴𝐷𝑃6,𝑡−2 
𝐺𝐴𝐷𝑃7,𝑡−1  

𝑁𝐴𝐷𝐷𝑃1𝑅𝑊2,𝑡  
𝑁𝐴𝐷𝐷𝑃3𝑅𝑊2,𝑡−1  
𝑁𝐴𝐷𝐷𝑃3𝑅𝑊2,𝑡−2  
𝑁𝐴𝐷𝐷𝑃3𝑅𝑊4,𝑡 
𝑁𝐴𝐷𝐷𝑃4𝑅𝑊12,𝑡  

𝑅𝑇𝑀𝑆6,𝑡−1  
𝑅𝑇𝑀𝑆6,𝑡−2  
𝐷𝐶𝑀𝑆6,𝑡−2   
𝐷𝑂𝑀𝑆4,𝑡−1  
𝐷𝑂𝑀𝑆4,𝑡−2 

𝐴𝑇𝑡 
𝐴𝑇𝑡−1 
𝐴𝑇𝑡−2  
𝐷𝐷𝑡  
𝑁𝑀𝑅𝑀𝑡−1  
𝑁𝑀𝑅𝑀𝑡−2  
𝐸𝑅𝑅𝑀𝑡−2 

𝐷𝑂𝑀𝑆5,𝑡 14 𝐺𝐴𝐷𝑃1,𝑡  
𝐺𝐴𝐷𝑃1,𝑡−1  
𝐺𝐴𝐷𝑃1,𝑡−2  
𝐺𝐴𝐷𝑃4,𝑡−2 
𝐺𝐴𝐷𝑃6,𝑡  
𝐺𝐴𝐷𝑃6,𝑡−2 

𝑁𝐴𝐷𝐷𝑃1𝑅𝑊12,𝑡  
𝑁𝐴𝐷𝐷𝑃1𝑅𝑊12,𝑡−1  
𝑁𝐴𝐷𝐷𝑃1𝑅𝑊12,𝑡−2  
𝑁𝐴𝐷𝐷𝑃4𝑅𝑊2,𝑡−2 
𝑁𝐴𝐷𝐷𝑃4𝑅𝑊5,𝑡  
𝑁𝐴𝐷𝐷𝑃5𝑅𝑊7,𝑡−1  
𝑁𝐴𝐷𝐷𝑃5𝑅𝑊14,𝑡 

𝑅𝑇𝑀𝑆6,𝑡−1  
𝑅𝑇𝑀𝑆6,𝑡−2  
𝐷𝐶𝑀𝑆6,𝑡−1  
𝐷𝑂𝑀𝑆5,𝑡−1  
𝐷𝑂𝑀𝑆5,𝑡−2 

𝐴𝑇𝑡 
𝐴𝑇𝑡−2  
𝑁𝑀𝑅𝑀𝑡  
𝑁𝑀𝑅𝑀𝑡−2 
 

𝐷𝑂𝑀𝑆6,𝑡 16 𝐺𝐴𝐷𝑃1,𝑡  
𝐺𝐴𝐷𝑃1,𝑡−1  
𝐺𝐴𝐷𝑃1,𝑡−2  
𝐺𝐴𝐷𝑃4,𝑡  
𝐺𝐴𝐷𝑃4,𝑡−1  
𝐺𝐴𝐷𝑃4,𝑡−2  
𝐺𝐴𝐷𝑃5,𝑡  
𝐺𝐴𝐷𝑃5,𝑡−2 
𝐺𝐴𝐷𝑃6,𝑡  
𝐺𝐴𝐷𝑃6,𝑡−2  
𝐺𝐴𝐷𝑃7,𝑡  
𝐺𝐴𝐷𝑃7,𝑡−1  
𝐺𝐴𝐷𝑃7,𝑡−2   

