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Abstract 

Telephone nurse triage (TNT) services is an important component of the health care delivery 

system. Thanks to the advancement of telephone/information technologies, abundant data on the 

daily operations of telephone triage centers are now readily available which can be used to assess 

their performance. However, the current way to use such data is very primitive, which mainly 

focuses on simple descriptive statistics of the data. This study provides an approach to mine 

information from count data from the TNT service, including the daily inbound and outbound 

call volumes. A class of overdispersed generalized linear models (OGLMs) is proposed to model 

the outbound-inbound relationship and Bayesian algorithms for model estimation and 

comparison are provided. The established model reveals the variation in the accessibility of the 

triage service and the effect of weekday/weekend, which will provide significant information for 

performance assessment and improvement in such services. In the case study, the proposed 

approach is applied to a dataset from a triage call center in Wisconsin to demonstrate its use in 

practice. A numerical study is also done to examine the properties of the proposed model and 

accuracy of parameter estimation.  

Keywords: Telephone nurse triage services; Outbound calls; Service accessibility; 

Overdispersion; Bayesian inference. 

 

 

1. Introduction 

Telephone nurse triage (TNT) services have grown rapidly since the 1990s, as a means of 

demand management in healthcare
1-3

. Such services are designed to allow patients to speak 

directly with registered nurses about healthcare concerns via phone. The nurses, using computer-
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accessed clinical protocols and judgment, assess the severity of the concerns and then provide 

recommendations/dispositions. Health-related information and provider referral may also be 

offered. The TNT services are an important component of the health care delivery system which 

promote cost-effective care as well as educate patients on self-care and the appropriate use of 

medical services
4,5

. It is estimated that today more than 100 million Americans have access to 

these services through a particular hospital or health maintenance organization (HMO), and they 

are getting more and more popular
6,7

.  

A typical TNT service system can be described by the call routing path illustrated in Figure 

1. When a patient dials the triage center, the call will be first connected to a voice response unit 

(VRU) that queries on his/her needs, and then put into the inbound queue and served by a nurse. 

When no nurse is available to answer the call, the receptionists will record the contact number of 

the caller and place it into the outbound queue. Free nurses will serve these callers later by 

calling them back.  

 
Figure 1. A typical telephone nurse triage service system 

Thanks to the advancement of telephone and information technologies, together with the use 

of electronic medical records software, abundant measurements on the daily operations of 

telephone triage centers are now readily available, such as counts, duration and waiting time of 

calls. These data have been widely used in practice to assess the performance of the TNT service. 

Typically, simple descriptive statistics of the data, such as monthly/quarterly averages, are used 

as performance measures and compared to national or local standards to determine if the 

performance is satisfying. Obviously, such primitive analyses cannot fully extract information in 
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the data. Advanced data mining techniques need to be developed to mine the data in order to 

provide reliable support for performance assessment and improvement.   

For this purpose, this paper provides an approach to analyze count data in the TNT service, 

including the number of inbound and outbound calls per unit period. In the current practice, the 

number of outbound calls is widely used as a measure of the service accessibility, which is one 

important dimension of the performance of TNT services. The intuition is that ideally all the 

calls should be answered immediately so that patients can receive timely advices on their 

problems, thus a larger number of outbound calls indicating worse service accessibility. 

However, the number of outbound calls alone may be misleading as it depends on the number of 

inbound calls: an increase in the outbound volume may be simply due to an increase in the 

volume of incoming calls and has nothing to do with the performance of the triage service. A 

real-world example is given in Figure 2 which shows daily inbound/outbound call volumes in a 

nurse triage center in Wisconsin. The data represent a common situation in practice where the 

demand for health services, represented by the inbound call volume, varies from day to day, and 

the outbound volume tends to fluctuate with it, as shown in Figure 2(a). Extreme cases often 

occur during pandemic periods, such as the H1N1 (swine flu) period in 2009, when outbound 

volumes increase dramatically because telephone triage becomes a better way to acquire health 

care than going to the hospital in person
8
. Figure 2(b) plots the inbound and corresponding 

outbound volumes, where the correlation between the two quantities is apparent. 

