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Abreact We present a nonlinear statistical model for ground-level ozone prediction and then study 

various mixed integer nonlinear programming (MINLP) models for optimizing ozone control 

strategies for the Dallas Fort-Worth region, so as to comply with the State Implementation Plan 

(SIP) development requirements with minimum cost. Supplemental control strategies are 

introduced into the optimization since the models were infeasible. Nonlinear transformations are 

applied when linear modeling assumptions are violated. Piecewise linear functions are used to 

estimate ozone concentration for selecting targeted ozone control strategies. Three MINLP models, 

a static model, a sequential model, and a dynamic model are studied in this research. These 

different models are optimized to present different sets of targeted control strategies based on 

various scenarios. Moreover, supplemental control strategies are considered to provide further 

ozone or emission reduction in the optimization for enabling a feasible solution. The most 

effective targeted control strategies are selected in each model for controlling ozone, and the most 

critical supplemental controls in certain time periods and locations for reducing ozone are 

identified. 
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1. Introduction 

Ground-level ozone (O3) is one of six common air pollutants monitored by the U.S Environmental 

Protection Agency (EPA). High-level ground-level ozone concentration can lead to a variety of 

health problems, and it also damages vegetation and ecosystems [1]. In 1990, the Clean Air Act 

(CAA) required the EPA to set National Ambient Air Quality Standards (NAAQS) for six 

common air pollutants considered harmful to public health and the environment. The ultimate goal 

is for each state to comply with the NAAQS and thereby reduce the criteria pollutants and 



2 

improving air quality. The US government has acted to improve America's air quality significantly 

by designing, developing, and implementing national programs in order to reduce air emissions. 

For example, in 2009, ozone concentrations were 30 percent lower than in 1990 based on an 

annual 4th maximum 8-hour average [2]. However, ground-level ozone continues to present 

challenges in many areas of the country. In 2008, ground-level ozone was still considered a 

harmful air pollutant of the six common pollutants that exceeded the NAAQS [3]. Therefore, we 

have to study more effective targeted strategies for ground-level ozone control since more 

stringent air quality standards have been made to reduce pollution further. 

Ground-level ozone is a secondary pollutant produced by its precursors, oxides of nitrogen (NOx) 

and volatile organic compounds (VOC).  It is not emitted into the air directly. In fact, it is formed 

by a complex series of chemical reactions mainly from NOx and VOC in the sunlight and heat [4]. 

As sunlight is one of the main catalysts for ozone formation, ozone is also called the “summertime 

air pollutant” [5]. Common sources of NOx include automobiles, trucks, marine vessels, 

construction equipment, power generation, industrial processes, and natural gas furnaces. Major 

source of VOCs include organic chemicals that vaporize easily, such as those found in gasoline 

and solvents [6]. 

To perform modeling for the eight-hour ozone demonstration, the Comprehensive Air Quality 

Model with Extensions (CAMx) is used in this study to determine concentrations of air pollutants 

by simulating processes associated with emissions, transport, chemical reactions, and deposition. 

CAMx could also be used to estimate how emissions from individual source areas and regions that 

affected the predicted ozone concentrations over space and time. EPA has proved that CAMx 

would be appropriate to simulate eight-hour ozone concentrations in urban areas and it is currently 

being used for attainment demonstrations in areas that have violated the NAAQS for ozone. 

Ground-level ozone control has been a very challenging issue not only in urban areas of the United 

States but also in many cities all around the world. Therefore, the first critical task is to predict 

ozone concentrations accurately. There are numerous research papers of various statistical 

modeling approaches that have been studied for air quality forecasting. These include multiple 

linear regression [7, 8, 9, 10], neural networks [11, 12, 13, 14], fuzzy systems [15, 16, 17], 

generalized additive models [18, 19, 20], nonlinear regression [21, 22], and others.  

A secondary pollutant, such as ozone, is formed by a series of complex nonlinear reactions of its 

precursors. An effective control strategy implementation could target reduction of either one or 

both of the precursors. Moreover, a control strategy could be implemented on the targeted region 

where the pollutant is produced. A targeted control strategy can also be applied in the certain time 

periods, especially in the high ozone concentration hours. However, the traditional control strategy 

for ground-level ozone control is to apply emission reductions across-the board, i.e., across the 

entire region and the entire 24 hours per day [23, 24, 25, 26].  

1.1 Background on Targeted Control Strategy for Ground-Level 

Ozone Control 
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A targeted control strategy is targeted by location, such as a particular county, and time, such as 

the morning rush hour time period. The ultimate objective of targeted decision-making is to 

determine the most cost effective control strategies and the most critical supplemental control 

strategies in the optimization models. The concept of targeted decision-making for ground-level 

ozone has been studied by Sule et al. [27], Yang et al. [28, 29], and Hsu et al. [30]. 

In this section, we summarize the targeted control strategy optimization approach in Sule et al. 

[27] and Hsu et al. [30]. The methods in this research include advanced photochemical modeling, 

statistical modeling, and optimization. The targeted control strategy is comprised of four phases: 

(1) Initialization, (2) Mining, (3) Metamodeling, and (4) Optimization. 

1.1.1 Initialization     

The first step in the initialization process is to identify critical monitors in the region of interest 

and a potential list of 32 ozone control strategies and then to categorize emission sources into three 

types--point sources, area sources, and line sources. Next, the control time periods are designated 

based upon the types of emission sources. The control regions are classified as the counties since 

control strategies are often implemented differently in different counties. After that, the monitor 

time periods and regions are identified. Finally, a list of potential control strategies is categorized 

according to emission types, time periods, and location.  

1.1.2 Mining 

Data mining is conducted to identify all emission variables, specified by location and time period, 

that affect the 8-hour ozone maximums. Only significant emissions variables that affect the 8-hour 

ozone maximums are considered as predictor variables in the metamodeling phase.  

1.1.3 Metamodeling 

Only linear regression is used for approximating relationships between ozone concentration and 

predictor variables, such as of emissions and prior ozone variables. The predictor variables for the 

metamodels include emission sources from current and previous time periods and also 8-hour 

maximum ozone concentrations from previous time periods. Stepwise regression is conducted for 

model selection so as to further reduce the numbers of predictor variables.  

