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Abstract 

Low-emittance (low-E) glass manufacturing has become an important sector of the glass 

industry for the great economical and environmental impacts of low-E glasses. However, the 

quality control scheme in the current practice is rather primitive and advanced statistical quality 

control methods need to be developed. As an effort for this purpose, this paper considers the 

modeling of optical profiles which are typical quality measurements in low-E glass 

manufacturing processes. Linear mixed-effect models are used for the data, and a Bayesian 

modeling approach is proposed for parameter estimation and model selection. The effectiveness 

of the proposed approach is validated in a numerical study, and its use in practice is 

demonstrated in a case study where this approach is applied to a real dataset from a low-E glass 

producer. The established model using this approach will provide a foundation for quality 

monitoring and variation reduction in low-E glass manufacturing. 

Keywords: Bayes factors, Linear mixed-effect (LME) models, Gibbs sampling, Low-E glass, 

Optical profiles, Polynomial models  

 

1. Introduction 

The concerns on energy and environment during the past two decades have led to 

fundamental improvements in house/building design which are partially made possible by many 

technological innovations on energy efficiency of windows. One critical innovation is the low-
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emittance (low-E) glass. The low-E glass is manufactured through physical or chemical coating 

processes, as illustrated in Figure 1, where solid materials, e.g., metal, metal oxide, and metal 

nitride, are deposited on the surface of flat glass ribbons in a sequence of sealed chambers to 

enhance the thermal/optical performance of products. With the depositions, such glasses can 

lower the heat flow through the window by reflecting up to 90% of infrared radiation while 

allowing visible light to enter (Arasteh et al., 2004; Carmody, Selkowitz and Heschhong, 1996). 

Thus, they are able to reduce unwanted heat gain in summer and heat loss in winter. Studies 

suggest that if all windows purchased over the next fifteen years are made by low-E glass and 

incorporated with other readily available efficiency improvements, the collective annual energy 

bill of US could be reduced by 25 percent or over 2 billion per year by 2010 (Frost, Arasteh and 

Eto, 1993). The huge benefits have made low-E glass manufacturing an important sector of the 

glass industry.     

 
Figure 1. Low-E glass manufacturing process and optical profiles 

One main quality concern in low-E glass manufacturing processes is the uniformity of 

coating on the glass surface. In the current practice of quality control in those processes, 

automated online inspection is typically conducted where the finished product is scanned by 

laser to measure optical properties of sampled locations on the glass. One example of the 

measured optical properties is the spectral reflectance profile, i.e., the percentage of light that 

reflects from the glass surface over a range of wavelengths, as shown in the lower panel of 

Figure 1, where  is the wavelength and r is the reflectance. From such optical profiles, popular 
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color scales, such as a
* 

(degree of redness/greenness) and b*(degree of yellowness/blueness) 

(Hunter Lab, 2008), are calculated and monitored as quality metrics. However, the color scales 

are simple, univariate summaries of the information in the optical profiles, which are not 

adequate to reflect the state of the process and thus may not perform well in detecting changes in 

the process. Obviously, the optical profiles need to be monitored directly for achieving more 

reliable quality control.   

Monitoring of quality profiles has received much attention in recent years due to the 

increasing popularity of such types of data in manufacturing processes. Woodall (2004, 2007) 

and Noorossana et al. (2011) give excellent reviews of the state of art in this field. The basic idea 

for profile monitoring is first building a statistical model to characterize the shape of the profiles, 

and then monitoring the parameter estimates of the model. The modeling step is very critical as it 

establishes a foundation for the monitoring step as well as other statistical analyses of the data. 

For this reason, this study will focus on modeling the optical profiles as our starting effort to 

advance quality control schemes in the low-E manufacturing processes.   

Concerning modeling of quality profiles, various linear models (e.g., Kim, Mahmoud and 

Woodall, 2003) and nonlinear models (e.g., Williams, Woodall and Birch, 2007) have been 

proposed in the literature, depending on the characteristics of data. The model that fits the optical 

profiles in Figure 1 is polynomial models. Such models have been used in existing studies. For 

example, Kazemzadeh, Noorossana and Amiri (2008, 2009) use regular polynomial models and 

evaluate their performance in Phase I and Phase II profile monitoring through simulations; 

Kazemzadeh, Noorossana and Amiri (2010) consider correlated errors in polynomial modeling to 

characterize between-profile autocorrelation; and Amiri, Jensen and Kazemzadeh (2009) conduct 

a case study in which linear mixed-effect (LME) models initially proposed by Jensen, Birch and 

Woodall, 2008) for linear profiles are applied to polynomial profiles from automotive industry.  

The LME models is very popular in areas such as social and medical research where the 

variation in individuals is typically modeled as random effects (Gelman and Hill, 2007; Wu, 

2010). The motivation for its use in profile modeling is mainly to characterize within-profile 
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correlations that are commonly present in profile data (Jensen, Birch and Woodall, 2008). 