 
                                    (a)                                                                       (b) 

Figure 2. Daily volumes of inbound and outbound calls in a triage call center 
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For the above reason, the proposed approach focuses on modeling the relationship between 

the outbound and inbound call volumes. A class of overdispersed generalized linear model 

(OGLM) is developed, which characterizes the dependency of the outbound volume on the 

inbound volume and the effect of weekday/weekend on this dependency. Bayesian algorithms 

for model estimation and comparison are provided. In the case study, the proposed approach is 

applied to a dataset from a nurse triage center to demonstrate its use in practice. A numerical 

study is also done to examine the properties of the proposed models compared to conventional 

models and the performance of model estimation.  

It deserves to mention that data mining/statistical analysis of operational data from call 

centers is an underdeveloped research area due to the lack of data collected at the level of 

individual calls rather than periodic aggregates
9
. Recently, Brown et al. make the first attempt on 

this topic using data from a bank call center
10

. Their study finds empirical models for each 

individual performance measures such as the number of incoming calls per hour and service time 

on each call. Our study differs from it in that we concern the relationship between two individual 

measures, the outbound and inbound call volumes, to provide better quantification for the service 

accessibility which is critical in health care services.    

The proposed approach is very useful to practitioners in the TNT service industry: First, the 

proposed models reveal the variation in the call volumes, which provides a better understanding 

of the service system. Second, based on the established model, new measures of service 

accessibility can be defined for performance assessment, which are more reliable than the simple 

aggregates used in the current practice. In addition, the identified day-to-day variation and the 

weekday/weekend difference in service accessibility will also provide useful information for the 

scheduling of nurses to meet patient needs.  

The remainder of the paper is organized as follows. Section 2 presents the conventional and 

proposed models for characterizing the outbound-inbound relationship. Section 3 describes the 

Bayesian algorithms for estimating the parameters of the proposed models and comparing the 
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models to determine the best model for a given dataset. Section 4 and 5 report the results of the 

case study and numerical study. Section 6 concludes this study and discusses future work.    

2. Models for Outbound-Inbound Call Volumes 

Let (yi, xi) be the observation on day i in a TNT center, where xi is the number of inbound 

calls and yi is the corresponding number of outbound calls. Assume the outbound volumes in 

different days are independent given the inbound volumes. This assumption is consistent with the 

common practice of telephone triage services where all arrived calls are required to be answered 

within the same day. Let the probability of making an outbound call be p, which represents the 

accessibility rate of the triage service system (more precisely, the inaccessibility rate as higher 

rate of outbound calls indicates lower rate of accessibility). The objective here is to build a 

statistical model to characterize the variation in p. In the follows, some conventional models for 

p are first introduced and then the proposed models are given.   

2.1 Conventional models 

The simplest model for the data is the Binomial model (BM) with a constant parameter p 

                                                                
),(Bin~ pxy ii                                                             

(1) 

This model rests on the assumption that the service accessibility maintains at a constant level 

from day to day. The mean of this model is 

pxyE ii )(
 

which is linearly dependent on the number of inbound calls. This is consistent with the 

relationship shown in Figure 2(b).  

However, the constancy assumption of p may be too simple to describe the case in practice. 

More reasonably, the service accessibility depends on the inbound volume. The intuition is that 

when the call arrivals increase, the capacity of the service system to handle the calls tends to 

decrease, and thus the service becomes less accessible. The Generalized linear model (GLM)
11

 

can be used to describe the dependency of p on the inbound call volume 
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where pi is the accessibility rate on day i,  is the link function that connects pi to a linear 

function of xi, and a and b are the coefficients of the linear function. A popular choice of the link 

function is the logit function
12 
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The mean of the GLM is 

)()( 1

iii bxaxyE  
 

which is a complex nonlinear function of the inbound call volume.  