1.1.4 Optimization 

Three mixed integer linear programming (MILP) models were studied in the optimization phase to 

select the most cost-effective set of control strategies for ground-level ozone control in Hsu et al. 

[30]. These different MILP models allow decision-makers to study how the selection of control 

strategies varies under different circumstances. In addition, given that the DFW case study was 

infeasible, these MILP models also identify the best regions and time periods for supplemental 

control. Three types of the supplemental control strategies are included in the MILP for further 
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reduction on ozone and emissions because the current set of control strategies cannot satisfy the 

allowable upper bound on ozone concentration.  

1.2. Contribution 

This paper is an extension to the work of Sule et al. [27] and Hsu et al. [30], particularly in the 

targeted nature of the emission reductions. Both Sule et al. [27] and Hsu et al. [30] used linear 

statistical models to predict the ozone concentration and then optimized the control strategies. 

Instead of using linear regression models for approximating ozone concentration, we use 

transformed nonlinear models to refine the statistical model in the metamodeling phase. Sule et al. 

[27] used a trial-and-error method to implement supplemental controls on targeted locations and 

time periods for enabling feasible solutions. Hsu et al. [30] introduced supplemental control 

strategies with a considerable penalty cost in the optimization models to obtain technically feasible 

solutions. In this paper, we consider a more conservative way to include the supplemental control 

strategy with a penalty cost in piecewise linear optimization. 

The contribution of this paper are described as follow: First, this paper demonstrates that statistical 

models of hourly ozone concentrations required nonlinear relationships between predictor 

variables in order to capture the ozone behavior accurately. We conducted residual analysis to 

verify the assumption of all linear regression models and checked the statistical plots to ensure 

model adequacy. Then we determined the need for model refinement. The transformed nonlinear 

regression models were used in the metamodels to represent the ozone concentration. Second, we 

applied piecewise linear functions to approximate the nonlinear function for the refined models 

and then solved three MINLP models. Third, a considerable penalty cost is applied to the 

supplemental control strategy in the piecewise linear optimization to ensure a feasible solution. 

The remainder of this paper is organized in four sections. Section 2 depicts nonlinear 

transformations of ozone concentration. Section 3 presents mixed integer nonlinear programming 

models for targeted ozone control. Section 4 describes computational results of three alternative 

control strategy models. Finally, Section 5 discusses conclusions and future research. 

2. Nonlinear Transformation of Ozone 

Concentration 

Residual analysis can be used to verify the assumptions of linear regression models. For a multiple 

linear regression model to be reasonable, the residuals must have constant variance, the residuals 

must be normally distributed, the residuals must be uncorrelated, and there should be few residual 

outliers. Statistical plots are one of the most useful tools available for verifying model adequacy 

and determining the need for model refinement.  

In this paper, residual plots were used to verify model assumptions. Typical residual plots include 

plots of residuals versus fitted values and residuals versus individual predictor variables. Other 

plots based on residuals, such as response variables versus individual predictors, predictors versus 

time series, normal probability plots of residuals, and residuals versus other possible predictor 
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plots, are useful for detecting model inadequacies. Residuals refer to the difference between the 

observed data values and the corresponding model fits. A plot of residuals versus individual 

predictor variables is used to check for curvature and a funnel shape. If the residual plot shows 

curvature in the relationship between the residuals and the predictor variables, then a linear model 

is inappropriate. Adding a quadratic term or transforming the predictor variables may result in a 

better model. If the residual plot shows a funnel shape between the residuals and fitted values, then 

the linear model has nonconstant variance. Performing a variance-stabilizing transformation on the 

response variable may fix the problem.   

After performing residual analysis of the regression models, we found some regression models did 

not fit the model assumptions. By transforming the response or predictor variables to be nonlinear, 

the funnel shape and curvature in the residual plots can be eliminated. For example, there is slight 

curvature in the residual plot in Denton on August 18 from 6 am to12 noon (see Figure 1. (a)). The 

original linear regression was showed as Equation (1). O3De12-6a refers to ozone concentration in 

the Denton monitoring region during 12 midnight to 6 am, O3Ta12-6a is the ozone concentration 

in the Tarrant monitoring region during 12 midnight to 6 am, and AJ06-9aN means NOx emissions 

from an area source in Johnson County during 6 am to 9 am. 

y=-0.8(O3De12-6a)+2.396(O3Ta12-6a)-0.104(AJ06-9aN)-10.69                                (1) 

y=-40.75(O3De12-6a)+2.384(O3Ta12-6a)-0.096(AJ06-9aN)+0.314(O3De12-6a)2+1258.32     (2) 

By adding a squared term from one of the original predictor variables and rerunning the regression 

model, the problem of curvature was eliminated (see Figure 1. (b)), and the transformed model 

with the nonlinear regression model is show as Equation (2).  

 

 

(a) 

 

(b) 

Figure 1. Plot (a) shows the residuals vs. fitted values for a linear regression model for Denton on 

August 18 (6 am–12 noon), where curvature is present. Plot (b) depicts a transformed model 

without curvature.  

3.  Mixed Integer Nonlinear Programming Models 

In this section, we describe the mixed integer linear programming model developed in Hsu et al. 

[30], which assumed that ozone concentration was a linear function of its predictor variables. 

However, as described in the Section 2, ozone concentration in certain locations and periods is a 
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nonlinear function of its predictors. We then develop new piecewise linear models to 

accommodate the nonlinearities. 

3.1 Mixed Integer Linear Programming Model  

The following describes the mixed integer linear programming model developed in Hsu et al. [30]. 

Consider the following sets:  

Let N  be a set of control strategies.  

Let I  be a set of emissions types (either NOx or VOC).  

Let J be a set of emission sources.  

Let )( jI  be the set of emission types that are emitted from each emission source Jj .
  

Let )(nI be the set of emission types that are associated with each control strategy Nn .  

Let L  be a set locations.   