Another advantageous feature of the LME models that is not emphasized in the existing studies 

is its decomposition of variations in the data into two parts, the variation in the coefficients of the 

model and the variation in the random errors. The former can be viewed as representing the 

intrinsic variation of the manufacturing process, while the latter represents noises in the process 

and data collection such as measurement errors. This decomposition can provide more 

information for process diagnosis and control than regular models. The LME model is especially 

suitable for cases where the variation in the coefficients is predominant, i.e., smooth profiles with 

small random errors, which is the exact characteristic of the optical profiles from the low-E glass 

manufacturing processes as shown in Figure 1.   

However, the current methods for fitting LME models for profile data bear two important 

limitations: (i) The restricted maximum likelihood (REML) method, which is commonly used for 

parameter estimation in LME modeling, has issues in handling some special problems that may 

arise in practice. For example, the iterative algorithm for finding REML estimates may not 

converge when some variance components are small, and/or the model is misspecified (Jensen, 

Birch and Woodall, 2008), and this method may not work when sample size is small. (ii) As a 

typical practice in regression modeling, model selection needs to be conducted, i.e., determine 

which terms in a polynomial model have random effects, to find the best model for the data. In 

the existing studies, this is either not considered or done by subjective judgment. A formal model 

selection procedure is needed, which is, however, a very challenging task using conventional 

methods due to the complexity of the LME model.  

To conquer the above limitations, this paper proposes a Bayesian LME modeling approach 

for polynomial profiles. Aiming to solve the issues in building LME models in a unified 

framework, this approach consists of two components: a Bayesian procedure for parameter 

estimation and a procedure based on the Bayes factor for model selection. It is advantageous in 

the following aspects: First, Bayesian approaches are powerful in dealing with small sample 

sizes, and the Bayesian way for parameter estimation is more stable than the REML methods as 
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estimation is conducted through simulation instead of optimization. Second, the model selection 

procedure is conceptually easy and can compare any two LME models. Finally, in the unified 

framework of the proposed approach, parameter estimation and model selection will be 

conducted simultaneously based on one set of posterior samples of parameters, which provide 

great convenience to practitioners. It is also worth mentioning that although the proposed 

approach will be demonstrated using polynomial profiles in this paper, they can also be used to 

model linear profiles as polynomial profiles is essentially a special case of liner profiles.  

The remainder of the paper is organized as follows. Section 2 presents the basics of the LME 

model and problem formulation. The procedure for parameter estimation is given in Section 3, 

and the procedure for model selection is given in Section 4. Section 5 reports the results of a 

numerical study to demonstrate the effectiveness of the proposed approach. The results of a case 

study are given in Section 6 where this approach is applied to a real dataset from a low-E glass 

producer. Finally, Section 7 concludes the paper and discusses future work.  

2. The Linear Mixed-effect Model and Problem Formulation 

2.1. The linear mixed-effect model 

Let x be the wavelength, and y be the corresponding response in an optical profile. Assume a 

dataset contains m profiles, and each profile contains n sampling points. The general LME model 

with p-degree polynomials is as follows   

                            iji

k

jki

p

jpi

k

jk

p

jpij xxxxy   0,,,0 ............
                 

(1) 

where i=1,...,m is the index of profiles, j=1,...,n is the index of sampling points, and k=0,...,p is 

the index of the degree of polynomials. Like in a regular linear regression model, ε is the random 

error which is commonly assumed to follow a Normal distribution with variance 2

  

                                                                     
),0(~ 2

 Nij                                                            
(2) 

But unlike the regular linear model, there are two sets of coefficients: 0,..., p  
are fixed, 

unknown values, called fixed effects, while 0,, ,..., ipi  are random variables, called random 
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effects, which vary from profile to profile. The random effects are typically assumed to be 

independently and normally distributed 

                                                       
),0(~...., ),,0(~ 2

00,

2

,  NN ippi                                         
(3)

 

where 2

0

2 ..., ,  p  
are their variances. The variances in (2) and (3), i.e., 22

0

2 ,..., ,  p  are also 

called the variance components in the model. As mentioned in the Introduction, the terms in the 

LME model bear an intuitive interpretation: the fixed effects, βs, represent the base-line of the x-

y relationship, the random effects, αs, represent the intrinsic variation of the manufacturing 

process, and the random error ε represents the noises in the process and data collection.  

For convenience, the matrix form of the model (1)~(3) is given below, which will be used 

throughout the following discussions for convenience:  

                                                            
miiii ,...,1           ,)(  εαβXy

                                  
(4)
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2.2 Problem formulation 

There are two tasks involved in building the LME model: (i) Parameter estimation under a 

given model: the parameters of interest in most applications include the fixed effects 0,..., p  

and the variance components 
22

0

2 ,..., ,  p  
(the random effects are treated as nuisance 

parameters). Estimates of these parameters need to be found. (ii) Model selection: under the 
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same degree of polynomials, alternative LME models differ in the polynomial terms that have 

random effects. Equation (1) is actually a full model where all polynomial terms have random 

effects. In practice, it is possible that some terms may have no or negligible random effects. For 

example, a 2-degree polynomial model may only have random effect on the quadratic term or the 

linear term or the intercept. Figure 3 in Section 5 shows simulated data from such models. Thus, 

the alternative models need to be compared to determine the best model for the data.      