2.2 The proposed models  

The GLM may still not be adequate to characterize the variations in the call volume data as, 

in practical sense, the service accessibility may not depend on the inbound volume in a 

deterministic way; rather, the actual variations are likely to be larger than what is explained by 

the GLM due to the various variation sources existing in the service environment. In other 

words, there is possibly an overdispersion problem that often appears in model fitting in 

practice
13-15

. Moreover, the effect of weekday/weekend may also exist, that is, the service 

accessibility varies among weekdays and weekends. In particular, the weekday accessibility rate 

and weekend rate may be different as it is common in service industries that different schedules 

are followed on weekdays and weekends. Such variation should also be considered in the 

modeling.  

To incorporate the weekday/weekend effect, we add another index, j, j=1,…,7, corresponding 

to Monday, …, Sunday, in the modeling, which denotes the day of the week for day i. The 

proposed overdispersed generalized linear model (OGLM), like the GLM, contains the model of 

yi(j) and the link function of pi(j). yi(j) is assumed to follow a Binomial distribution as in the GLM 

),(Bin~ )()()( jijiji pxy  

The link function may follow one of the following forms 
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Model 1:  
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Model 3:  
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Model 4:  
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                               (6) 

In the above models, the random error ε in each model is used to characterize the overdispersion 

in the data. It is assumed to be normally distributed with mean 0 and variance σ
2
. The effect of 

weekday/weekend is represented by different settings of the model parameters, including the 

intercept (a), the slope (b) and the variance of the random error (σ
2
).  

Specifically, Model 1 is the full model which assumes the service accessibility on each day of 

the week follows a different pattern and thus requires a separate model with parameters aj, bj, 

and 2

j . Model 2-4 assume that similar patterns are followed among the weekdays (j=1,…,5) and 

the weekends (j=6, 7), so separate models are considered for the two groups. The three models 

differ in the way to model the variation within the same group and between the two groups:  

Model 2 assumes that the accessibility in the five weekdays follow the same model with 

parameters aI, bI, and 2

I , while those on the two weekends follow another model with 

parameters aII, bII, and 2

II ; Model 3 is similar to Model 2, except that the intercepts on different 

days in each group are different; Model 4 is also similar to Model 2, except that the weekday 

model and the weekend model share the same slope, i.e., the influence of inbound volumes is the 

same on weekdays and weekends. The interpretation of these models is given in Table 1. It is 
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worth mentioning that the OGLMs are hierarchical models with two levels (the binomial model 

of y and the regression model of η).   

Table 1. The proposed models of the link function 

Model Interpretation 

1 a separate model for each day of the week (Monday model, Tuesday model, ……) 

2 weekday model and weekend model  

3 weekday models and weekend models (with different intercepts) 

4 weekday model and weekend model (with same slope)  

The models will be built in the following way: for Model 1, the model for each day of the 

week is built separately using related data; for Model 2 and 3, data on all the weekdays will be 

pooled together to build the weekday model, while those on the weekends will be pooled 

together to build the weekend model; for Model 4, all the data will be used to build the model. 

For a given dataset, we need to determine which one among the four OGLMs in (3)-(6) fits the 

data the best. Bayesian approaches will be used to build each model and find the best model, the 

details of which will be given in the next section. 

3. Bayesian Algorithms for Model Estimation and Comparison 

Consider a period of m days which yields a set of call volume observations {(yi, xi), 

i=1,...,m}. This section will present the Bayesian algorithms for model estimation and 

comparison based on these data. We adopt the Bayesian approach to build the proposed OGLMs 

for two reasons: first, it is well known that hierarchical models like the OGLM can be easily built 

under the Bayesian framework
16-19

. Second, Bayesian statistics provides convenient tools to 

compare models of different forms such as the four variants of the OGLM in (3)-(6). Details of 

the Bayesian approaches for model estimation and comparison are given in Section 3.1 and 3.2 

respectively.    