𝑁𝐴𝐷𝐷𝑃2𝑅𝑊7,𝑡−2 
 

𝑅𝑇𝑀𝑆6,𝑡−1  
𝑅𝑇𝑀𝑆6,𝑡−2  
𝐷𝑂𝑀𝑆6,𝑡−1  
𝐷𝑂𝑀𝑆6,𝑡−2 

𝐴𝑇𝑡   
𝐴𝑇𝑡−2   
𝐷𝐷𝑡 
𝑁𝑀𝑅𝑀𝑡−2 
 

𝑅𝑇𝑀𝑆6,𝑡 29 𝐺𝐴𝐷𝑃1,𝑡  
𝐺𝐴𝐷𝑃1,𝑡−1  
𝐺𝐴𝐷𝑃1,𝑡−2  

𝑁𝐴𝐷𝐷𝑃1𝑅𝑊12,𝑡  
𝑁𝐴𝐷𝐷𝑃1𝑅𝑊12,𝑡−1  
𝑁𝐴𝐷𝐷𝑃1𝑅𝑊12,𝑡−2  

𝑅𝑇𝑀𝑆6,𝑡−1 
𝑅𝑇𝑀𝑆6,𝑡−2 

𝐴𝑇𝑡   
𝐴𝑇𝑡−1  
𝐴𝑇𝑡−2   
𝑁𝑀𝑅𝑀𝑡  
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𝐺𝐴𝐷𝑃2,𝑡  
𝐺𝐴𝐷𝑃2,𝑡−1  
𝐺𝐴𝐷𝑃2,𝑡−2  
𝐺𝐴𝐷𝑃4,𝑡  
𝐺𝐴𝐷𝑃4,𝑡−1  
𝐺𝐴𝐷𝑃4,𝑡−2  
𝐺𝐴𝐷𝑃5,𝑡 
𝐺𝐴𝐷𝑃6,𝑡  
𝐺𝐴𝐷𝑃6,𝑡−1  
𝐺𝐴𝐷𝑃6,𝑡−2  
𝐺𝐴𝐷𝑃7,𝑡  
𝐺𝐴𝐷𝑃7,𝑡−1 
𝐺𝐴𝐷𝑃7,𝑡−2 

𝑁𝐴𝐷𝐷𝑃7𝑅𝑊9,𝑡−1 
𝑁𝐴𝐷𝐷𝑃7𝑅𝑊9,𝑡−2 

𝑁𝑀𝑅𝑀𝑡−2   
𝐸𝑅𝑅𝑀𝑡   
𝐸𝑅𝑅𝑀𝑡−1   
𝐸𝑅𝑅𝑀𝑡−2   
 

𝐷𝐶𝑀𝑆6,𝑡 5 𝐺𝐴𝐷𝑃1,𝑡−2 
𝐺𝐴𝐷𝑃7,𝑡−2 

 𝐷𝐶𝑀𝑆6,𝑡−1 
𝐷𝐶𝑀𝑆6,𝑡−2 

𝐴𝑇𝑡  
𝐷𝐷𝑡  
𝑁𝑀𝑅𝑀𝑡  
𝑁𝑀𝑅𝑀𝑡−1 
𝐸𝑅𝑅𝑀𝑡  
𝐸𝑅𝑅𝑀𝑡−2  

 

 

3.6. Objective Function 

The state transition models for DO at six monitoring sites discussed in the previous subsection help to 

determine the objective function of the SDP formulation shown in Equation (1) as below: 

  

𝐷𝑂𝑡 = 1
6
∑ 𝐷𝑂𝑀𝑆𝑗,𝑡
6
𝑗=1                                                                 (2)   

 

 

3.7. An Interesting Remark  

It was gathered from the SDP modeling process that the eighth deicing pad, 𝐷𝐷8, did not affect the 

modeling process as its deicing activity-related variables did not appear in the list of state variables as 

well as in any model for objective function or for state transition. Whether it reflects the reality of D/FW 

Airport’s deicing system is not clear at this point and can be an interesting project for future. 
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4. Deicing Activities Optimization Framework: Solution & Implementation Results 

Three days with relatively heavier demand for deicing at the D/FW Airport (Case 1: 01/12/2003; Case 

2: 02/24/2003; Case 3: 02/25/2003) during the 2003 deicing season were selected as instances to 

demonstrate the performance of the proposed data-driven SDP framework. The idea was to build a tool 

that could help optimize deicing activities at the D/FW Airport in terms of its impact on its surrounding 

receiving waters.   