Let T be a set of time periods.  

Let D  be a set of days that partition the set of time periods T .  

Define the following MINLP variables and input parameters: 

Let lto  be the ozone concentration on location l during time period t . 

Let )(td  be the day in which time period t  occurs. 

Let 
to
 be an L -dimensional variable vector of the ozone concentrations at time period t .  

Let 0o  be a vector representing the ozone concentrations before the first day (August 15) of the 

optimized time horizon. 

Let ltB  be the maximum allowable ozone concentration in location l  during time period t . 

Let nijdg  be the emission reduction at emission source j  of type i  on day d due to the 

implementation of the control strategy n . 

Let ijd be the maximum emission contributed by emission source j  of emission type i  on day

d . 

Let ndc  be the expected cost of selecting of control strategy n  on day d .  
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Let 

ltlt ss ,  be auxiliary variables for supplemental control strategies that can change the ozone 

concentration at location l during time period t . 

Let spenc  be the estimated penalty cost of using supplemental control strategies of auxiliary 

variables 

ltlt ss ,  for further ozone reduction (typically $109).  

Let ijdy  be an auxiliary variable that can further reduce the remaining emission of emission type 

i  from emission source j  on day d . 

Let epenc   be the estimated penalty cost of using supplemental control strategies of auxiliary 

variables ijdy  for further emission reduction (typically $108). 

Let nijda   be the fraction of the reduction of emission type i  from source j  on day d  due to 

the implementation of control strategy n , where















ijd

nijd

nijd

g
a


. 

Let ltf̂  be a statistical model estimating the ozone concentration at location l  during time period

t .  

Let ijdx  be the fraction of the remaining emission of emission type i  from emission source j  

on day d . 

Let indu  be a binary decision variable representing whether control strategy n  is selected on day 

d  for emission type i . 

Let ndz  be the binary decision variable representing whether control strategy n  is selected on 

day d . 

Let ndc  be the daily estimated cost of the selected control strategy n  on day d . 

The MILP model formulation is given by: 

 
 
  
     

 
jIi Jj Dd

ijdepen

Nn Dd Ll Tt

ltltspenndnd ycssczcmin     (3) 

s.t. 

  ltltlttdtlt ossooooof  
 )(1210 ,,,ˆ     ,, TtLl          (4) 

ltlt Bo 
      

,, TtLl    (5)  





Nn

nidnijdijdijd uayx 1

    

,,),( DdJjjIi 
 

(6) 
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ltltlt oss

      
,, TtLl    (8) 

0, ijdijd yx
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(9) 

 1,0, nidnd uz
      

,,),( DdNnnIi 
 

(10) 

The objective (3) is to minimize the total cost of the set of targeted control strategies and the 

penalty cost of applying supplemental control strategies necessary to bring the region into 

attainment for the 8-hour ozone standard. Constraint set (4) estimates the ozone concentration in a 

certain time period and location which could be either linear or nonlinear regressions. In Hsu et al. 

[30], the f̂ functions were assumed to be linear. Constraint set (5) ensures the ozone 

concentration in each time period and location does not exceed its mandated limit. Constraint set 

(6) ensures that the fraction of remaining emissions plus the fraction of emission reduction sums to 

one. Constraint set (7) specifies linking constraints for the reduction of NOx and VOC emissions 

due to the same control strategy. Constraints (8) and (9) represent standard lower bounds, and 

constraint set (10) represents integrality restrictions on the decision variables.  

Hsu et al. [30] defined three variant MILP models as follows:  

 Static model: Optimize a static control strategy across the entire episode. This results in a 

single set of selected control strategies that is implemented on every day of the episode.  

 Sequential model: Optimize a set of control strategies separately for each day in a 

sequential order. This results in possibly different sets of selected control strategies on 

each day of the episode.  

 Dynamic model: Optimize a set of dynamic control strategies in which the selected 

control strategies can vary from day to day. This optimization over the entire episode was 

conducted simultaneously. This enables the decision-maker to see how the ideal set of 

control strategies varies with daily emission patterns and meteorology. 

3.2 Mixed Integer Linear Programming Model 

In this research, an MINLP model formulation is constructed by including piecewise linear 

functions to the MILP (3) – (10) from Hsu et al. [30]. In the MINLP, the emission variable ijdx   

and estimated ozone concentration lto  could be considered as both linear and nonlinear terms in 

the MINLP models.  

3.2.1 Piecewise Linear Functions 

A piecewise linear function is a separable function that is represented by a set of linear functions 

with constraints on the variables. Any arbitrary continuous function of one variable can be 

approximated by a piecewise linear function [31]. However, the quality of the approximation is 

controlled by the number of the linear segments. With more linear segments in the piecewise linear 

function; the approximation can be made more accurate. In this research, four equally spaced 

linear segments were created for each of the nonlinear functions. Since the range of the 
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transformed response (ozone concentration) variable and each transformed predictor variable are 

typically very small, sometimes the range between the minimum and maximum ozone is less than 

1 part per billion (ppb). A piecewise linear function with four equally spaced linear segments is 

often specified by giving a set of four slopes, a set of breakpoints at which the slopes change, and 

the approximated value of the liner functions at a given point. Therefore, piecewise linear 

programming is an optimization method that allows nonlinear programming problems that consist 

of separable functions to be approximated by linear functions. The resulting piecewise linear 

program can subsequently be solved as a mixed-integer linear program. 

To formulate a transformed ozone concentration variable using a piecewise linear function, 

consider the following. To simplify notation, we ignore the subscripts l  and t  for location and 

time period, respectively. 

Let o  be the ozone concentration.  

Let f̂   be the nonlinear transformation of ozone concentration. 

Let ko  be the ozone concentration if segment k  of the piecewise linear function used. 

Let kw  be the binary decision variable indicating the ozone concentration uses segment k  on the 

piecewise linear function. 

Also consider the following parameters in the piecewise linear function: 

Let kk bb ,1  be the break points corresponding to the segment k . 

Let kp  be the slope of segment k . 

Let kq  be intercept of segment k . 