3. Bayesian Approach for Parameter Estimation 

This section presents a Bayesian approach for estimating the parameters of the full model in 

(4). Results of other alternative models can be obtained similarly by simply setting the random 

effects of some polynomial terms to be zero.  

Following the standard practice of Bayesian statistics, the central task in parameter 

estimation is to find the posterior distribution of the parameters. In the LME model, which is 

essentially a hierarchical model, the posterior of the parameters of interest, i.e., the fixed effects 

and variance components, is not directly available due to the existence of the nuisance 

parameters, i.e., the random effects, in the model. Consequently, we need to find the joint 

posterior of all the parameters 

                                  
}),...,{|},...,1,{,},,...,{,( 1

22

0

2

mip miP yyαβ 
                                  

(5)
 

to obtain the (marginal) posterior of the parameters of interest. As the joint posterior is not 

analytically tractable, Markov chain Monte Carlo (MCMC) algorithms (Robert and Casella, 

2004) will be used to generate a set of samples from it. Location estimates of these samples, such 

as mean and mode, will be used as point estimates of the parameters of interest.  

However, sampling from the joint posterior in (5) is very challenging for the high dimension 

of the parameter space. A popular way to solve this problem is to use the Gibbs sampler, which 

is a powerful tool in sampling hierarchical, high-dimensional posteriors (Gelman, 2004). The 

basic idea of Gibbs sampling is to divide the parameter set into subgroups and sample from the 

conditional posterior distribution of each subgroup given all other parameters. As the subgroups 
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have smaller dimensions and their conditional posteriors are usually much simpler, the sampling 

can be realized using conventional MC or MCMC algorithms. Hobert and Casella (1996) 

propose a Gibbs sampling procedure for estimating LME models without considering the model 

selection problem. Our proposed procedure described below modifies their procedure in two 

aspects to fit our problem: considerations for model selection are integrated into the sampling; 

and an alternative sampling strategy is provided which can solve numerical problems that may 

occur in implementing the procedure. 

Proposed Gibbs Sampling Procedure 

The parameters of model (4) can be divided into 3 subgroups:  

G1: The random effects },...,1,{ mii α
 

G2: The variance components of the random effects 
2

0

2 ,..., p    

G3: The fixed effects and variance of the random error 
2, β    

Samples of them will be generated through the following steps: 

Step 1: Sampling parameters in G1 from their conditional posterior distribution 

}),...,{,,,|},...,1,({ 1

2

mi miP yyβΣα    

Step 2. Sampling parameters in G2 from their conditional posterior distribution  

}),...,1,{|,...,(}),...,{,,},,...,1,{|,...,( 2

0

2

1

22

0

2 miPmiP ipmip  αyyβα    

Step 3: Sampling parameters in G3 from their conditional posterior distribution  

}),...,{},,...,1,{|,(}),...,{,},,...,1,{|,( 1

2

1

2

mimi miPmiP yyαβyyΣαβ   
 

By iterating the above steps, a sequence of samples will be obtained, which follow the joint 

posterior in (5). About the notations of the parameters in G2, note that when they are treated as 

random variables
 
like in Step 2, we use the individual form, i.e.,

 
2

0

2 ,..., p , since they will be 

sampled separately; when they are treated as given information like in Step 1 and 3, we use the 

matrix form Σα for simplicity. This will be followed throughout the following discussions. It is 

also worth mentioning that the equality in Step 2 achieves because according to Eq. (3), given 

the random effects, their variance components are independent of other parameters. The equality 
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in Step 3 achieves for a similar reason. There are two issues in conducting the sampling in each 

step of the procedure: specifying the priors and finding the conditional posterior distribution. 

Solutions of them will be given in Section 3.1 and 3.2 respectively. Detailed steps of the Gibbs 

sampling procedure are summarized in Appendix I. 

3.1 Specification of priors 

The parameters of the LME model fall into two categories: mean parameters, i.e., the fixed 

effects and random effects, and variance parameters, i.e., the variance components, priors for 

these two types of parameters need to be specified. To enable objective inference as well as 

provide convenience to data analysis in practice, noninformative or weakly informative priors 

will be used. The priors are denoted as () in the following.    

For the fixed effects β, a uniform prior will be used, i.e., 

                                                                        1)( β
                                                                

(6)
 

The priors of the random effects are just the normal distributions in Eq. (3).  

The specification of priors for the variance parameters needs more caution as inappropriate 

setting of these parameters in Gibbs sampling will lead to noninformative posteriors which 

makes the inference invalid (Hobert and Casella, 1996). In general, two types of priors have been 

commonly used for variance parameters in the literature (Gelman, 2006):  
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2
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1
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),(IG)( 2

2    

where the first one is a noninformative prior, and r is a user specified value. For example, r =1 

leads to the uniform prior on σ
2
, i.e., (σ

2
)1, r =0.5 leads to the uniform prior on σ, i.e., 

(σ
2
)1/σ. It is worth mentioning that the popular prior (σ

2
)1/σ

2
 corresponding to r = 0 is not 

appropriate here as it will yield noninformative posteriors. The second one is a weakly 

informative prior, where IG() represents Inverse-gamma distribution, and  is a small value 

such as 0.01 or 0.001.  