 
4.1. Approximate SDP Solution 

The SDP formulation for the deicing activities optimization framework is high-dimensional with 45 

state variables (shown in Subsection 3.2).  Such complex SDP problems can only be solved 

approximately. We utilize the approximate SDP solution approach described in Cervellera et al. (2006).  

The major steps in the solution process for a given hour t are shown in Figure 2.  Given a point 𝑥𝑡 that 

specifies values of the state variables within the state space, the optimizer solves for a point 𝑉𝑡 on the 

future value function.  Sufficient (𝑥𝑡 , 𝑉𝑡) pairs are obtained, and they form the training data set for 

constructing a neural network approximation 𝑉�𝑡(∙) of the future value function.  This process of obtaining 

(𝑥𝑡, 𝑉𝑡) pairs is controlled by design of experiments (DOE).  For each of the three prototypical cases 

mentioned previously, we randomly sampled 200 𝑥𝑡 points in the state space, and used a neural network 

with one hidden layer containing 20 nodes.  Once the future value function approximations 𝑉�𝑡(∙) are 

obtained, the optimal decisions can be generated for any state of the system.  We wrote the SDP code in 

Matlab software (www.mathworks.com) using Optimization and Neural Network Toolboxes to solve for 

18 future value function approximations (one for each hour), then generated optimal decisions for specific 

cases using our MATLAB simulation model. 

 

4.2. Special Considerations 

Some special considerations for the three prototypical cases include: 

• For each case, the SDP problem was solved using actual meteorological data and the actual 

number of airplanes deiced.  

• As no information was available for the daily take-off directions for the three cases, the take-

off direction for a day was based on the wind direction (WD) in the first operational hour of 

the airport on that day. 

http://www.mathworks.com/
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• Because the eighth deicing pad does not affect the DO for any monitoring sites, we used this 

result to reduce the decision space dimension by setting up a rule that made it the most 

preferred location choice to deice airplanes.  

• Basically, the probability distributions presented in the Subsection 3.1.3 for the runway 

selections contribute to the uncertainty of the SDP model. In this application, it was only used 

deterministically to assign the runways for airplanes to take off after being deiced at given 

pad location. In other words, it was not included in the expectation value estimation in 

Equation (1) over the sampled data points at certain times.       

 

4.3. Optimization Results and Discussions 

The solution runtimes for the SDP formulation using the MATLAB Software on a Dual 3.06-GHz 

Intel Xeon Workstation were 48.25 hours for Case 1, 42.5 hours for Case 2, and 38 hours for Case 3.  

Each case was simulated using the optimal decisions, and the results are shown in Tables 10 through 15.  

The results in Tables 10, 12, and 14 are simulated realizations of the SDP policy.  These are shown for 

illustration purposes since this reflects the type of result the airport would see on a specific day.  The 

simulation employs the SDP policy and would dynamically alter the decisions depending on the realized 

states. The simulation runtimes were about 5 minutes for each case.  The results should be viewed with an 

understanding that it is based on some artificially generated data and several simplifying assumptions.  In 

addition, the MATLAB optimizer could not converge on several instances due to inherent non-convexity 

issues with the optimization problem of this nature. To accommodate the trees in the MATLAB optimizer, 

we represented the decision trees by a sequence of “if-then” rules. However, the MATLAB optimizer is 

still a generic routine that is not specialized to guarantee optimality in the presence of treed regression 

models. The issues related to trees in an optimization framework will be further examined in the future.  

From the results for Case 1, it is seen that an improvement in the average DO with respect to the 

actual average DO based on the D/FW & USGS data occurs at the first and fourth monitoring sites, 

whereas the average DO at the third monitoring site is quite close to the actual DO.  It is important to 

mention here that the D/FW Airport installed some aerators in the Trigg Lake. Geographically, the second 

monitoring site could have been impacted by these aerators and other urban activities that were not 

explicitly modeled in this optimization framework.  

The results for Case 2 indicate an improvement in the average DO over the actual average DO at the 

fourth monitoring site, whereas the average DO is quite close to the actual DO at the first and fifth 

monitoring sites.  
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The results for Case 3 indicate an improvement in the average DO over the actual average DO at the 

third and fifth monitoring sites, whereas the average DO is quite close to the actual DO at the first, fourth 

and sixth monitoring sites.  

