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Abstract 

Queuing models provide an attractive and highly-efficient alternative to simulation for 

quantifying traffic flow efficiency. Stationary Markovian queuing models in which both 

inter-arrival times and service times are exponentially distributed have been studied by the 

National Airspace System (NAS). However, stationary queues cannot account for peaks 

and valleys in demand that are commonly observed in the National Airspace. Thus time 

dependent Markovian queuing models, which aim to capture the variation in demand 

during a day, have been studied. Furthermore, statistical analysis of real traffic data reveals 

that inter-arrival times and service times do not follow exponential distributions. As a 

subclass of phase-type distribution, Coxian distribution with the advantage of closely 

approximating any distribution without violating the Markov property has gained special 

importance on research in queuing systems. In this research, time-dependent Coxian 

queuing models Cm(t)(t)/Ck/s/s for modeling the en route flight phase are developed as well, 

which are approximated by a piece-wise constant Coxian inter-arrival time distribution and 

a time-invariant Coxian service time distribution. Both the arrival rate and service rate are 

calibrated from data extracted from high-fidelity simulation runs driven by actual flying 

data. The number of aircraft in the system is regarded as a measure of the accuracy of 

queuing performance. Comparison results between time-dependent Markovian and Coxian 

queuing models are given in this paper. This study shows that time-dependent Markovian 

queues could capture the variation in demand as well as Coxian queues, with the advantage 

of mathematical and computational tractability. 
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1 Introduction 

 Air transportation in the US system has dramatically changed in the past few 

decades. The National Airspace System (NAS) has increasingly become congested. The 

amount of traffic demand on the NAS frequently exceeds its available capacity, due to a 

large number of factors including bad weather, over-scheduling by the airlines, national 

security, and air traffic control equipment outages [1]. For the period of January through 

June 2000, delays increased by 13.6 percent from the same time period in 1999 [2]. In June 

alone, delays increased 20 percent. Delay results in huge economic loss to both passengers 

and industries. According to the U.S. Department of Transportation, in 1998, airline delays 

in the U.S. cost industries and passengers $4.5 billion [3]. Therefore, an efficient and 

effective air traffic management system is vital to the U.S. transportation infrastructure. 

Air-traffic flow simulation software such as the Future ATM Concepts Evaluation 

Tool (FACET) can be used to quantify traffic flow efficiency. By using actual air traffic 

data from the Federal Aviation Administration (FAA), FACET analyzes the flight plan 

route and predicts trajectories for the climb, cruise, and descent phases of flight for each 

aircraft type, which can be further used to analyze congestion patterns of different sectors 

of the airspace by propagating the trajectories of proposed flights forward in time [2]. 

However, the time consuming and non-analytic characteristics of FACET are not amenable 

for conducting rapid trade studies. By contrast, modeling the air traffic flow by queuing 

models could provide quantitative information about the effects of the tools on operations 

of the NAS to facilitate tradeoff studies in an effective and time-efficient manner [4]. 

Queuing theory is first known from the work of A. K. Erlang of the Copenhagen 

Telephone Company in 1900s. Nowadays, it  is used widely to analyze computer systems 

[5–7], communication systems [8–10] and transportation systems [11–15]. Yet, most 

research about queuing models focuses on non-stationary queuing models. However, in 

most real application, the arrival rate is non-stationary. For non-stationary, even if for 

moderately non-stationary Markovian queuing systems, research has shown that results of 

stationary models are quite inaccurate [16].  

In this study, arrival rate (the amount of flying demand) is fluctuating widely during 

a day, such as increases during rush hour. In order to capture the variation in the arrival 

process, time dependent Markovian queuing models M(t)/M/s/s are developed. Further 

statistical analysis shows that arrival and service times do not follow exponential 

distributions exactly. Since Coxian distributions have the advantage of approximating any 

arbitrary distribution without violating the Markov property, the Coxian distribution is 

employed to fit both inter-arrival and service times in this research. Results of fitting both 

the exponential distribution and a 3-phase Coxian distribution to data of service times are 

shown in figure 1a and 1b separately. Clearly the Coxian distribution fits the data better. 