In our approach, the uniform prior on σ
2 

will be used for the variance of the random error,  

                                                                     
1)( 2 

                                                                 
(7) 
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for its simplicity, and  the weakly informative priors will be used for the variance components of 

the random effects 

                                                    
0,...,     ),(IG)( 2 pkk  

                                                 

(8) 

to facilitate the computation in model selection. More details of this will be given in Section 4. 

3.2 Conditional posterior distributions 
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Given other parameters, the random effects of different profiles are independent, so they can 

be sampled separately, that is, we will sample from ),,,|( 2
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this distribution is  
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which is actually a normal distribution (Hobert and Casella, 1996) 

                     
 11221122 )(   )),(()(~,,,|  

  ΣXXXβyXΣXXyβΣα iii N
             

(9) 

Note that using (9) means that the vector  ],...,[ 0,,
 ipii α  will be sampled simultaneously. 

This sampling strategy is convenient, but may be subject to the problem of instability caused by 

the matrix inversion operations in calculating the mean and variance of the multivariate normal 

distribution in (9). When some variance components of the random effects are very small, the 

term 1

Σ  will have some very large and small elements, making it close to singular or badly 

scaled. As a result, the inversion operation of the term 12 
 ΣXX  will be impossible or 

unreliable. This is a common numerical problem encountered in matrix computation (Dongarra, 

Moler and Wilkinson, 1983), and occurred frequently in our simulation studies. It is especially 

serious at the beginning of the Gibbs sampling if the starting values are far from the true values 

of the parameters. A natural idea to solve this problem is to avoid manipulating matrices by 

sampling each element in αi, i.e., αi,k, k=0,...,p, separately. That means we need to find the 

conditional posterior of αi,k given other elements in αi.  
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This posterior is found to be 
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where )( k

i


α  is the vector of αi with αi,k removed, ],...,,[ 21

 k

n

kkk xxxx is the column in X 

corresponding to αi,k, 
)( k

X is X with this column removed, and )( )()( k

i

k

ii

 αXXβyz . The 

proof of (10) is given in Appendix II.  

(2) }),...,1,{|,...,( 2

0

2 miP ip α
 

Since the random effects are independent, their variances can be sampled separately, that is, 

we will sample }),...,1,{|(~ ,

22 miP kikk  , k=p,...,0. Under the weakly informative prior in 

(8), this distribution is  
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Taking the conjugacy of the prior into account, this distribution is also an Inverse-gamma 

distribution (Gelman, 2006)
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(3) }),...,{},,...,1,{|,( 1
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If the random effects },...,1,{ mii α  are known, we can remove them from the model in (4) 

by subtracting them from the response {y1,...,ym}. In this way the LME model degenerates to a 

conventional linear regression model. Consequently, the problem here becomes to find the 

posterior of a linear model, which is a well studied topic known as Bayesian linear regression 

models in the literature. Typically, decomposition will be made to the posterior,  
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that is, the joint posterior can be decomposed as the product of the marginal posterior of 2

  and 

the conditional posterior of β given 2

 . A well-known result is (Gelman, 2004) 
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where )()(ˆ 1
αyβ   , y is the vector stack of y1,...,ym,  is the stack of X, and α is the 

stack of α1,..., αm.  

4. Model Selection Using the Bayes Factor 

In a full model with p-degree polynomials, the pool of candidate models contains 2
p+1

 

models, denoted as },...,,{ 1221 pMMM . Comparison of these models is a challenging problem 

which is difficult to solve using conventional methods such as likelihood ratio tests (Pauler, 

Wakefield and Kass, 1999). Bayesian statistics provides a powerful tool for this problem, the 

Bayes factor (BF) (Gelfand and Dey, 1994; Kass and Raftery, 1995), which is able to compare 

any models regardless of their forms. However, the computation of Bayes factors is not a trivial 

problem, and many methods have been developed for it. A convenient method proposed by Chib 

(1995), called Chib’s method later, will be adapted to our problem. The definition of the Bayes 

factor and a brief review of computation methods will be given in Section 4.1, and details of the 

proposed model selection procedure will be given in Section 4.2.     