3.1 Model estimation 

Let θ be the parameter of an OGLM. For the proposed models, the parameter is 
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Given a model, estimates of its parameters need to be found. In the Bayesian framework, this is 

to find the posterior distribution of the parameter 

                                  )|),(),...,,(()()),(),...,,(|( 1111 θθθ mmmm xyxyfxyxyP                          (7) 

where P(·) denotes probability, π(·) is the prior of the parameter, and f(·) is the sampling density 

of the data. The posterior distribution of the OGLMs is analytically intractable, so Markov chain 

Monte Carlo (MCMC) algorithms
20

 need to be used to generate samples from the posterior 

(called posterior sampling later). Then the location statistics, e.g., mean, median or mode, of the 

samples will be taken as the point estimates of the parameter. The posterior distributions and the 

procedure for posterior sampling will be given in the following.      

The posterior distribution in (7) cannot be sampled directly as the data {(yi, xi), i=1,...,m} 

depend on the accessibility rates {p1,…,pm}, rather than θ, directly, which means that the 

sampling density f((y1, x1),...,(ym, xm)|θ) is not available. Here {p1,…,pm} are unknown nuisance 

parameters. Therefore, we need to sample from the joint posterior of θ and the nuisance 

parameters 

)),(),...,,(|},...,{,( 111 mmm xyxyppP θ  

to obtain estimates of θ. In general, sampling from such joint posteriors is not trivial due to the 

high dimension of the parameters. A popular MCMC method to conquer this problem is Gibbs 

sampler
21,22

. The basic idea of this method is to divide the parameters into subgroups and sample 

from the conditional posterior of each subgroup given all other parameters. As the subgroups 

have smaller dimensions and their conditional posteriors are simpler than the joint posterior, the 

sampling can be efficiently implemented using standard algorithms. Specifically, in our problem, 

the Gibbs sampling procedure includes two steps:
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Gibbs sampling procedure 

Step 1: Sampling from the conditional posterior of θ given {p1, ...,pm},  

}),...,{|()),(),...,,(},,...,{|( 1111 mmmm ppPxyxyppP θθ 

 
Step 2: Sampling from the conditional posterior of {pi, i=1,...,m} given θ, i.e., 

)),(),...,,(,|},...,({ 111 mmm xyxyppP θ

 
Note that the equality in Step 1 achieves because θ does not depend on the data directly. To 

implement the Gibbs sampling procedure, some starting values of {p1,...,pm} need to be 

specified. Conditioning on those values, Step 1 will be performed to obtain one sample of θ, and 

then given that sample, Step 2 will be performed to obtain one sample of {p1,...,pm}. Then Step 1 

will be repeated using the current values of {p1,...,pm}, and so on. Through such an iterative 

process, a sequence of samples of θ and {p1,...,pm} from their joint posterior will be obtained, 

and the samples of θ will be used to calculate point estimates of the parameters. The key in this 

procedure is sampling from the two conditional posteriors, which will be described below.  

In the Step 1 sampling, given {p1, ...,pm}, {η(p1),…,η(pm)} are known. Viewing the models of 

the link function in (3)-(6) as linear regression models with (p) being the “response”, x being 

the “regressor”, and θ being the unknown parameters, the sampling can be conducted following 

the well-established Bayesian linear regression models
23,24

. Let {(yi, xi), i=1,…,nj} be all the data 

on day j, j=1,…,7, of the week, {(yi, xi), i=1,…,nI} be data on all the weekdays, and {(yi, xi), 

i=1,…,nII} be data on the weekends. The sampling algorithms for the proposed models are 

displayed in Figure 3, where “IG” means Inverse-Gamma distribution. Note that: (1) 

Noninformative prior 1),,( 2  ba  is used in all the sampling since prior knowledge on the 

parameters is typically not available
25-27

. (2) The algorithm under “Model 1 and 2” is for day j of 

Model 1 which uses data {(yi, xi), i=1,…,nj}. To obtain the weekday model and weekend model 

under Model 2, {(yi, xi), i=1,…,nI} or {(yi, xi), i=1,…,nII} should be used instead.   
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Figure 3. Algorithms of Gibbs sampling for estimating the proposed models 