Thus, for exploring more accurate queuing performance measures, time dependent Coxian 

queuing models Cm(t)(t)/Ck/s/s are also developed. 



  
Exponential distribution 3-phase Coxian distribution 

Figure 1. Service Time Distributions 

The remainder of Section 1, an overview of flight profiles and time dependent queuing 

models is introduced. Section 2 describes the models used in this research, overviews the 

Coxian distribution and solutions methods for Cm/Ck/s/s models,  and presents the 

methodology of solving Cm(t)(t)/Ck/s/s queues. In Section 3, both M(t)/M/s/s and 

Cm(t)(t)/Ck/s/s  queuing models are validated by data extracted from FACET. In addition, 

comparison between steady state approximation and expected transient state 

approximation results are shown.  Conclusions and discussions are given in Section 4. 

Section 5 is acknowledgements.  

1.1 Overview of Flight Profiles 

An aircraft experiences several different flight phases during each flight, as shown 

in Figure 2. Different flight phases can be modeled by different queuing systems separately 

[4, 17]. This research only focuses on modeling the en route segment. Previous research 

use M/M/∞ queues to model the en route segment since they believe that available en route 

airspace is much larger than the demand under normal conditions [17]. However, this paper 

uses pure loss models M(t)/M/s/s or Cm(t)(t)/Ck/s/s are more accurate since the NAS has a 

constrained capacity, so it should be modeled similar to roadway segments [14].  

 

Figure 2. Flight Segments ([17],http://virtualskies.arc.nasa.gov/atm/2.html) 
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1.2 Overview of Time Dependent Queuing Models 

For time dependent queuing models, however, solving exact numerical solutions is 

computationally cumbersome [18–21]. Several approximation approaches, such as 

Pointwise Stationary Approximation (PSA is obtained by taking the expectation of the 

formula for stationary performance measure with an instant arrival rate at each time point 

as an input parameter) [16, 22–24],  the Stationary Independent Period by Period (SIPP) 

approach [25],  and the Stationary Backlog Carryover (SBC) approach [26], Surrogate 

Distribution Approximation (SDA) [27, 28], Diffusion Approximation [29–32] for 

computing solutions of time dependent queuing models, are prevalent.  

For strongly a non-stationary arrival process as in this research, segmenting the 

entire time period into a series of individual segment, like SIPP and SBC approaches, is a 

practical sensible analytical approach for the current research situation. In each segment, 

the arrival rate is approximated by the average arrival rate during that segment, which is 

used as input to a stationary queuing model. The approximation approach used in this 

research is also called Piecewise Constant Coxian (Markovian) Queues.  As in the SBC 

approach, this also assumes that different time periods are not independent from each other. 

In two successive time periods, the same number of aircraft may be represented by different 

state space probability vectors. Consequently, a projection algorithm is developed to shift 

the state probability vector from one period to the next period. In addition, in contrast to 

the SBC and SIPP approaches, this research assumes that in each time period, steady state 

might not be achieved. Thus, the number of aircraft in the system (queue length), as a 

performance measure for both M(t)/M/s/s and Cm(t)(t)/Ck/s/s models, is calculated by 

averaging transient solutions over each time period. The number of aircraft in the systems 

as a performance measure is compared between these two types of queuing models. Both 

queuing models are validated by the data extracted from FACET which is driven by 

empirical flying data. Results show that the Markovian queue performs as well as the 

Coxian queue with the advantage of mathematical and computational tractability. 

Moreover, expected transient solutions are more accurate than steady state solutions for 

both types of queuing models.  