4.1. The Bayes factor and computation methods 

The Bayes factor of two competing models, Mi  and Mj, ij, is defined by (Gelman, 2004) 
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                                (13)      

where y is the data, and θi is the parameter vector of model Mi. For example, if Mi is the full 

model in (4), the parameter vector is ],,...,,[ 22

0

2   pi βθ . The parameter vector of other 

candidate models is just a subset of it. P(y|Mi) is the likelihood of data under model Mi, called 

marginal likelihood (ML) in the literature, (θi|Mi) is the corresponding prior, and P(y|θi,Mi) is 
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the corresponding sampling density, or likelihood. Essentially, using the marginal likelihood as a 

measure of model strength, the Bayes factor is the Bayesian version of likelihood ratio, except 

that the marginal likelihood is obtained by integrating, instead of maximizing, over the parameter 

space. Intuitively, when the Bayes factor is larger than 1, it means that the data support Mi more 

than Mj, and thus Mi should be selected. A set of cutoff values have been suggested in the 

literature and widely used as guidelines in the applications of this tool (Kass and Raftery, 1995),  

 

As can be seen from (13), calculating the Bayes factor involves calculating the two marginal 

likelihoods, which are integrals over the parameter space. When the parameter space has a high 

dimension and/or the models are complex, this will be a very difficult task. This is, 

unfortunately, the case in our problem. Different methods have been developed for solving this 

problem (Clyde and George, 2004; Han and Carlin, 2001), which can be divided into two 

categories: model augmentation (MA) methods and marginal likelihood estimation (MLE) 

methods. The key difference between them lies in that the former calculate the Bayes factor 

directly, while the latter obtain the Bayes factor indirectly by calculating the marginal likelihood 

under each model.  

Specifically, the MA methods (e.g., Carlin and Chib, 1995; Sisson, 2005) rest on the fact that  
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(14) 

where (Mi) and (Mj) are priors of the two competing models, and the last equality achieves 

when the two priors are set to be equal, which is reasonable in most applications. (14) implies 

that the Bayes factor can be obtained by finding the ratio of the marginal posterior probabilities 

P(Mi |y) and P(Mj |y). Based on this idea, the MA methods represent each model in the pool of 

candidate models by an indicator variable M {1, 2,...,}, that is, M=1 indicates model M1. This 

BF 2log(BF) Evidence against Mj

1~3 0~2 Barely worth mentioning

3~20 2~6 Positive

20~150 6~10 Strong

>150 >10 Very strong
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variable will be treated as an additional parameter, and MCMC algorithms, such as Metropolis-

hasting (M-H) algorithms, are used to find its marginal posterior distribution. The marginal 

posterior probabilities of each model will then be obtained to fill in (14). Though such methods 

can find Bayes factors for all the comparisons through an integral sampling, this sampling is 

normally very complex due to the high dimension of the parameter space and particularly the 

varying number of parameters under different models which requires some dimension jumping 

techniques (Green, 1995). In contrast, the MLE methods calculate the marginal likelihood for 

each candidate model separately, and obtain the Bayes factor by finding the ratio of the marginal 

likelihood estimates, or, more conveniently, the difference between their logarithms 

                                            

))|(log())|(log()log( jiij MPMPBF yy 

                                    

(15) 

This method is followed in our study as it is conceptually simpler and technically easier.  

Because of the importance of marginal likelihoods in Bayesian inference, various MLE 

methods have been developed (e.g., Chen, 2005; Chib and Jeliazkov, 2001; Meng and Schilling, 

2002). One method that has received much attention is the Chib’s method for its simplicity and 

easiness in implement (Han and Carlin, 2001). This method is especially efficient for 

hierarchical models like the mixed-effect models considered in our study. More important, it is 

designed to obtain marginal likelihood estimates from posterior samples from Gibbs sampling, 

which makes it possible to integrate model selection with the parameter estimation approach 

described in Section 3.  

4.2. The proposed model selection procedure   

The proposed model selection procedure is illustrated in Figure 2. Starting from the simplest 

model, i.e., a regular polynomial model without random effects, a set of posterior samples of the 

model parameters will be obtained through the Gibbs sampling procedure given in Section 3. 

These samples will then be used to estimate the marginal likelihood of the model. The Bayes 

factor of two adjacent models will be found by calculating the difference between the logarithms 

of their ML estimates by (15). Note that the posterior samples will also be used to calculate the 
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point estimates of the parameters when the best model is determined. The Chib’s method to 

estimate marginal likelihoods will be described in the following. Appendix III summarizes the 

implementing steps of this procedure to provide convenience to practitioners.   

 

 
Figure 2. The model selection procedure based on Bayes factors 

To simplify, the model notations will be dropped in this section, e.g., P(y) will denote the 

ML to be estimated, since the same method will be used for each model in the candidate pool.  

Also, as in Section 3, the full model in (4) will be used to demonstrate this method. Let the set of 

posterior samples obtained in the Gibbs sampling be 

)},(),...,,{( )()()1()1( GG αθαθ  

where G is the total number of samples, θ is the parameters of interest in Model (4), i.e., 

],,...,,[ 22

0

2   pβθ  

and α is the random effects.
 
The Chib’method is based on a simple identity  

)|(

)|()(
)(

yθ

θyθ
y

P

P
P




 

which applies for any value of θ. For a given θ (say θ
*
), the ML can be estimated by

                                       )|(ˆlog())(log())|(log())(ˆlog( ***
yθθθyy PPP  

                         

(16) 

which contains three quantities: the log-likelihood ))|(log( *θyP , the log-prior ))(log( *θ and 

the posterior ordinate )|(ˆlog( *
yθP . They will be calculated individually using the posterior 

samples to obtain the ML. Details on how to select θ
*
 and calculate each of these quantities will 

be given as follows.  