In the Step 2 sampling, given θ, pi only depends on (yi, xi), so the posterior of {pi, i=1,...,m} 

can be sampled separately. According to the structure of the proposed models,  

),|()|()),(,|( iiiiiii pxyfpxypP  θθ 
 

where f(yi|xi, pi) is the Binomial density, and π(pi|θ) is the prior of pi given θ. Since pi does not 

depend on θ directly, π(pi|θ) is not readily available. To find it, the conditional distribution of the 

link function (pi|) given θ is obtained first and then the conditional distribution of pi can be 

induced through the change-of-variables transformation. The resulting conditional posteriors of 

pi under the proposed models are given in Figure 3. Note that the posteriors are non-normalized. 
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The algorithms in Figure 3 require sampling from regular distributions including normal 

distributions and Inverse-Gamma distributions (e.g., Step 1 in Model 1 and 2), and from irregular 

distributions (e.g., Step 2 in all models). The former can be realized using standard random 

generators such as the built-in routines in Matlab, while the latter can be realized using MCMC 

algorithms. In this study, a novel MCMC algorithm, slice sampler
28,29

 will be used for its 

convenience in use: it only needs two inputs to work: the posterior distribution to be sampled 

from and initial values. In addition, it does not require the posterior be normalized. 

3.2 Model comparison 

The proposed models can be compared using the deviance information criterion (DIC), 

which is a popular tool for model comparison, especially hierarchical models, in Bayesian 

statistics
21,30

. Let D represent the deviance of a model with parameter θ 

                                           



m

i

iimm xyfxyxy
1

11 )|),((log2)|),(),...,,((D θθ
                           

(8)
 

The DIC is defined to be  

                            
)ˆ|),(),...,,((D)|),(),...,,((D2DIC 1111 θθ mmmm xyxyxyxy 
                     

(9) 

where )|(D θ is the expected deviance, and )ˆ|D( θ
 
is the deviance corresponding to a point 

estimate of θ such as its posterior mean. A smaller value of DIC indicates a better model.  

The DIC can be estimated using the posterior samples of θ obtained through the Gibbs 

sampling procedures described in Section 3.1.  Specifically, given a set of posterior samples of θ, 

the deviance of each sample will be calculated by (8), and their average will be used as an 

estimate of )|(D θ . Meanwhile, the mean of the samples will be found, and its corresponding 

deviance, i.e., )ˆ|D( θ , will be calculated. The DIC statistic will then be obtained by (9). The 

method to calculate the deviance of a given posterior sample of θ will be described as follows. 

For the proposed OGLMs, the sampling density can be obtained by 

                                  
1

0
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where the expectation is with respect to pi which follows the conditional distribution given θ   

                                                                     )|(~ θii pfp                                                          (11) 

Consequently, the deviance is  
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By the above formulas, the deviance can be estimated through the following steps: First, generate 

a sequence of samples of pi by (11). This can be realized by generating a sequence of samples of 

i under the given OGLM and then obtaining the corresponding values of pi through its 

relationship with i defined by the link function. Second, for each sample of pi, the Binomial 

density Bin(yi| xi, pi) will be calculated, and their average will be used as an estimate of the 

expectation in (10). Finally, the deviance in (12) will be obtained using these estimates.   

4. Case Study 

The proposed approach has been applied to a dataset from an after-hour triage center in 

Wisconsin. Part of the data have been shown in Figure 2. The whole dataset contains daily 

inbound and outbound call volume data in the center during 2005~2009. In this study, a 

preliminary analysis is first done to obtain some descriptive statistics and primitive estimates of 

the accessibility rate. Then the proposed models will be estimated using the algorithms described 

in Section 3.1 and compared using the procedure in Section 3.2.  

4.1 Preliminary analysis 

The first step in the preliminary analysis is to remove some potential outliers in the dataset, 

which are extreme values compared to the majority of observations in the same day of the week. 