1.3 Contribution 

 

The contribution of this research is twofold. A practical approach of using 

piecewise constant Cm/Ck/s/s to approximate time dependent queuing models Cm(t)(t)/Ck/s/s 

is developed. Because the arrival process changes in each time period of the Cm(t)(t)/Ck/s/s 

queue, the state spaces are different in different time periods. Consequently, this research 

develops a practical projection algorithm that shifts a probability state vector from a state 

space in one time period to that of the next period.  Our second contribution includes 

Cm(t)(t)/Ck/s/s and M(t)/M/s/s models developed for the NAS. Our results show that 

M(t)/M/s/s queuing models perform as well as Cm(t)(t)/Ck/s/s  models with the advantage of 

mathematical and computational tractability.  

 

2 Methodology 



 

2.1 Parameters of Pure Loss Model for NAS 

As mentioned in Section 1.1, purse loss models are appropriate for modeling the 

NAS. A Cm(t)(t)/Ck/s/s model and its calibration are introduced in this section.  

2.1.1 Data source and assumption  

FACET is a high-fidelity traffic flow simulation software package, which is driven 

by empirical flying data from the FAA [33]. In this research, all arrival time and service 

time data are extracted from FACET at 30-second intervals. The extracted data include 

recordings of aircraft flying information such as the location of the flight. Calibration of 

model parameters is based on following assumptions: 

Assumption 1: It is possible to un-truncate the arrival data. 

Theoretically, an arrival event can occur in 30 seconds. This research assumes arrival data 

is un-truncated.    

Assumption 2: The set of times representing fundamental changes in the inter-

arrival distribution is 24 one-hour time periods. 

As mentioned in Section 1.2, the method of segmenting the entire time horizon into a series 

of individual segments is employed in this research. This research assumes that in every 

hour the arrival rate can be approximated by constant a rate, which may be different from 

the next hour segment.  

Assumption 3: The distribution of service times does not change and remains stable 

for the entire time horizon. 

Since the flying peed of aircraft has small variation during a day, accordingly, the time 

used to flying across a specific area has small variation. Thus, this research assumes service 

times are following time invariant distribution.  

2.1.2 Capacity and Number of Service Channels 

The capacity of a single airspace sector is defined by the maximum number of 

aircraft allowed to operate in a sector in a given time. Capacity is passed as a known 

parameter from upstream work, and the systematic procedure for calculating capacity is 

beyond the scope of this research. The maximum number of aircraft allowed in a single 

sector is denoted by s in the following section of this paper. The space of individual aircraft 

occupied in the airspace represents one queuing “server”.   

2.1.3 Inter-Arrival Time and Arrival Rate 



Inter-arrival time is defined as the time interval between two successive aircraft 

entering into an individual sector, which is recorded in FACET. If in 30 seconds there are 

n (n>1) aircraft entering into the sector, those aircraft are assumed to have arrived into the 

sector in equal time periods of length 30/n. With inter-arrival time data, we fit Exponential 

distributions and Coxian distributions. Since flying demand is varies during a day, a time 

dependent arrival rate is assumed. 

Using seven days of FACET data, MATLAB code was developed to extract arrivals 

that include both external sources and aircraft arriving from other sectors within the 

network directly from FACET. Let lXX ,,1    be a set of independent Coxian random 

variables of the inter-arrival time at different periods throughout the day.  In this study, we 

assume l represented a one-hour time period. Then, the time dependent inter-arrival time is 

approximated by a time-dependent piece-wise constant Coxian random variable given by 

equation (1): 

𝑋(𝑡) = {

𝑋1     𝑡0 < 𝑡 < 𝑡1

𝑋2     𝑡1 < 𝑡 < 𝑡2

⋮                         ⋮
  𝑋𝑙     𝑡𝑙−1 < 𝑡 < 𝑡𝑙

 (1) 

For each time period, fitting an inter-arrival time to a Coxian distribution, the parameters 

of arrival rate i  in each phase and the continuation probabilities ai is fitted by the 

Expected Maximum Likelihood Estimation (EM) algorithm [34]. The service time Coxian 

parameters are also found by the EM algorithm. To keep the EM algorithm computationally 

tractable, both inter-arrival and service time distributions are limited to three phases. 