The piecewise linear function formulation is given by: 





Kk

koo

         (11) 





Kk

kk

k

k wqopf̂

        (12) 

k
kk

k
k wbowb 1

      ,Kk   (13) 





K

k

kw
1

1

       ,Kk  (14) 

 1,0kw        ,Kk  (15) 

Constraint set (11) indicates that a given ozone variable equals the ozone concentration 

approximated by one of the segments. Constraint set (12) represents the linear approximation of 

the transformed ozone concentration.  Constraint set (13) represents the lower and upper bounds 
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of ozone concentration approximated by segment k. Constraint sets (14) and (15) ensure that only 

one segment is used. Although equations (11)-(15) present an example of a piecewise linear 

function for a nonlinear transformation of ozone, a similar set of constraints can be used to 

transform an emission variable.  

3.2.2 Penalized Cost of Supplemental Control Strategy in MINLP 

Models 

The linear MILP models for the DFW case study were infeasible [27, 30], so supplemental control 

strategies with considerable penalized cost were introduced into the optimization model to enable 

feasible solutions.  However, the MINLP models consisted of nonlinear terms in the regression 

models. It is challenging to penalize the estimated cost of the transformed ozone variable when 

supplemental control is required because the different dimension between the linear and nonlinear 

terms. For example, consider an increasing piecewise linear function with four segments within the 

minimum (min) and maximum value (B) of the break points as shown in Figure 2. (The minimum 

and maximum ozone concentration in a region and a period was obtained from observing 60 

CAMx runs.) If the estimated ozone concentration falls within any one of the segments, we can 

determine the needs for supplemental control based upon the linear approximation of the 

segments.  

However, if the estimated ozone ( o ) is greater than the maximum allowable ozone concentration 

(B) then a difference (  ) exists between the penalized cost (𝜔) of the nonlinear model and the 

penalized cost (θ) from the linear extrapolation of last segment. Consequently, we applied 

supplemental controls on the piecewise linear approximation on ozone (see Equation 16) and the 

upper bound of the last segment (see Equation 17). Considering that, we ensure that the 

supplemental cost penalty is more conservative and reasonable. By contrast, we applied the 

supplemental controls on the piecewise linear approximation on ozone and lower bound of the first 

segment in a decreasing function. 
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Figure 2. Increasing piecewise linear function 
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4. Computational Results 

The computational results were carried out using FICO Xpress-Mosel optimization software. A 

total of eight days from August 15 to 22 of the episode were optimized in order to select targeted 

control strategies and targeted supplemental control strategies for three MINLP models.  

4.1 Computational Results of Nonlinear Static Model  

In Table 1, the selected control strategy for the static model are shown as follows: X represents 

that control strategy being selected, XV represents that only the VOC control was helpful on 

emission reduction, and XN indicates that only the NOx control was helpful on emission reduction. 

Results show that six control strategies for VOC emissions from on-road sources were selected. 

Four control strategies for NOx emissions (control strategy 16-19) from non-road sources were 

selected. Control strategies for Midlothian Cement Kilns from point sources helped reduce NOx 

emissions. The total cost of the selected control strategies and penalty cost is $254.89 billion, and 

the cost of the selected control strategies over the 8-day episode is $9.57 million. The cost of the 

selected control strategies is the maximum in the three MINLP models. The same set of control 

strategies are implemented each day of the episode in order to comply with the maximum 

allowable ozone concentration in each time period and location. Therefore, the set of control 

strategies would be implemented exactly the same regardless of the meteorology of the day. This 

is the reason why the static model yields the most expensive control strategy cost. 

Table 1 Nonlinear static optimization model: Selected control strategies. 

Control No. Selected Control Strategies 

1  Bicycle and Pedestrian Programs (NOx, VOC) 

2  Clean Fleet Vehicle Procurement Policy/Clean Fleet Program  (NOx) 

3 Xv Freeway and Arterial Bottleneck Program (NOx, VOC) 

4  Higher Vehicle Occupancies (NOx, VOC) 

5  Idle Reduction Infrastructure (NOx) 

6 Xv Intelligent Transportation Systems (NOx, VOC) 

7  Additional Taxi Fleet Emission Testing (NOx) 

8 Xv Traffic Signal Improvement (NOx, VOC) 

9  Transit (NOx, VOC) 

10  Fare-Free Transit, System-Wide on Ozone Action Days (NOx, VOC) 

11  ETR-Vanpool Program (NOx, VOC) 

12 Xv ETR-Best Workplaces Program (NOx, VOC) 

13 Xv ETR-Carpooling Programs (NOx, VOC) 

14 Xv ETR-Transit Subsidy Programs (NOx, VOC) 

15  Freight Rail Infrastructure Improvement (NOx) 
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16 X Emission Reduction Contract Incentives with Public Funding (NOx) 

17 X Limitation on Idling of Heavy Duty (NOx) 

18 X Rail Efficiency (NOx) 

19 X Stationary IC Engines (NOx) 

20  Lawn Mower Replacement Program (VOC) 

21  Architectural & Industrial Coatings (VOC) 

22  Cold Cleaning Regulations (VOC) 

23  Commercial and Consumer Products Requirements (VOC) 

24  Fuel Hose Permeation (VOC) 

25  Glycol Dehydrators (VOC) 

26 X Brick Kilns (NOx) 

27  ICI Boilers #7 (NOx) 

28  ICI Boilers #9 (NOx) 

29  Lime Kilns (NOx) 

30  Refinery Boilers and Heaters (NOx) 

31  EGU (NOx) 

32 X Midlothian Cement Kilns (NOx) 

 

Table 2 Nonlinear static optimization model: Supplemental controls on ozone by day, time period, 

and county. 