The remaining observations are used in the following analysis. Table 2 lists some descriptive 

statistics of the data from each day of the week, including the number of observations and daily 

average number of inbound calls and outbound calls. One clear fact is that the call volume on 
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weekends is more than 3 times higher than weekdays. The reason is that the triage service is 

available for a longer period on weekends (starting from 5pm on weekdays and 8am on 

weekends). The call volume reaches the peak on Saturdays. Figure 4 shows the empirical 

distribution of the number of inbound calls on each day of the week. Since count data like the 

call volumes are usually modeled using a Poisson distribution, the fitted Poisson distribution 

(=sample mean) is also given in each plot of Figure 4 (the dashed curve). We can see that the 

empirical distributions have heavier tails than the Poisson distributions in all the cases, meaning 

that the real data contain more extreme values and Poisson distribution is not adequate to model 

the variation in the data.    

Table 2. Descriptive statistics of data on each day of the week 

 Mon Tue Wed Thu Fri Sat Sun 

#obsns 222 234 238 230 235 242 239 

avg(inbound) 39.5 38.0 36.3 35.2 39.3 136.7 111.4 

avg(outbound) 17.0 17.4 15.5 14.4 18.5 54.9 37.5 

 

 
Figure 4. Empirical distribution of inbound call volume and fitted Poisson distribution 

To examine the outbound-inbound relationship, Figure 5 (left panel) shows the plots of 

inbound call volumes and corresponding outbound call volumes. An apparent linear relationship 

can be seen on all the days with considerable noises. Another observation is that the data on the 

five weekdays show similar patterns, while those on the two weekends show similar patterns. 
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This suggests that it is reasonable to build a separate model for the weekdays and the weekends. 

To further explore the dependency of the accessibility rate p on the inbound call volume, we can 

check the maximum likelihood estimate (MLE) of p for a given inbound volume. Let x be the 

given inbound volume which occurred w times in the dataset and y1, ...,yw be the corresponding 

outbound volumes. The MLE of p given x is 

                                                                
wxyxp

w

t

t /)(ˆ
1





                                                              

 

The MLEs for each day of the week are shown in the right panel of Figure 5. Clearly, p has a 

positive linear relationship with the number of inbound calls, and this relationship is subject to 

considerable noises. The noise effect can be handled by the random errors in the OGLMs. This 

suggests that the proposed models are reasonable to the data. Moreover, the slopes and intercepts 

of the accessibility rate on the weekdays/weekends look similar, indicating that Model 2 in (4) is 

likely to be an appropriate model for the data.  
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         Figure 5. Data used in case study: call volumes (left) and MLE of p (right) 
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sampling from normal distribution and inverse-gamma distribution, which are conducted using 

random generators in Matlab, while fitting Model 4 requires sampling from irregular posteriors 

which are conducted using the slicesample function in Matlab. We can see that in all the plots, 

the effect of starting values disappear very quickly and then the samples become stationary. 

Samples from Model 2 converge faster since it is easier to sample from regular distributions and 

the dimension of its parameters is smaller than Model 4. To be conservative, the 500 starting 

samples will be discarded and the following analysis will be done on the remaining samples. 

 
    Figure 6. Samples from posterior sampling in Model 2 (left) and Model 4 (right) 

 

 
    Figure 7. Histograms of posterior samples in Model 2 (upper) and Model 4 (lower) 
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Using the samples, we can obtain the empirical posterior distribution of each parameter by 

plotting the histograms of the samples. As an example, Figure 7 shows empirical posteriors of 

the weekday model in Model 2 and Model 4. The posteriors are mostly symmetric, meaning that 

the sample mean can be used as point estimates of the parameters. These estimates are 

summarized in Table 3. In the results of Model 1, the parameter estimates among the weekdays 

and the weekends are very similar, but the difference between the two groups is large. This 

indicates that it might be better to build one model for weekdays and another for weekends, 

which is consistent with the preliminary results in Figure 5; the results of Model 3 show that the 

difference in the intercepts is trivial among the weekdays and weekends, suggesting a common 

model for each group too; in Model 4, the estimate of the slope is between the two estimates (bI 

and bII) in Model 2 since the weekday model and weekend model are assumed to share the same 

slope here. Correspondingly, the variances of random errors in the two models are larger than in 

Model 2, implying that the same-slope assumption may not be appropriate. 