2.1.4 Service Time and Service Rate 

Service time is defined as the time an aircraft takes to cross a single sector. For 

example, FACET records an aircraft entering into a sector at time t1 and leaving the sector 

at time t2, so service time is calculated by t2 - t1. Since the time an aircraft crosses a sector 

is not varying very much during a day, as a result, service times are assumed as stationary.  

2.2 Background on Coxian Queues  

 

2.2.1 Overview of Coxian Distribution 

A phase-type distribution describes a random time taken for a continuous time 

Markov process to reach an absorbing state, where only one absorbing state exists and the 

stochastic process starts at a transient state.  A phase-type distribution can be generalized 

to include many types of continuous distributions, such as Exponential distributions, 

Erlang distributions, Hypoexponential distributions. etc. With the advantage of 

approximating any non-negative continuous distribution, a phase-type distribution has the 

Markovian (memoryless) property. However, its generality can be problematic since it is 



overparameterized and parameters estimation is difficult. As a special case of a phase-type 

distribution, the Coxian distribution has the advantage of closely approximating any 

arbitrary nonnegative distribution and can overcome this problem to some extent. The 

Coxian distribution is a generalization of the Hypoexponential distribution in which a 

sequence of transient k-1 states can enter into the absorbing state. For a k-phase Coxian 

distribution, only 2k-1 parameters need to be estimated; see Figure 3 [35, 36]. Therefore, 

the Coxian distribution is widely used in application, such as in the health-care industry 

[37–39]. The method of fitting empirical data to a phase-type distribution has also been 

done by researchers. Popular methods are Maximum Likelihood Estimators [40, 41], the 

Expectation-Maximization algorithm [34, 42], moment matching [43, 44], and other 

methods [45–47].  

 

Figure 3. A k-phase Coxian distribution [36]  

 

2.2.2 Coxian Queuing Model 

 As mentioned in Section 1.2, exact transient solutions of time-dependent queuing 

models are very cumbersome. For analyzing the transient behavior of a time dependent 

Cm(t)(t)/Ck/s/s queue, the transient performance analysis of a time invariant Cm/Ck/s/s queue 

is required. An M(t)/M/s/s queue uses similar but much simpler analysis than a 

Cm(t)(t)/Ck/s/s queue, so we only present an analysis for Cm(t)(t)/Ck/s/s queues.  The 

Champman-Kolmogorov forward equation based state enumeration is used for the solution 

process if the inter-arrival and service time distributions are not Exponential. The matrix 

notation for the Champman-Kolmogorov forward equation is as follows: 

𝑥̇(𝑡) = 𝑄𝑥(𝑡) (2) 

where 𝑥(𝑡) is a probability vector in which the value 𝑥𝑖(𝑡) represents the probability of the 

system being in state i where i = 1, …, n. Q is an 𝑛 × 𝑛 matrix called the infinitesimal 

generator matrix or the transition rate matrix for a Markov process. The vector 𝑥̇(𝑡) 

represents the derivative of 𝑥(𝑡) with respect to t. 

By integrating 𝑥̇(𝑡) = 𝑄𝑥(𝑡) over each time period, with the normalizing condition 

equation∑ 𝑥(𝑖)𝑛
𝑖=1 = 1, the transient solution to the Markov process can be solved given 

an initial state probability and rate matrix Q. Using the matrix exponential 𝑒𝑄𝑡, the solution 

of time invariant system solution can be obtained as well by taking the limit at t approaches 

infinity.  



The analysis of Cm/Ck/s/s in each time period is nearly the same as the analysis of a 

queue system Cm/Ck/s discussed in [48], a Cm/Ck/s/s queuing system can be presented as 

Figure 4, where μG1, μG2,,…, μGm are the arrival parameters of an m-phase Coxian 

distribution, and aG1, aG2,…., aGm are the transition probabilities of the arrival process. We 

refer to this as a generator. Furthermore, service nodes of Cm/Ck/s/s queue can be 

represented by a k-phase Coxian, with service parameters μN1, μN2, …, μNk, and transition 

probabilities aN1, aN2, …, aNk. 