 

      
Figure 2. Flowchart of the approximate SDP approach in hour t. 

 

 

Table 10. Case 1: The optimal deicing pad location assignments for each deicing hour. 

Stage t Hour 𝑇𝑁𝐴𝐷𝑡 𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 𝐷𝐷4 𝐷𝐷5 𝐷𝐷6 𝐷𝐷7 𝐷𝐷8 
1 6 9 0 0 2 0 0 1 0 6 
2 7 43 6 0 3 12 10 6 0 6 
3 8 37 0 6 8 16 1 0 0 6 
4 9 54 0 4 8 0 22 6 8 6 
5 10 64 0 6 6 16 22 6 2 6 
6 11 72 2 6 8 16 22 4 8 6 
7 12 62 6 4 8 16 16 6 0 6 
8 13 75 6 6 5 16 22 6 8 6 
9 14 65 6 3 8 13 22 2 5 6 
10 15 58 0 6 7 16 22 1 0 6 
11 16 66 6 6 8 4 22 6 8 6 
12 17 60 0 6 8 16 22 2 0 6 
13 18 65 0 6 8 9 22 6 8 6 

Discretization of State Space 𝑥𝑡 DOE 

Optimizer 
(MATLAB Toolbox) 

Transition 
Models 

DO Models 
For Objective 

 Training Data Pairs (𝑥𝑡, 𝑉𝑡) 

Approximation of Future Value 
Function 𝑉�𝑡(∙) with  
Neural Networks 
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14 19 70 4 0 8 16 22 6 8 6 
15 20 60 6 6 2 16 22 2 0 6 
16 21 47 0 6 5 0 22 0 8 6 
17 22 45 6 5 0 0 20 0 8 6 
18 23 0 0 0 0 0 0 0 0 0 

 

 

Table 11. Case 1: The realized DO values at each monitoring site under the optimal assignments. 

Stage t Hour 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3 𝑀𝑀4 𝑀𝑀5 𝑀𝑀6 
1 6 11.7794 8.8572 9.7143 13.8534 8.2895 12.6529 
2 7 11.7794 8.8572 9.6956 14.0625 8.2895 12.6529 
3 8 12.653 7.8246 9.7252 14.0625 8.2511 12.6101 
4 9 11.7794 8.8572 9.6956 13.8802 8.2895 12.6553 
5 10 11.7794 8.8572 9.6956 14.0625 8.2895 12.6553 
6 11 11.7794 8.8572 9.6956 14.0625 8.2895 12.6578 
7 12 11.7794 8.8572 9.6956 14.0625 8.2895 12.6578 
8 13 11.7794 8.8572 9.6956 14.0625 8.2895 12.6602 
9 14 11.7794 8.8572 9.6956 14.0625 8.2895 12.6602 
10 15 11.7794 8.8572 9.6956 14.0625 8.2895 12.6602 
11 16 11.7794 8.8572 9.6956 14.0625 8.2895 12.6651 
12 17 12.653 7.8246 9.6956 14.0625 12.148 12.6101 
13 18 11.7794 8.8572 9.6956 14.0625 12.148 12.6724 
14 19 11.7794 8.8572 9.6956 14.0625 8.2895 12.6773 
15 20 11.7794 8.8572 9.6956 14.0625 8.2895 12.6773 
16 21 11.7794 8.8572 9.6956 13.915 8.2895 12.6773 
17 22 11.7794 8.8572 9.6956 13.922 8.2895 12.6773 
18 23 11.7794 8.8572 9.7143 13.9172 8.2895 12.6773 
Average 11.8765 8.7425 9.6993 14.0167 8.7161 12.6587 
Actual (5AM-
11PM) 11.77  9.82 12.96 9.91 16.5 

 

 

Table 12. Case 2: The optimal deicing pad location assignments for each deicing hour. 