Day Time Period Counties Requiring Supplemental Control on Ozone 

Aug 15 12pm-6am Johnson & Parker, Tarrant 

Aug 16 12pm-6am Collin, Dallas 

Aug 16 6am-12pm Tarrant 

Aug 17 12pm-6am Dallas 

Aug 17 6am-12pm Denton 

Aug 18 12pm-6am Tarrant 

Aug 19 12pm-6am Johnson & Parker 

Aug 19 6am-12pm Dallas 

Aug 20 12pm-6am Ellis, Johnson & Parker 

Aug 20 6am-12pm Collin, Denton 

Aug 21 12pm-6am Denton 

Aug 21 12pm-3pm Ellis 

Aug 22 12pm-6am Collin, Dallas 

Aug 22 6am-12pm Dallas 

Aug 22 3pm-7pm Ellis 

 

Since the set of 32 control strategies was unable to reduce ozone to comply with the 8-hour ozone 

standard in the static model, supplemental controls needed to be used. The results of the 

supplemental control in targeted time periods and locations are shown in Table 2. Most 

supplementary implementations required further reduction of ozone during the morning busy 

hours, (12pm-6am and 6-12pm) except Ellis on August 21 and 22. Each day of the episode 

required at least one supplemental control for reducing ozone. A total of five supplemental 

controls are applied to Dallas for ozone attainment, which is the largest requirement of the 
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counties. However, Kaufman and Rockwall did not need any supplementary control for ozone 

attainment. The majority of the supplemental controls are applied in the busy morning hour, which 

is the same finding for both the linear and nonlinear models. However, the nonlinear model 

required supplemental control in two time periods (12pm-3pm and 3pm-7pm) in Ellis, which is 

different from the linear model. Also, the nonlinear model used supplemental controls for five 

more days than that in the linear model. 

4.2 Computational Results of Nonlinear Sequential Model  

The set of selected control strategies from the sequential model in each day are shown in Table 3. 

On August 15, nine control strategies of on-road VOC emission sources and one control strategy 

of NOx emission point sources were selected. On August 16, two control strategies for NOx 

emission point sources were selected. No control strategies were selected on August 17. On 

August 18, 14 control strategies of on-road NOx emission sources, all control strategies of non-

road NOx and VOC emission sources and two control strategies of NOx emission point sources 

were selected. On August 19, all 14 control strategies of on-road NOx and VOC emission sources, 

all five control strategies of non-road NOx emission sources, and one control strategy of a NOx 

emission point source were selected. On August 20, ten control strategies of on-road VOC 

emission sources, all five control strategies of non-road sources of NOx, and two control strategies 

of NOx emission point sources were selected. On August 21, all five control strategies of non-road 

NOx emission sources and two control strategies of NOx emissions from point source were 

selected. Only one control strategy of NOx emissions from a point source was selected on August 

22. From the results, we found that on-road control strategies were more effective at reducing 

ozone than non-road control strategies. Point emissions from Brick Kilns, ICI Boilers #9, and 

Refinery Boilers and Heaters were helpful in reducing NOx emissions throughout the episode. The 

total cost of the selected control strategies and penalty cost is $255.1 billion, and the total the cost 

for selected control strategies is $2.73 million.   

Table 3 Nonlinear sequential optimization model: Selected control strategies by day. 

Control 

No. 

Sun 

Aug 

15 

Mon 

Aug 

16 

Tue 

Aug 

17 

Wed 

Aug 

18 

Thu 

Aug 

19 

Fri 

Aug 

20 

Sat 

Aug 

21 

Sun 

Aug 

22 

Control Strategies  

  

1 XV   XN X XV   Bicycle/Pedestrian Programs (NOx, VOC) 

2    X X    
Clean Fleet Vehicle Procurement Policy/Clean 
Fleet Program  (NOx) 

3 XV   XN X XV   Freeway/Arterial Bottleneck (NOx, VOC) 

4 XV   XN X XV   Higher Vehicle Occupancies (NOx, VOC) 

5    X X    Idle Reduction Infrastructure (NOx) 

6 XV   XN X XV   Intelligent Transportation Sys (NOx, VOC) 

7    X X    Additional Taxi Fleet Emission Testing (NOx) 

8 XV   XN X XV   Traffic Signal Improvement (NOx, VOC) 

9 XV   XN X XV   Transit (NOx, VOC) 

10 XV   XN X    
Fare-Free Transit, System-Wide on Ozone 
Action Days (NOx, VOC) 

11    XN X XV   ETR-Vanpool Program (NOx, VOC) 

12 XV   XN X XV   ETR-Best Workplaces (NOx, VOC) 

13    XN X XV   ETR-Carpooling Programs (NOx, VOC) 
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14 XV   XN X XV   ETR-Transit Subsidy (NOx, VOC) 

15    X X X X  Freight Rail Infrastructure Improvement (NOx) 

16    X X X X  
Emission Reduction Contract Incentives with 
Public Funding (NOx) 

17    X X X X  Limitation on Idling of Heavy Duty (NOx) 

18    X X X X  Rail Efficiency (NOx) 

19    X X X X  Stationary IC Engines (NOx) 

20    X     Lawn Mower Replacement (VOC) 

21    X     Architectural & Industrial Coatings (VOC) 

22    X     Cold Cleaning Regulations (VOC) 

23    
X 

    
Commercial and Consumer Products 
Requirements (VOC) 

24    X     Fuel Hose Permeation (VOC) 

25    X     Glycol Dehydrators (VOC) 

26    X   X X Brick Kilns (NOx) 

27 X        ICI Boilers #7 (NOx) 

28  X   X X   ICI Boilers #9 (NOx) 

29         Lime Kilns (NOx) 

30      X X  Refinery Boilers and Heaters (NOx) 

31    X     EGU (NOx) 

32  X       Midlothian Cement Kilns (NOx) 

 

The set of 32 control strategies was unable to reduce ozone to comply with the 8-hour ozone 

standard in the sequential model. Therefore, supplemental controls need to be considered in the 

optimization. The results of the supplemental control in targeted time periods and locations are 

shown in Table 4. Supplemental control was required throughout the episode from August 15 to 

22. Most supplemental controls required further reduction on ozone during the morning busy hours 

(12pm-6am and 6am-12pm).  Dallas required the most supplemental control for controlling ozone 

concentration. However, Kaufman and Rockwall did not need any supplementary control to 

further reduce ozone. This result is very similar to that of the static model. The only slight change 

was in Tarrant, which time period 6am-12pm was removed while the time period 12pm-6am was 

added. The dissimilarities between the linear and nonlinear model are two supplemental controls 

applied after 12 noon in Ellis and five more supplemental controls are required in the nonlinear 

model for further reduction of ozone.  