1θ̂

M1 M2 M3

ML(M1)

BF21 BF32

Posterior sampling
)|,(~),( yαθαθ P

2θ̂

ML(M2)

3θ̂

ML(M3)
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(1) Selection of θ
*
:
 
The choice of θ

*
 is theoretically not critical as the simple identity holds for 

any value of θ. However, for a given set of posterior samples {θ
(1)

,..., θ
(G)

}, the probabilities in 

(16) is likely to be more accurately estimated at a high density point on P(θ|y) than a point at the 

tails. Thus, appropriate choices of θ
*
 are sample mode or mean of {θ

(1)
,..., θ

(G)
}. The sample 

mean will be used for convenience, that is 

                                                          




G

g

g

G 1

)(*2*** 1
],,[ θΣβθ  

                                           

(17) 

(2) Calculation of the log-likelihood: Note that the likelihood function P(y|θ) in the LME 

model is not directly available as the data depend on both the parameters of interest θ and the 

nuisance parameters α. From (4), it is easy to get    

)  ,(~| 2
IXXΣXβθy  Ni  

Considering the independence of profiles, we will have 

                     

 












m

i

i

m

i

i NPP
1

*2**

1

** )  ,|(log)|(log))|(log( IXXΣXβyθyθy  

              

(18)
 

(3) Calculation of the log-prior: By the independence of parameters, the log-prior  

                                     

))(log())(log())(log())(log( *2

0

*2**

  


p

k

kβθ
 

There are three terms at the right of the equation. For the first and the third term, since 

noninformative priors in (6)~(7) are used for β and 2

 ,
 
they are not defined. However, they are 

the same for all the candidate models as the two parameters are present in all of them, and thus 

cancel out in calculating the log(BF) in (15). So these two terms can be ignored. For the second 

term, this property does not apply because the candidate models may have different numbers of 

random effects and consequently the number of variance components. That is the reason for 

using the weakly informative prior in (8) instead of the noninformative prior. Under this prior, 

the second term is 

                                                 




p

k

k
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k
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*2
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*2 ),|())(log(  IG

                                            

(19) 

 
(4) Calculation of the posterior ordinate: The posterior ordinate can be estimated by   
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(20) 

To obtain this quantity, the conditional posterior distribution P(θ|y, α) needs to be found first. 

The result is  
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The proof is given in Appendix IV. Consequently, the log posterior ordinate is                          
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5. Numerical Study 

A numerical study has been done to demonstrate the performance of the proposed approach. 

In the study, three datasets are generated from different LME models with the same degree of 

polynomials. The approach described in Section 3 is applied to each dataset to estimate their 

parameters, and the model selection procedure described in Section 4 is applied to compare 

candidate models. In the following, the setting of parameters in the simulation is first given, and 

then the results in parameter estimation and model selection are discussed. We actually have 

done extensive simulations by varying the parameter settings, and similar results are obtained.   

5.1 Setting of parameters  

Considering LME models with 2-degree polynomials, three datasets D1, D2, and D3 are 

generated from the following models 

                                            D1:   ijjijjij xxxy   2

2,01

2

2  

                                            D2:   ijjijjij xxxy   1,01

2

2  

                                            D3:   ijijjij xxy   0,01

2

2  
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which have random effect on the quadratic term, linear term and intercept, respectively. They are 

often referred to as random-quadratic-slope model, random-slope model and random-intercept 

model in the literature. The parameters of the models are set to be 

2012   , ).60  ,0(~2, Ni , ).60  ,0(~1, Ni , ).60  ,0(~0, Ni , ).60  ,0(~ Nij  

Here equal values are used for the fixed effects and variance components to facilitate comparison 

of accuracy of their estimates. Under each model, m=60 profiles are generated with n=31 

sampling points. The sampling points are equally spaced within [3.1, 3], that is, x=3.1, 2.9, 

2.7,...,2.9. The simulated data are shown in Figure 3. We can see that the three datasets exhibit 

apparently different characteristics. In practice, it might be possible to decide by eye the correct 

models for the data in such simple cases, but in more complex cases, e.g., with higher degrees of 

polynomials and/or multiple random effects present in the model, a formal model selection 

procedure must be used.     

 
Figure 3. Simulated datasets used in the numerical study 

5.2 Results of parameter estimation
 

In the first step to analyze a dataset, it is reasonable to fit a full model for it, i.e., 

ijijijijjij xxxxy   0,1,

2

2,01

2

2  

Under this model, the Gibbs sampling procedure in Appendix I is conducted for each dataset. 

The results of the three datasets show similar features, so those of D1 will be given here as an 

example. Figure 4 shows the stream of posterior samples of each parameter. Since casually 

picked starting values are used in the sampling, the samples are initially far from the truth, 
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especially those of 2  
and 2

 , but then gradually converge. Another noticeable phenomenon in 

the figure is that two variance components 2

0  
and 

2

1  converge to very small values, indicating 

that the random effects of the intercept and liner term are negligible, and a random-quadratic-

slope model might be a better fit to the data rather than the full model. The effect of starting 

values disappear roughly at the 6000 iteration for all parameters, so the samples before that are 

discarded, and the remaining are used to obtain the posteriors of the parameters.  