 

Figure 4. Cm/Ck/s/s queuing system 

In this study, the Cm/Ck/s/s queuing system state can be defined by: (1) the phase of 

the arrival process or generator, (2) the number of items in service, and (3) the number of 

servers in each phase.  Let a be the phase of the generator, let b be the number of items in 

service, and let  c1, c2, …, ck be the number of servers in phases 1, 2,…, k, Therefore, the 

state of the system can be represented by the sequence a : b(c1, c2, …, ck). The total number 

of servers in phases 1, 2, …, k at a service node can be given as: 

∑ 𝑐𝑖
𝑘
𝑖=1 = 𝑏                        0 ≤ 𝑏 ≤ 𝑠, 𝑏 = 0, 1, 2, …                                                             (3) 

2.2.1 State Transitions 

Let N(n) be the total number of states for a Cm/Ck/s/s queuing system in which there 

are at most n aircraft in the system. Then N(n) is described in [48]: 

𝑁(𝑛) = 𝑚(𝑛+𝑘−1
𝑘

)       𝑛 = 𝑠                                                                                            (4) 

Thee dimension of transition rate matrix Q is 𝑁(𝑛) × 𝑁(𝑛), whose (i,j)th element, qij, 

represents the rate of transition from the jth state to ith state. The transitions of a Cm/Ck/s/s 

queue described as sequence a:b (c1, c2, …, ck) above can be defined as the following 

events: 1. a phase change in the arrival node or generator; 2. an aircraft arrival into a service 

node or departure from the generator; 3. an aircraft departure from the service node; 4. a 

phase change in the service node. For a C2/C2/3/3 queuing system, the dimension of 



transition rate matrix Q is 20x20, the rate of transition from state 1:1(1,0) to 2:1(1,0) is 

𝜇𝐺1 × 𝑎𝐺1; to 1:2(2,0) is 𝜇𝐺1 × (1 − 𝑎𝐺1); to 1:0(0,0) 𝜇𝑁1 × (1 − 𝑎𝑁1); to 1:1(0,1) is 

𝜇𝑁1 × 𝑎𝑁1 (notations is same as in figure 2). 

2.3 Time Dependent Coxian Queue 

      In this section, the method of using Piece Wise Constant Coxian Queue to 

approximate Cm(t)(t)/Ck/s/s queuing is described. The transient state probability vector was 

determined by integrating the Champman-Kolmogorov forward equation 𝑥̇(𝑡) = 𝑄𝑥(𝑡) 

over each the time period. The approach to determine average measures of the queues is 

discussed. Furthermore, a projection method was developed to shift the probability vector 

from one period to the next period. The number of aircraft as an average measure can be 

obtained for each time period, which was a main metric to measure the queuing 

performance. 

2.3.1 Probability State Vector Determination 

The transition matrix ( )Q t  can be written as given in equation (5) due to the piece-wise 

time dependent inter-arrival time of a Cm(t)(t)/CK/s/s queuing model.  

𝑄(𝑡) = {

𝑄1     𝑡0 < 𝑡 < 𝑡0

𝑄2     𝑡1 < 𝑡 < 𝑡2

⋮                         ⋮
  𝑄𝑙     𝑡𝑙−1 < 𝑡 < 𝑡𝑙

                                                                                            (5) 

This shows that the transition rate matrix varies, which can lead to the steady state 

probabilities not existing. However, we still would like to calculate certain average 

measures based upon the probabilities of each state over the time horizon using equation 

(6), where M(x) is a measure based upon the state probability vector x, and M is the average 

of the measure over time. 

𝑀̅ =
∫ 𝑀(𝑥(𝑡))𝑑𝑡

𝑡1
𝑡0

𝑡1−𝑡0
                                                                                                                (6) 

Equation (6) can be rewritten to determine the average state probability vector 𝑥𝑖̅ 

for each time period 𝑡𝑖, ∀𝑖 = 1, … , 𝑙 and an average measure 𝑀̅ for each time period using 

equation (7) due to the linearity of many standard queuing model measures with respect to 

the state probability vector. 