Stage t Hour 𝑇𝑁𝐴𝐷𝑡 𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 𝐷𝐷4 𝐷𝐷5 𝐷𝐷6 𝐷𝐷7 𝐷𝐷8 
1 6 2 0 0 0 0 0 0 0 2 
2 7 22 6 1 7 1 0 1 0 6 
3 8 26 0 0 0 0 14 5 1 6 
4 9 34 6 0 0 4 7 3 8 6 
5 10 44 4 0 0 10 22 0 2 6 
6 11 32 6 0 0 0 20 0 0 6 
7 12 39 6 6 1 8 0 6 6 6 
8 13 40 6 0 0 14 0 6 8 6 
9 14 38 6 0 8 3 1 6 8 6 
10 15 37 0 2 8 13 0 0 8 6 



 24 

11 16 36 0 0 8 0 18 4 0 6 
12 17 29 0 0 2 9 4 0 8 6 
13 18 57 6 6 8 0 22 6 3 6 
14 19 43 6 6 8 15 1 0 1 6 
15 20 36 0 6 0 16 2 6 0 6 
16 21 30 0 1 2 15 0 4 2 6 
17 22 22 0 6 5 5 0 0 0 6 
18 23 1 0 0 0 0 0 0 0 1 

  

 

Table 13. Case 2: The realized DO values at each monitoring site under the optimal assignments. 

Stage t Hour 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3 𝑀𝑀4 𝑀𝑀5 𝑀𝑀6 
1 6 10.9847 18.9428 10.7286 6.678 11.6265 10.6762 
2 7 11.023 17.6508 10.7289 6.6681 11.6577 10.7336 
3 8 11.023 17.6508 10.7289 6.6838 11.6577 10.7336 
4 9 11.023 17.6508 10.7289 7.9565 11.6577 10.736 
5 10 11.023 17.6508 10.7289 7.9565 11.6577 10.7385 
6 11 11.023 17.6508 10.7289 6.7072 11.6577 10.7409 
7 12 11.023 17.6508 10.7289 7.9565 11.6577 10.7433 
8 13 11.023 17.6508 10.7289 7.9565 11.6577 10.7458 
9 14 11.023 17.6508 10.7289 7.9565 11.6577 10.7458 
10 15 11.023 17.6508 10.7289 7.9565 11.6577 10.7482 
11 16 12.653 19.3339 10.7289 6.6995 12.148 10.7087 
12 17 11.023 17.6508 10.7289 7.9565 11.6577 10.7458 
13 18 11.023 17.6508 10.7289 6.6884 11.6577 10.7458 
14 19 11.023 17.6508 10.7289 7.9565 11.6577 10.7433 
15 20 12.653 19.3339 10.7289 7.9565 12.148 10.7087 
16 21 10.9968 19.3339 10.7289 7.9565 12.148 10.7087 
17 22 11.023 17.6508 10.7289 7.9565 11.6577 10.7433 
18 23 10.9956 18.9595 10.761 6.6961 11.651 10.6762 
Average 11.1990 18.0758 10.7307 7.4635 11.7373 10.7290 
Actual (5AM-11PM) 11.67  12.12 6.65 12.15 11.36 

 

 

Table 14. Case 3: The optimal deicing pad location assignments for each deicing hour. 

Stage t Hour 𝑇𝑁𝐴𝐷𝑡 𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 𝐷𝐷4 𝐷𝐷5 𝐷𝐷6 𝐷𝐷7 𝐷𝐷8 
1 6 3 0 0 0 0 0 0 0 3 
2 7 15 0 3 4 0 0 0 2 6 
3 8 22 0 0 8 0 4 3 1 6 
4 9 31 1 1 1 1 20 0 1 6 
5 10 27 0 0 0 0 7 6 8 6 
6 11 27 3 0 5 3 2 5 3 6 
7 12 34 3 1 0 12 0 6 6 6 
8 13 41 0 1 1 15 4 6 8 6 
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9 14 38 3 6 8 0 5 3 7 6 
10 15 26 0 0 0 2 17 1 0 6 
11 16 27 0 4 1 0 16 0 0 6 
12 17 30 0 6 8 0 0 2 8 6 
13 18 37 6 6 8 3 0 0 8 6 
14 19 37 5 6 6 0 0 6 8 6 
15 20 35 1 1 1 5 21 0 0 6 
16 21 23 0 0 8 0 0 6 3 6 
17 22 23 0 6 0 7 4 0 0 6 
18 23 0 0 0 0 0 0 0 0 0 

 

 

Table 15. Case 3: The realized DO values at each monitoring site under the optimal assignments. 