 
Figure 4. Posterior samples obtained from Gibbs sampling 

Figure 5 shows the histograms of the samples, which represent the empirical posterior 

distributions of each parameter. We can see that the centers of these distributions are very close 

to the true values of the parameters. Consistent with the streams in Figure 4, the posteriors of 2

0  

and 
2

1  exhibit different shapes from other parameters, which concentrate in a small region 
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around 0, a sign of their insignificance. The means of the posteriors are 2.00( 2 ), 2.00( 1 ), 

1.92( 0 ), 0.58( 2

 ), 0.54(
2

2 ), 0.0007(
2

1 ), 0.001( 2

0 ), which can be used as point estimates of 

the parameters.  

 

 
Figure 5. Posteriors of the parameters of the full model 

5.3 Results of model selection 

Table 1. Candidate models for the data 

 

For LME models with 2-degree polynomials, there are 2
3
=8 candidate models as listed in 

Table 1. Since the pool of candidate models is not very large, we do not follow the sequential 

selection strategy illustrated in Figure 2, but just calculate the marginal likelihoods and Bayes 

factors for all the models following the procedure in Appendix III. The estimated marginal 

likelihoods and Bayes factors (all in log scale) are displayed in Table 2. Note that the true models 
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for dataset D1, D2 and D3 are M1, M2, and M3 respectively, and the Bayes factors in Table 2 are 

associated with the comparison of each model verse the true model of the data. According to the 

cut-off values given in Section 4.1, the true models are strongly supported in all cases, and the 

evidence in many cases are overwhelming. This means that using the Bayes factors, true models 

can be correctly identified.  

Table 2. Estimated marginal likelihoods and Bayes factors 

 

6. Case Study 

The proposed approach has also been applied to a set of optical profile data from a large low-

E glass producer in US. For confidentiality reasons, the name of the company and information of 

their products are not disclosed in this text. The raw data are shown in Figure 6(a), which consist 

of m=45 profiles with n=40 equally spaced sampling points at =705, 710,..., 900nm. A direct 

observation of the data is that the profiles differ largely in their shapes, especially intercepts, so 

the LME models should be a good fit.  

 
                                                  (a)                                                    (b) 

Figure 6. Optical profiles from a company: raw data (a) and transformed data (b) 

D1 D2 D3

ML BF ML BF ML BF

M0 –5023.5 2665.3 –3521.5 1204.2 –2741.7 486.3

M1 –2358.2 –— –3531.6 1214.3 –2543.6 288.2

M2 –5030.1 2671.9 –2317.3 –— –2750.5 495.1

M3 –4472.1 2113.9 –3528.5 1211.2 –2255.4 –—

M4 –2366.5 8.3 –2327.6 10.3 –2552.2 296.8

M5 –2364.6 6.4 –3538.7 1221.4 –2264.1 8.7

M6 –4479.1 2120.9 –2323.2 5.9 –2263.9 8.5

M7 –2373.1 14.9 –2334.1 16.8 –2272.4 17
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Before applying the proposed modeling approach, some preprocessing is done to the raw 

data. This includes the centering/scaling transformation of  values, i.e., x=[–average()]/50, 

which can improve the numerical properties of the fitting, and the determination of the degree of 

polynomials used for the data through fitting regular polynomial models to each profile and 

checking the residuals. It is found that the appropriate choice is p=3. One transformed profile is 

shown in Figure 6(b), where the curve is the fitted degree-3 polynomial model for the profile. 

Such data will be used in the following analysis.  

Model selection is first conducted to determine the best LME model for the data. Following 

the procedure in Appendix III, the selection starts from the simplest model, i.e., regular 3-degree 

polynomial model without random effects, and then considers models with one random effect, 

models with two random effects, etc. This process only proceeds when strong evidence is 

present, i.e., 2log(BF)>6, in supporting a more complex model. Finally, the model with random 

effects in the quadratic term, linear term and intercept is selected  

ijijijijjjij xxxxxy   0,1,

2

2,01

2

2

3

3  

The log Bayes factor comparing this model and the full model, which yields the second largest 

marginal likelihood, is 9.9, which indicates strong superiority of the selected model.  

 

 
Figure 7. Posteriors of the parameters of the selected model  
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Then the parameters of the selected model are estimated. Figure 7 shows the empirical 

posterior of each parameter. The point estimates are –0.1870( 3 ), –1.1396( 2 ), 8.5296( 1 ), 

30.2240( 0 ), 0.025( 2

 ), 0.0045(
2

2 ), 0.0111(
2

1 ), 0.8208( 2

0 ). The variance of the random 

intercept is predominant among the four variance components, which is consistent with our 

direct observation of the raw data.    