Table 3. Point estimates and DIC of the proposed OGLMs  

Model Point Estimates of Parameters DIC 

1 

1a =−2.5460, 1b =0.0528, 2

1 =0.4848                                              (Mon) 

2a =−2.0314, 2b =0.0456, 2

2 = 0.6574                                          (Tue) 

3a =−2.7571, 3b =0.0628,  2

3 =0.5893                                           (Wed) 

4a =−2.5513, 4b =0.0567, 2

4 =0.7531                                           (Thu) 

5a =−2.6811, 5b =0.0611, 2

5 = 0.6799                                           (Fri) 

6a =−2.8678, 6b =0.0170, 2

6 = 0.3256                                          (Sat) 

7a =−3.2702, 7b =0.0212, 2

7 =0.4217                                           (Sun) 

 

11651.0 

2 
Ia =−2.4941, Ib =0.0553, 2

I =0.6329                                   (Weekday) 

IIa =−2.9631, IIb =0.0180, 2

II = 0.3733                                 (Weekend) 
11634.8 

3 

I1a =−2.6486, I2a = −2.4018, I3a = −2.4822, I4a =−2.4943   

I5a =−2.4478, Ib =0.0553, 2

I = 0.6306                                  (Weekday) 

II6a =−2.9874, II7a = −3.1101, IIb =0.0187, 2

II =0.3731         (Weekend) 

11638.0 

4 Ia =−1.2259, IIa =−3.4548, b =0.0219, 2

I =0.7219, 2

II =0.3998 11787.0 

 

4.3 Results of model comparison 
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To find the best model for the data, DIC for each model is calculated. First, for each posterior 

sample of θ, m=100 samples of pi is generated by (11), and using these samples, f((yi, xi)|θ) is 

calculated by (10). Then the deviance for the given θ is obtained by (12) and the DIC under the 

considered model is obtained by (9). The resulting DIC values for the four OGLMs are listed in 

the last column of Table 3. Model 2 has the smallest DIC, while Model 4 has the largest DIC. 

Thus, Model 2 is chosen to be the best model. Note that Model 2 is also the simplest model.  

Some interpretation of the chosen model is provided as follows: the accessibility of the call 

center follows the same pattern on the five weekdays and the two weekends; the accessibility 

depends on the number of incoming call volume, with higher incoming volume leading to lower 

accessibility; the influence of incoming volumes on the accessibility is higher on weekdays than 

weekends (bI>bII), and the variation on weekdays is also larger than weekends ( 2

I > 2

II ). A 

possible explanation for this is that the call center opens after working hours (5pm~midnight) on 

weekdays and the whole day (8am~midnight) on weekends. As a result, there is more flexibility 

for patients to contact the call center on weekends and thus the triage service is more accessible 

and stable on weekends.  

4.4 Model validation  

 
Figure 8. Real data (1

st
 plot) and simulated data from the selected model 

One way to check the adequacy of the selected model is to randomly generate datasets of the 

same size as that used in the case study from the selected model and compare the simulated data 

Weekdays

Weekends
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to the real data graphically
21

. Such graphs are shown in Figure 8, where the first plot in each row 

is the real data and the following plots are random samples from the selected model given the 

same inbound volumes. We can see that the simulated datasets exhibit similar patterns as the real 

data, suggesting that the selected model fits the data well. The weekday model works relatively 

better than the weekend model, which is possibly due to the larger sample size of weekday data.  

5. Numerical Study 

We have also done some simulations to examine the properties of the OGLM. For simplicity, 

the effect of weekday/weekend is not considered here, that is, the OGLM is assumed to be 

iii

iii

bxap
pxy
 )(
),(Bin~

 

where εi~N(0, σ
2
). Our study focuses on two aspects:  

Study 1. Graphical characteristics of the OGLM compared to the conventional models: Data 

from the OGLM and conventional models (BM and GLM) are simulated and graphed to show 

the key features of each model and their differences. These graphs are useful explorative tools 

for practitioners to determine which model to use before conducting formal statistical analysis.  

Study 2. Performance of the Bayesian estimator for OGLM: Errors of the Bayesian estimator 

given in Section 3.1 are evaluated under a set of sample sizes. The purpose is to show the 

accuracy of the proposed estimation approach and its sensitivity to sample size.  