Stage t Hour 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3 𝑀𝑀4 𝑀𝑀5 𝑀𝑀6 
1 6 13.4011 27.4926 14.0247 4.121 13.0618 13.0659 
2 7 13.4011 27.4926 13.9902 4.1322 13.0618 13.0684 
3 8 13.4011 27.4926 13.9902 4.1304 12.148 13.0684 
4 9 13.4011 27.4926 13.9902 4.1091 13.0618 13.0684 
5 10 13.4011 27.4926 13.9902 4.1152 13.0618 13.0684 
6 11 13.4011 27.4926 13.9902 6.746 13.0618 13.0684 
7 12 13.4011 27.4926 13.9902 6.746 13.0618 13.0684 
8 13 13.4011 27.4926 13.9902 6.746 13.0618 13.0684 
9 14 13.4011 27.4926 13.9902 4.124 13.0618 13.0684 
10 15 13.4011 27.4926 13.9902 6.746 13.0618 13.0684 
11 16 13.4011 27.4926 13.9902 4.0979 13.0618 13.0635 
12 17 12.653 20.3551 13.9902 4.0762 12.148 13.0142 
13 18 13.4011 27.4926 14.0247 6.746 13.0618 13.061 
14 19 13.4011 27.4926 13.9902 4.0916 13.0618 13.0586 
15 20 13.4011 27.4926 13.9902 6.746 13.0618 13.0562 
16 21 13.4011 27.4926 13.9902 4.0717 13.0618 13.0537 
17 22 12.653 20.3551 13.9902 6.746 12.148 13.0026 
18 23 12.653 26.2488 13.9653 4.0695 13.0122 13.0305 
Average 13.2764 26.6304 13.9927 5.1312 12.9067 13.0568 
Actual (5AM-11PM) 13.96  12.67 5.3 12.89 13.3 

 

 

5.  Conclusions and Future Work 

A data-driven deicing activities management framework to minimize the environmental impact of 

airport deicing activities at Dallas-Fort Worth International Airport has been developed. The framework 

utilizes stochastic dynamic programming (SDP) approach to maximize the dissolved oxygen (DO) at the 

six monitoring sites in the airport’s receiving water system over 18 operating hours in a day, subject to the 

airport constraints.  The reduced state space as a result of a data mining process includes 45 state 
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variables consisting of water quality variables at six monitoring sites, glycol usage for each deicing pad 

location, and the number of airplanes deiced by deicing pad location-runway combination.  The actual 

and artificially generated hourly data were used to conduct a two-phase statistical analysis: (i) to fit 

decision tree models for the variables related to deicing activities, and (ii) to fit multiple linear regression 

models for water quality variables and meteorological variables.  Statistical models were constructed for 

DO at all six monitoring sites in the airport’s receiving waters, and for water temperature and discharge 

rate at the sixth monitoring site.  They served as state transition equations in the deicing activities 

optimization framework. Given the number of airplanes that needs to be deiced in the upcoming hour, 

decision variables specify the assignment of these airplanes to deicing pad locations. The proposed 

deicing activities optimization framework demonstrates the potential to execute the optimization process 

for a real system as complex as the deicing activities system at D/FW airport.  Such an 

optimization/simulation tool can be used to study actual D/FW operational scenarios under various 

conditions and come up with a set of recommendations to improve the ecological impact of the current 

deicing practices at the airport.   

Recently, the airport implemented an active data collection of deicing activities which will be 

important for our framework. For future work, first, the optimization will focus on only the problematic 

monitoring sites, and it will implement a penalty function approach that seeks to achieve DO above a 

desired threshold, instead of simply maximizing DO.  Second, nonstationary state transitions will be 

modeled using the same treed regression approach, and data mining and variable selection procedures will 

be critical for dimensionality reduction.  Third, a specialized mixed-integer optimization code will be 

developed to more appropriately handle the treed regression models within the optimization.  Finally, a 

new adaptive value function approximation method (Fan et al. 2013) will be employed to solve for the 

SDP policy.      
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