7. Conclusions and Discussions 

This study considers the modeling of optical profiles in low-E glass manufacturing processes, 

which is the basis of quality monitoring and control in such processes. We propose to use the 

linear mixed-effect model for the data and develop a unified Bayesian approach for parameter 

estimation and model selection. The results in the numerical study show that the proposed 

approach is able to identify the true model and provide accurate estimates of the parameters. The 

implementation of this approach in practice is demonstrated in the case study using a real dataset. 

Quality control in low-E glass manufacturing is an appealing research topic, and this study is 

just a starting point of our efforts. There are many open issues following the direction of the 

current study, examples of which are: First, based on the established models using the proposed 

approach, Phase I and Phase II monitoring methods need to be developed. Second, like many 

other chemical processes, the low-E glass manufacturing process is featured by random noises 

that may present in the production. As a result, the quality measurements may contain a 

considerable amount of outliers. This gives the motivation to develop modeling approaches to 

quality profiles that are robust to the effect of outliers. Finally, the optical profiles used in this 

study actually only contain part of the spectrum as shown in Figure 1 and 6. When measurements 

of the whole spectrum (typically 380~1050nm) are considered, the LME model will not be 

adequate to characterize the profile, and more complex models, such as piecewise linear mixed-

effect models and nonlinear mixed-effect models need to be used. These topics will be 

investigated in our future work.   
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Appendices 

Appendix I. The Gibbs Sampling Procedure in Section 3 

Starting step: Specify starting values },...,1,{,},,...,{, )0()0(2)0(2

0

)0(2)0( miip αβ 
 

A simple method to find starting values is fitting a regular polynomial model to the data. The 

coefficient estimates will be used as starting values of
 
β , the sample variance of those estimates 

will be used as starting values of },...,{ 2

0

2  p , and the estimate of random error variance will be 

used as the starting value of 2

 . The random effects can simply be set to 0.  

Step 1: Generate a sample },...,1,{ )( mig

i α  from the conditional posterior in (10).  

Step 2: Generate a sample },...,{ )(2

0

)(2 gg

p   from the conditional posterior in (11).  

Step 3: Generate a sample },{ )(2)( gg

β  from the conditional posterior in (12). 

Then go back to Step 1 and repeat this process for g=1,...,G.     

Appendix II. Proof of (10) 

We will first prove a theorem and then prove (10) based on that. 

Theorem: Let U1, U2,..., Un be n independently normally distributed random variables with a 

common mean and scaled variances, that is  
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where c1, ..., cn are known nonzero constants, σ
2
 is known, and θ is the unknown mean that needs 

to be estimated. Let u1, u2,... un be the corresponding observations of these variables. Under a 

normal prior for θ, i.e., 
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Proof: Under the given prior, the posterior of θ is  
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which is a normal distribution with mean and variance  
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The result in the Theorem can be obtained by simple manipulations of the above formulas. Note 

that when cn ≡1, i.e., U1, U2,..., Un are i.i.d. random variables following N(θ, σ
2
), the posterior 

mean and variance simplify to 
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which is a well known result in the literature (Gelman, 2004).  

Coming back to the LME model, by (4),  
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which can also be written as 
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Let zi=[zi1,...,zin], 
],...,[ 1
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kk xxx and εi=[εi1,...,εin], by (A1) and (2)
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We can treat k

jij xz / , j=1,...,n, as n independently normally distributed variables with a 

common mean αi,k and scaled variances  22 / k

jx , which falls into the exact situation assumed in 

the Theorem. Also, by (3), the prior of the common mean αi,k  is a normal distribution 
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According to the Theorem, the corresponding posterior is 
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By expressing the above formula in matrix form, (10) will be resulted.  

Appendix III. The model selection procedure in Section 4 

Starting from the simplest model, for each given model Mi,  

Step 1: Generate posterior samples )},(),...,,{( )()()1()1( GG αθαθ  by the procedure in Appendix I.  

Step 2. Estimate the log marginal likelihood ))(ˆlog( yP by (16) 

            (2.1) Calculate the mean, θ
*
, of the posterior samples of θ.  

            (2.2) Calculate the log-prior
 

))|(log( *θyP by (18). 

            (2.3) Calculate the log-prior 


p

k

k

0

*2 ))(log(  by (19) and treat it as ))(log( *θ .  

            (2.4) Calculate the log posterior ordinate ))|(ˆlog( *
yθP by (22). 

            (2.5) Calculate ))(ˆlog( yP  by (16) using the results in (2.2)~(2.4). 

Step 3. Calculate the log Bayes factor of Mi vs. Mi-1 by (15). 
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Step 4. If the log Bayes factor is larger than 3, conclude that Mi is better than Mi-1, and then move 

to model Mi+1; otherwise conclude that Mi-1 is the best model and stop this procedure. 
 

Appendix IV. Proof of (21) 

By the independence of parameters (β, 2
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So to find the joint conditional posterior at the left side, we just need to find the three marginal 

conditional posteriors at the right. Under the uniform prior in (7),  
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under the uniform prior in (4), 
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and under the weakly informative prior in (8), 
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Plugging in these distributions into (A2) will lead to (21).  
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