𝑀̅ =
∑ (𝑡𝑖−𝑡𝑖−1)𝑀𝑖𝑥𝑖̅

𝑙
𝑖=1

𝑡𝑙−𝑡0
                                                                                                            (7)  

How to calculate𝑥𝑖̅  for each time period 𝑡𝑖, ∀𝑖 = 1, … , 𝑙  will be discussed. By 

integrating numerically using ODE45 in MATLAB, equation (8) shows how to calculate 

the state probability vector over time as following: 



x(t) = 𝑒𝑄𝑖(𝑡−𝑡𝑖−1)𝑥(𝑡𝑖−1),       ∀𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖), ∀𝑖 = 1, … , 𝑙                                                  (8) 

For a sufficiently small ε > 0 , 𝑥(𝑡𝑖 − 𝜀)  and 𝑥(𝑡𝑖)  represent probability state 

vectors of two different state spaces at a given time 𝑡𝑖. Because this can lead to a significant 

calculation complication, 𝑥(𝑡𝑖), ∀𝑖 = 1, … , 𝑙 − 1 will be redefined by two different vectors. 

Let 𝑥+(𝑡𝑖) and 𝑥−(𝑡𝑖) be the state probability vectors at time 𝑡𝑖 in state spaces associated 

with periods [𝑡𝑖 , 𝑡𝑖+1)  and [𝑡𝑖−1 , 𝑡𝑖) , respectively for each time 𝑡𝑖, ∀𝑖 = 1, … , 𝑙 − 1 . 

Variables 𝑥(𝑡0) and 𝑥(𝑡𝑙) are redefined as 𝑥+(𝑡0) and 𝑥−(𝑡𝑙), as shown in equation (9), to 

further specify notation. 

𝑥−(𝑡𝑖) = 𝑒𝑄𝑖(𝑡𝑖−𝑡𝑖−1)𝑥+(𝑡𝑖−1),      ∀𝑖 = 1, … , 𝑙                                                                 (9) 

An algorithm to calculate the probability vector for each time period 𝑥𝑖̅, ∀𝑖 =
1, … , 𝑙 is given by the following steps. 

Step 1: Let 𝑖 = 1 and  𝑥+(𝑡0) is given.  

At the very beginning 𝑡0, system is not empty. In order to give a compensation, in 

this research, 𝑥+(𝑡0) is initialized by using the transient state probability after 10 seconds 

from an empty system. 

Step 2: Find 𝑥−(𝑡𝑖) and 𝑥𝑖̅ using integration.  

Step 3: If i < l, then project 𝑥−(𝑡𝑖) into the state space of period [𝑡𝑖, 𝑡𝑖+1) to find 

𝑥+(𝑡𝑖) and go to step 2. 

2.3.1.1 Projection Algorithm 

The approach for projecting the probability vector 𝑥−(𝑡𝑖) to vector 𝑥+(𝑡𝑖) as in 

step 3 is shown in this section.  Vectors 𝑥−(𝑡𝑖) and 𝑥+(𝑡𝑖) 
will be rewritten as 𝑥−and 𝑥− 

to simplify notation. The sets of the states of the inter-arrival distribution the Coxian queue 

associated with time periods [𝑡𝑖−1 , 𝑡𝑖)  and [𝑡𝑖 , 𝑡𝑖+1)  will be defined as 𝐴−  and 𝐴+ 

respectively, and the set of states of the customers in service in the Coxian queues will be 

defined as S. Let 𝑥𝑖𝑗
−(𝑥𝑖𝑗

+)  be the associated component of vector 𝑥−(𝑥+) for each state 

𝑖 ∈ 𝐴− or 𝑖 ∈ 𝐴+ and each state 𝑗 ∈ 𝑆. 

The projection algorithm is described below. 

Step 1: Determine the probability state vector of the inter-arrival distribution 𝛼−. For each 

state, 𝑖 ∈ 𝐴− set 𝛼𝑖
− = ∑ 𝑥𝑖𝑗

−
𝑗∈𝑆 . 