Table 4 Nonlinear sequential optimization model: Supplemental controls on ozone by day, time 

period, and county. 

Day Time Period Counties Requiring Supplemental Control on Ozone 

Aug 15 12pm-6am Johnson & Parker, Tarrant 

Aug 16 12pm-6am Collin, Dallas 

Aug 17 12pm-6am Dallas 

Aug 17 6am-12pm Denton 

Aug 18 12pm-6am Tarrant 

Aug 19 12pm-6am Denton, Johnson & Parker 

Aug 19 6am-12pm Dallas 

Aug 20 12pm-6am Ellis, Johnson & Parker 

Aug 20 6am-12pm Collin, Denton 
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Aug 21 12pm-6am Denton 

Aug 21 12pm-3pm Ellis 

Aug 22 12pm-6am Collin, Dallas, Tarrant 

Aug 22 6am-12pm Dallas 

Aug 22 3pm-7pm Ellis 

 

4.3 Computational Results of Nonlinear Dynamic Model  

Table 5 depicts the set of selected control strategies from the dynamic model. On August 15, eight 

control strategies of on-road VOC emission sources and two control strategies of NOx emission 

point sources were selected. On August 16, only one control strategy of NOx emissions from a 

point source was selected. On August 17, three control strategies of NOx emissions from point 

sources were selected. On August 18, 14 control strategies of on-road NOx emission sources, all of 

the control strategies of non-road NOx and VOC sources, and two control strategies of NOx 

emissions from point sources were selected. On August 19, four control strategies of non-road 

sources from NOx emissions and one control strategy for NOx emissions from a point source were 

selected. On August 20, ten control strategies for on-road NOx and VOC emission sources, all five 

control strategies of non-road NOx emission sources, and three control strategies of NOx emissions 

from point sources were selected. On August 21, five control strategies of non-road sources from 

NOx emissions, and four control strategies of NOx emissions from point sources were selected. On 

August 22, only one control strategy of NOx emissions from point sources was selected. From the 

results, we found that on-road control strategies were helpful in reducing ozone on August 15, 18, 

and 20. Non-road control strategies were helpful in reducing ozone on August 18, 19, 20, and 21. 

Furthermore, non-road control strategies of NOx emissions were more helpful in reducing ozone 

than VOC emissions in these four days. Point sources from Brick Kilns, Refinery Boilers and 

Heaters, and Midlothian Cement Kilns were more helpful on NOx emission reduction than other 

point sources throughout the episode. The total cost of the selected control strategies and estimated 

penalty cost is $254.3 billion, which is the minimum total cost of the three models. This result is 

consistent with the linear models in which the dynamic linear model yields the least total estimated 

cost among the three linear models. Considering that the dynamic models allow different 

implementations of control strategies in each day of the episode, initial conditions of the previous 

day’s ozone can be manipulated, and optimization is in a single general model, the dynamic 

models have greater capability to reduce the ozone concentration in order to satisfy constraints. 

This is the reason why the dynamic models yield the minimum estimated total cost of the selected 

control strategies and the supplemental controls. The estimated cost for selected control strategies 

is $2.20 million.   

Table.5 Nonlinear dynamic optimization model: Selected control strategies by day. 

Control 
No. 

Sun 

Aug 

15 

Mon 

Aug 

16 

Tue 

Aug 

17 

Wed 

Aug 

18 

Thu 

Aug 

19 

Fri 

Aug 

20 

Sat 

Aug 

21 

Sun 

Aug 

22 
Control Strategies  
  

1    XN  X   Bicycle/Pedestrian Programs (NOx, VOC) 

2    X     
Clean Fleet Vehicle Procurement Policy/Clean 
Fleet Program  (NOx) 
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3 XV   XN  X   Freeway/Arterial Bottleneck (NOx, VOC) 

4 XV   XN  X   Higher Vehicle Occupancies (NOx, VOC) 

5    X     Idle Reduction Infrastructure (NOx) 

6 XV   XN  X   Intelligent Transportation Sys (NOx, VOC) 

7    X     Additional Taxi Fleet Emission Testing (NOx) 

8 XV   XN  X   Traffic Signal Improvement (NOx, VOC) 

9 XV   XN  X   Transit (NOx, VOC) 

10 XV   XN     
Fare-Free Transit, System-Wide on Ozone 
Action Days (NOx, VOC) 

11    XN  X   ETR-Vanpool Program (NOx, VOC) 

12 XV   XN  X   ETR-Best Workplaces (NOx, VOC) 

13    XN  X   ETR-Carpooling Programs (NOx, VOC) 

14 XV   XN  X   ETR-Transit Subsidy (NOx, VOC) 

15    X  X X  Freight Rail Infrastructure Improvement (NOx) 

16    X X X X  
Emission Reduction Contract Incentives with 
Public Funding (NOx) 

17    X X X X  Limitation on Idling of Heavy Duty (NOx) 

18    X X X X  Rail Efficiency (NOx) 

19    X X X X  Stationary IC Engines (NOx) 

20    X     Lawn Mower Replacement (VOC) 

21    X     Architectural & Industrial Coatings (VOC) 

22    X     Cold Cleaning Regulations (VOC) 

23    
X 

    
Commercial and Consumer Products 
Requirements (VOC) 

24    X     Fuel Hose Permeation (VOC) 

25    X     Glycol Dehydrators (VOC) 

26   X X   X X Brick Kilns (NOx) 

27 X        ICI Boilers #7 (NOx) 

28     X X   ICI Boilers #9 (NOx) 

29   X    X  Lime Kilns (NOx) 

30 X     X X  Refinery Boilers and Heaters (NOx) 

31    X   X  EGU (NOx) 

32  X X   X   Midlothian Cement Kilns (NOx) 

 

Supplemental controls need to be considered in the optimization since the set of 32 controls was 

unable to reduce ozone to comply with the 8-hour ozone standard. The results of the supplemental 

controls in targeted time periods and locations are shown in Table 6. Most supplemental controls 

occurred during the morning busy hours (12pm-6am and 6pm-12pm). Denton and Dallas used 

supplemental controls during four time periods to reduce ozone further, which were the most of all 

of the counties. Kaufman and Rockwall did not need any supplementary control for ozone 

attainment. The resulting supplemental control strategies are very similar to those of the sequential 

model. The slight difference was that the dynamic model used one fewer supplemental control 

during the time period (12pm-6am) in each of Collin and Dallas. The nonlinear dynamic model 

required that three more time periods use the supplemental controls for reducing ozone than in 

linear dynamic model used. 