5.1 Results of Study 1  

1000 data points from the three models are generated with the following parameter 

specification: p=0.8 (BM), a=–4, b=0.1 (GLM), and a=–4, b=0.1, σ
2
=1 (OGLM). The inbound 

call volume is assumed to follow a Poisson distribution with =40. The simulated datasets are 

shown in the upper panel of Figure 9. The data from the three models appear to have similar 

patterns, especially the BM and the GLM, implying that it is not obvious which model is 

appropriate for the data by directly observing the data. A better method to explore the data is to 

check the MLE of p described in Section 4.1, which is shown in the lower panel of Figure 9. We 
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can see that the MLE of p in the BM fluctuates around a constant level, that in the GLM is a 

linear function of the inbound call volume with small noises, and that in the OGLM is similar to 

the GLM except with larger noises. This suggests that the plot of MLE(p) can be a good 

explorative tool to determine the appropriate model for the data.  

 
Figure 9. Simulated data from the models (upper) and MLE of p (lower)    

 

5.2 Results of Study 2 

Two measures are used to evaluate the errors of the Bayesian estimator for the OGLM, which 

are defined as follows 

                       

 )ˆ(avg
:bias  relative

              

 )ˆ(std
:deviation standard  relative

 

where θ=a, b, σ
2
 is a parameter of the OGLM, and avg(̂ ) and std(̂ ) are the average and 

standard deviation of the estimate of θ respectively. Intuitively, the two errors depend on the 

sample size of data, so they are calculated under a set of specified sample sizes from 20 to 500. 

Given each sample size, 100 datasets are generated from the OGLM with the same parameter 

specification as in Study 1, and point estimates of the parameters are obtained for each dataset 

GLM OGLMBM
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using the Gibbs sampling procedure given in Section 3.1. Then the performance measures are 

calculated based on those estimates.   

Figure 10 shows the results of the simulations. Both the bias and standard deviation measures 

have large values when the sample size is very small (e.g., 20), and decrease dramatically as 

sample size increases, which is consistent with intuition. When the sample size is adequate e.g., 

400, the bias and standard deviation of the parameter estimates are very small, meaning that 

accurate estimation is achieved.  

 
Figure 10. Errors of the Bayesian estimator for OGLM: relative bias (upper) and relative 

standard deviation (lower) 

6. Conclusions and Discussions 

This study develops an approach to model the relationship between the outbound and 

inbound call volumes to measure the accessibility of the telephone nurse triage service. The 

proposed models consider both the overdispersion in the data and weekday/weekend effect. 

Bayesian approaches are used to estimate parameters of the proposed models and select the best 

model. In the case study, the proposed models are applied to a dataset from a nurse triage call 

center. It is found that the accessibility of the center follows the same model among the 

weekdays and the weekends, and the accessibility on weekends is more stable and less dependent 
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on the incoming call volume than weekdays. The numerical study shows that the MLE of p can 

be used as an explorative tool in practice to determine the appropriate model for the given data, 

and errors of the estimators of the OGLM are acceptable when the sample size is adequate.  

Empirical analysis of the operational data in the telephone nurse triage services is an 

emerging research topic and the current study is just a starting effort on this topic. There are 

many interesting unresolved problems that will be considered in our future studies. For example, 

methods for monitoring the service accessibility will be developed based on the constructed 

models. A straightforward idea for this is to build the OGLM for the data in each specified 

period and then monitor the parameter estimates of the models continuously. Since the 

parameters of the OGLM can be interpreted in an intuitive way, that is, a and b represent the 

base-line performance of the nurses, while σ
2
 represents the noises in the service system, 

monitoring of these parameters can not only detect changes in the system, but also provide 

guidance on root causes of the changes. The challenge here is to find the statistical properties of 

the parameter estimates and appropriate monitoring schemes. Moreover, besides the call volume 

data, there are many other types of measurements available in the TNT services such as duration 

and waiting time of calls. Efforts will also be made to mine the information in those data for a 

better characterization of service performances.   
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