Step2: Determine the probability state vector of the inter-arrival distribution 𝛼+. Solve the 

goal programming problem in (10a-10e) in which  0 < 𝑤1 < 𝑤2 < ⋯,  

𝑚𝑖𝑛 ∑ (𝑑𝑖 +  𝑐𝑖)
∞
𝑖=1                                                                                                             (10) 



s. t. 𝑖! (𝛼+(𝑇+)−𝑖1) − 𝑖! (𝛼−(𝑇−)−𝑖) + 𝑤𝑖𝑑𝑖 − 𝑤𝑖𝑐𝑖 = 0      ∀𝑖 = 1, 2, …                      (11) 

∑ 𝛼𝑖
+

𝑖∈𝐴+ = 1                                                                                                                    (12)  

𝛼𝑖
+ ≥ 0                                                                                                ∀𝑖 ∈ 𝐴+                           (13) 

𝑤𝑖, 𝑐𝑖, 𝑑𝑖 ≥ 0                                                                                      ∀𝑖 = 1, 2, …                     (14) 

Objective (10) minimizes the total deviation of moments between two distributions. The 

first constraint set -- deviation between moments of two distribution constraints (11) 

records the difference between moments of two distributions. Constraint (12) is the 

summation of initial probability state, 𝛼𝑖
+ is the probability of the process starts at phase i 

and Constraints set (13) ensures it is great or equal than 0. In constraints set (14) 𝑐𝑖, 𝑑𝑖 is 

the ith moments’ difference, for each i, if the moment of distribution associated [𝑡𝑖, 𝑡𝑖+1) 

is great than the moment of distribution associated [𝑡𝑖−1, 𝑡𝑖), 𝑑𝑖 = 0, 𝑐𝑖 > 0; otherwise 

𝑑𝑖 ≥ 0, 𝑐𝑖 = 0. 𝑤𝑖 is the weights for ith moment. 

Step 3: Determine the probability state vector 𝑥+. For each state 𝑖 ∈ 𝐴+ and each state, 𝑗 ∈
𝑆 set 𝑥𝑖𝑗

+ = 𝛼𝑖
+ ∑ 𝑥𝑖𝑗

−
𝑖𝜖𝐴− . Once an initial probability is determined for the next period, then 

continue to integrate and project for its following time period. 

3 Validating Time-Dependent Queuing Models with Cell-Level FACET Simulation 

Data 

3.1 Comparison of Time Dependent Coxian and Markovian Queuing Models Results 

The forms of inter-arrival times and service time distributions determine the 

complexity of the queuing systems. In practice, these distributions can take almost any 

forms in real systems. In this section, two different time dependent model results are 

compared. 1. The inter arrival time is a time dependent exponential distribution and the 

service time also an exponential distribution, which forms an M(t)/M/s/s queue. 2. The inter 

arrival time is a time dependent Coxian distribution and the service time is a Coxian 

distribution, which forms an Cm(t)(t)/Ck/s/s queue. As equation (4) shows, the state space of 

Coxian queue increases very fast as the number of servers s and number of phases in the 

service time distribution increases. Thus, a trade off decision between accuracy and number 

of phases need to be made. Two and three phases Coxian distribution are widely used in 

previous research [39], [49]–[51]. When the Coxian queue model exceeds 3 phases, the 

computational time increases much longer. Thus here, both for inter-arrival and service 

times, the phase number are chosen between 2 to 3 phases depends on which fits data better 

for Cm(t)(t)/Ck/s/s queues. In the following section, the above two types of queuing models 

have been validated by the cell-level spatial resolution FACET data. Results of time 

invariant M/M/s/s queues are given along with results of the aforementioned two models 

for comparison.  

A cell is a space sector defined by specifying latitude and longitude within a 1.5-

degree-by-1.5-degree square. Results for models of five cells that included the major 



airports ATL, DFW, JFK, LAX, and ORD are given in Figure 5 through Figure 9, which 

show the average number of aircraft in the system for each of the two time varying queuing 

models together with the time invariant queuing model. Capacity is a given constant value. 