Table 6 Nonlinear dynamic optimization model: Supplemental controls on ozone by day, time 

period, and county. 

Day Time Period Counties Requiring Supplemental Control on Ozone 

Aug 15 12pm-6am Johnson & Parker, Tarrant 
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Aug 16 12pm-6am Collin, Dallas 

Aug 17 12pm-6am Dallas 

Aug 17 6am-12pm Denton 

Aug 18 12pm-6am Tarrant 

Aug 19 12pm-6am Johnson & Parker 

Aug 19 6am-12pm Dallas 

Aug 20 12pm-6am Ellis, Johnson & Parker 

Aug 20 6am-12pm Collin, Denton 

Aug 21 12pm-6am Denton 

Aug 21 12pm-3pm Ellis 

Aug 22 12pm-6am Tarrant 

Aug 22 6am-12pm Dallas 

Aug 22 3pm-7pm Ellis 

 

4.4 Differences between Linear and Nonlinear Models  

Predicting hourly ground-level ozone concentration is a very important task for the ozone control 

strategy optimization.  It not only accounts for the nonlinear relationship between pollutant and its 

precursors but also improves the accuracy of the statistical prediction model. This research 

addresses this need by building nonlinear statistical models to represent the hourly ozone 

concentration in different time periods and regions. Then we study three MINLP models to obtain 

three different sets of optimal control strategies. Furthermore, three supplemental control strategies 

are introduced into the optimization models since the DFW case study was infeasible. These 

models can provide decision-makers information on how the best set of control strategies changes 

under different scenarios. The selection of the supplemental controls also specifies the most 

critical time periods and regions that require further reductions either on ozone concentration or 

emissions. In this remainder of this section, we discuss the differences in the solutions when 

optimizing with the linear prediction models versus the nonlinear prediction models. 

Table 7 compares the solutions found using the linear and nonlinear static optimization models. 

The same control strategies for on-road and non-road emissions were selected by both models. For 

point source emissions, one control strategy was different between the two models.  

Table 7 Selected control strategy comparison of static linear and nonlinear models. 

 On-road emissions Non-road emissions Point emissions 

NOx control 

strategies 

VOC control 

strategies  

NOx control 

strategies 

VOC control 

strategies 

NOx control 

strategies 

Linear 

model 

None 3,6,812,13,14 16,17,18,19 None 26,31 

Nonlinear 

model 

None 3,6,812,13,14 16,17,18,19 None 26,32 
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Table 8 shows the solutions for the sequential optimization models, and the two solutions were 

very similar on all but one day during the horizon. The same control strategies were selected on 

August 17, 18, 19, and 20 by both the linear and nonlinear models. On August 15, the nonlinear 

model selected one fewer point source emission control strategy than the linear model selected. By 

contrast, on August 16 and 22, the nonlinear model used one more point source emission control 

strategy than the linear model used. However, on August 21, the two solutions were quite 

different. Specifically, the nonlinear model chose five non-road NOx control strategies, while the 

linear model selected none; and while both models used two point source control strategies, they 

chose different ones.  

Table 8 Selected control strategy comparison of sequential linear and nonlinear models. 

 On-road emissions Non-road emissions Point emissions 

NOx control 

strategies 

VOC control 

strategies  

NOx control 

strategies 

VOC control 

strategies 

NOx control 

strategies 

Aug 

15 

Linear model None 1,3,4,6,8,9,10,12

,14 

None None 27,30 

Nonlinear 

model 

None 1,3,4,6,8,9,10,12

,14 

None None 27 

Aug 

16 

Linear model None None None None 32 

Nonlinear 

model 

None None None None 28,32 

Aug 

17 

Linear model None None None None None 

Nonlinear 

model 

None None None None None 

Aug 

18 

Linear model 1,2,3,4,5,6,7,8,9,

10,11,12,13,14 

None 15,16,17,18, 19 20,21,22,23, 

24,25 

31 

Nonlinear 

model 

1,2,3,4,5,6,7,8,9,

10,11,12,13,14 

None 15,16,17,18, 19 20,21,22,23, 

24,25 

31 

Aug 

19 

Linear model 1,2,3,4,5,6,7,8,9,

10,11,12,13,14 

1,3,4,6,8,9,10,11

,12,13,14 

15,16,17,18, 19 None 28 

Nonlinear 

model 

1,2,3,4,5,6,7,8,9,

10,11,12,13,14 

1,3,4,6,8,9,10,11

,12,13,14 

15,16,17,18, 19 None 28 

Aug 

20 

Linear model None 1,3,4,6,8,9,11,12

,13,14 

15,16,17,18, 19 None 28,30 

Nonlinear 

model 

None 1,3,4,6,8,9,11,12

,13,14 

16,17,18,19 None 28,30 

Aug 

21 

Linear model None None None None 27,28 

Nonlinear 

model 

None 3,6,812,13,14 None None 26,32 

Aug 

22 

Linear model None None None None None 

Nonlinear 

model 

None None None None 26 

 

Table 9 shows the differences in the solutions from the dynamic models. No control strategies 

were selected on August 17 by either the linear and nonlinear models. One additional on-road 
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VOC control strategy was selected by the linear model on August 15. By contrast, one additional 

point source control strategy was selected by the nonlinear model on August 16. Three more point 

source control strategies were used by the nonlinear model on August 18. One non-road NOx 

control strategy was removed by the linear model on August 19. An additional ten on-road NOx 

control strategies were selected by the nonlinear model, and one fewer point source control 

strategy was selected by the nonlinear model on August 20. As in the sequential model results, 

there were significant differences in the solutions of the models on August 21. Specifically, the 

linear model selected nine on-road NOx control strategies and seven on-road VOC control 

strategies, while the nonlinear model used five non-road control strategies of NOx emissions and 

one additional point source control strategy. Finally, one point source control strategy was selected 

by the nonlinear model on August 22, but not by the linear model. 

Table 9 Selected control strategy comparison of dynamic linear and nonlinear models. 

 On-road emissions  Non-road emissions Point emissions 

NOx control 

strategies 

VOC control 

strategies  

NOx control 

strategies 

VOC control 

strategies 

NOx control 

strategies 

Aug 

15 

Linear model None 1,3,4,6,8,9,10,12

,14 

None None 27,30 

Nonlinear 

model 

None 3,4,6,8,9,10,12, 

14 

None None 27 

Aug 

16 

Linear model None None None None 32 

Nonlinear 

model 

None None None None 28,32 

Aug 

17 

Linear model None None None None None 

Nonlinear 

model 

None None None None None 

Aug 

18 

Linear model 1,2,3,4,5,6,7,8,9,

10,11,12,13,14 

None 15,16,17,18, 19 20,21,22,23, 

24,25 

26,27,28,30,31 

Nonlinear 

model 

1,2,3,4,5,6,7,8,9,

10,11,12,13,14 

None 15,16,17,18, 19 20,21,22,23, 

24,25 

26,31 

Aug 

19 

Linear model 1,2,3,4,5,6,7,8,9,

10,11,12,13,14 

None 15,16,17,18, 19 None 28 

Nonlinear 

model 

1,2,3,4,5,6,7,8,9,

10,11,12,13,14 

None 16,17,18, 19 None 28 

Aug 

20 

Linear model None 1,3,4,6,8,9,11,12

,13,14 

15,16,17,18, 19 None 27,28,30,31 

Nonlinear 

model 

1,3,4,6,8,9,11,12

,13,14 

1,3,4,6,8,9,11,12

,13,14 

16,17,18,19 None 28,30,32 

Aug 

21 

Linear model 1,2,3,5,6,8,12,13

,14 

1,3,6,812,13,14 None None 27,29,30 

Nonlinear 

model 

None None 15,16,17,18,19 None 26,29,30,31 

Aug 

22 

Linear model None None None None None 

Nonlinear 

model 

None None None None 26 

 

To determine the cost effectiveness between the MINLP models and the MILP models in Hsu 

[30], we fixed the targeted control strategies of the MILP in the MINLP and resolved it to 

determine the emissions, ozone, and costs in the nonlinear objective function. The total cost of the 

targeted control strategies and supplemental control strategies of three MINLP models are less 

than the MINLP models fixed with MILP solutions, which indicates that the selection of the 
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control strategies of the nonlinear models are more effective than the linear models (see table 10, 

11, and 12). Moreover, the costs of the selected control strategies of the three MINLP models are 

surprisingly more than those of the linear solutions. Therefore, the three MINLP models are able to 

select targeted control strategies that are a little more expensive but reduce the need for excessive 

supplemental reduction of emissions and ozone. 

Table 10 Cost comparison of dynamic optimization models. 

Optimization 

Model 

Total cost 

$ 1011 

Cost of 

selected 

controls 

$106 

Penalty cost 

of 

lts

 

$1011 

Penalty cost 

of 

lts

$1010 

Penalty cost 

of 
ijdy

 

$109 

MINLP 2.54315 2.20188 2.28183 2.43214 1.80903 

MINLP with 

Linear 

Solutions 

2.54382 1.74548 2.28271 2.43586 1.75044 

Table 11 Cost comparison of sequential optimization models. 

Optimization 

Model 

Total cost 

$ 1011 

Cost of 

selected 

controls 

$106 

Penalty cost 

of 

lts

 

$1011 

Penalty cost 

of 

lts

$1010 

Penalty cost 

of 
ijdy

 

$109 

MINLP 2.55076 2.73270 2.30156 2.32085 1.70906 

MINLP with 

Linear 

Solutions 

2.55162 2.62037 2.30278 2.32327 1.64827 

Table 12 Cost comparison of Static optimization models. 

Optimization 

Model 

Total cost 

$ 1011 

Cost of 

selected 

controls 

$106 

Penalty cost 

of 

lts

 

$1011 

Penalty cost 

of 

lts

$1010 

Penalty cost 

of 
ijdy

 

$109 

MINLP 2.54886 9.57482 2.28442 2.43718 2.06300 

MINLP with 

Linear 

Solutions 

2.54911 7.30154 2.28394 2.43816 2.12799 

 

5. CONCLUSIONS AND FUTURE RESEARCH 

In this research, we presented three nonlinear models for selecting ground-level ozone control 

strategies in order to more accurately capture the nonlinear relationships between precursors and 

pollutants. We showed that the MINLP models are superior to MILP models in Hsu [30] in terms 

of cost effectiveness. Some possible directions for future research based on the results of this study 

include the following. In this research, no interaction terms were considered to predict ozone 

concentration in the statistical models. However, interactions between NOx and VOC emissions 

could potentially be important in accurately predicting ozone and could be considered in the future 

refinement of the statistical models in this research. Piecewise linear approximations were used to 

approximate nonlinear functions resulting from the refinement of the statistical models conducted 

to better satisfy regression model assumptions. In this research, four equally spaced linear 
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segments were created for each transformed response variable and each transformed predictor 

variable. It could be beneficial to create unequally spaced linear segments of piecewise linear 

approximations for each nonlinear transformation so as to obtain a more precise approximation for 

the transformed response or predictor variables. Moreover, the piecewise linear function could 

yield a better approximation by increasing the number of the segments. 
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