The average number of aircraft in FACET simulation sample paths for June 1-7, 2007 is 

represented by the dotted lines, which were calculated by counting the number of aircraft 

at a particular cell every 30 seconds, and then averaging the total number of aircraft for 

every 1 hour time period. The results of the M(t)/M/s/s model, and the Cm(t)(t)/Ck/s/s model 

could capture the variation of demand very well in most time periods until time period 12 

or 13. Investigating the data, there is a suddenly increase in the number of arriving aircraft 

compared to the previous period. This phenomena undermined the constant piece-wise 

inter arrival assumption.            

 

Figure 5. Number of aircraft in queuing models at ATL compared with FACET data 

 

Figure 6. Number of aircraft in queuing models with different number of servers at DFW 
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Figure 7. Number of aircraft in queuing models at JFK compared with FACET data 

 

Figure 8. Number of aircraft in queuing models at LAX compared with FACET data 
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Figure 9. Number of aircraft in queuing models at ORD compared with FACET data 

3.2 Comparison of Expected Transient Solution and Steady State Solution 

In this section, the transient solution results are compared with steady state results of 

queuing models M(t)/M/s/s validated by Cell level data. Percentage error is the difference 

between model results and FACET simulation results divided by the FACET simulation 

results then times 100%. Average percentage error for each center is average percentage 

error in all 24 time period together. Comparison of average percentage error between 

transient solution and steady state solution in centers is shown as figure 9 and in cells is 

shown as figure 10. Figure 9 shows that transient solution has much more accurate 

approximation except in center 16, average transient solution error averages to be 8%, 

while that of the steady state solution is 15%.  Figure 10 shows that steady state solution 

slightly poorer that the transient solution results. Investigating the data, service time is 

about 10 minutes in the cells, while it is 50 minutes in the centers. Consequently, in a one-

hour time period, the cells more closely approach steady state.   

 

Figure 10 Average percentage error in 5 cells 

4  Results and Discussion 

Time dependent queue is developed in this research for solving non-stationary arrival 

problem. M(t)/M/s/s Markovian queuing model is built first, however, further statistical 

analysis shows inter - arrival and service times are not following exponential distribution 

exactly. With the advantage of closely approximating any arbitrary distribution without 

violating Markovian property, Coxian distribution is employed to fit both arrival time and 

service time distribution. Thus, Cm(t)(t)/Ck/s/s is developed in this research as well. Solving 

non-stationary queuing model is time consuming. Most commonly used method is 

approximating non-stationary queue by stationary queue. In this research, segmenting 

entire period into 24 one-hour flying period. For each individual segment, stationary arrival 
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is assumed. However, each period is not independent. Every consecutive two periods, there 

always exists a time epoch associated with two different probability state vectors. This 

research developed a projection algorithm which based on the thoughts optimization of 

difference between moments of two distributions. It’s a natural way to shift probability 

state vector from one period to the next period.  

Both M(t)/M/s/s and Cm(t)(t)/Ck/s/s queuing model validation results are given in 

Section 3. The validation results of cell-level data shows both M(t)/M/s/s and Cm(t)(t)/Ck/s/s 

queuing model can accurately capture variation of the demand during each day. The method 

of segmenting entire period into small period, and averaging over transient results of 

stationary queue in each time period as an estimation results successfully captured the 

variation of traffic demand. The validation results has two folded means: 1) Surprisingly, 

in each time period, M(t)/M/s/s queuing model can approximate results as well as a 

Cm(t)(t)/Ck/s/s, however, regards to computational time M(t)/M/s/s completely beats 

Cm(t)(t)/Ck/s/s. In another words, this research shows that, in pure loss model (waiting is not 

allowed) situation, Markovian model results is well as Coxian queue.  2) For each segment, 

the average transient results in each time period is more accurate than steady state results.  
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