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Normality is usually assumed in profile monitoring. However, there are many cases in 

practice where normality does not hold. In such cases, conventional monitoring techniques 

may not perform well. In this study, we propose a robust strategy for Phase I monitoring of 

quality profile data in the presence of non-normality. This strategy consists of three 

components: modeling of profiles, independent component analysis (ICA)  to transform 

multivariate coefficient estimates in profile modeling to independent univariate data, and 

univariate nonparametric control charts to detect location/scale shifts in the data. Two 

methods for multiple change point detection are also studied. The properties of the 

proposed method are examined in a numerical study and it is applied to optical profiles 

from low-E glass manufacturing in the case study.
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1. Introduction 

In some manufacturing processes, product quality is characterized by the relationship 

between a response variable and an explanatory variable, called profiles. Monitoring of quality 

profiles has received much attention recently due to the increasing popularity of this type of 

quality data in practice
1
. Parametric and nonparametric methods have been developed for this 

purpose. This study focuses on parametric profile monitoring where the shape of the profiles can 

be characterized by a parametric model adequately.  

The basic idea of parametric profile monitoring includes two steps: First, an appropriate 

statistical model is used to characterize the profiles. The choice of models depends on the 
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characteristics of the profile data in the studied applications. Linear models
2
, polynomial 

models
3-6

, splines
7
, mixed-effect models

8-9
 and nonlinear models

10
 have been used in existing 

studies. Second, the parameter estimates of the fitted model are monitored by using multivariate 

control chart techniques such as T
2
 control chart and Multivariate EWMA control charts

11
. 

Woodall
12

 and Noorossana et al.
11

 give excellent review of the state of art in this research area.  

The majority of existing studies on profile monitoring focus on Phase II monitoring, while 

only a few efforts are made on Phase I analysis. Mahmoud and Woodall
13

 develop an F test 

approach for Phase I monitoring of linear profiles. Mahmoud et al.
14

 propose a change point 

method based on likelihood ratio test for Phase I monitoring of linear profiles. Kazemzadeh et 

al.
15

 compare three approaches for Phase I analysis of polynomial profiles, including the 

extension of the change point method, the extension of the F test approach, and a standard 

procedure based on T
2
 test. It is found that the change point approach performs the best.   

One limitation of the literature is that most studies rest on normality assumptions: the random 

errors in the profile models are typically assumed to be normally distributed, and the random 

effects in mixed-effect models are also bound by this assumption. However, this may not be the 

case in some manufacturing processes, such as the low-emittance (low-E) glass manufacturing 

process illustrated in Figure 1. The low-E glass is a type of energy-efficient glass products which 

is manufactured through physical or chemical coating processes, where solid materials, e.g., 

metal, metal oxide and metal nitride, are deposited on the surface of flat glass. The coating 

enhances the thermal/optical performance of the product so that they are able to reduce unwanted 

heat gain in summer and heat loss in winter
16-18

. The quality of coating is measured by optical 

profiles of scanned locations on the glass surface. Figure 1 shows an example of a typical type of 

optical profiles, the reflectance profiles, which represent the percentage of light (r) that reflects 

from the glass surface over a range of wavelengths (ɚ). Due to the many chemical subprocesses 

involved in low-E glass manufacturing, various random noises may be present in the production. 

As a result, the quality measurements may contain a considerable amount of extreme values and 

thus normality assumptions are not appropriate in modeling such profiles.  

In fact, the effect of non-normality on the performance of profile monitoring has been 

investigated by a group of researchers such as Mahmoud and Woodall
13

, Williams et al.
19

, 

Vaghefi et al.
20

 and Noorossana et al.
21

 A general conclusion in these studies is that when 

normality is not satisfied, the conventional profile monitoring techniques may give misleading 
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results. Though some techniques are found to be robust for certain types of deviations from 

normality
21

, there lacks a generic method for profile monitoring in the presence of non-normality.  

 
Figure 1. Low-E glass manufacturing process and example of optical profiles 

This study aims to fill the gap in the literature by proposing a robust strategy for Phase I 

analysis of quality profiles. For non-normal data, nonparametric control charts are usually used 

to replace the conventional control charts based on normality. This idea is adopted in the 

proposed strategy. Moreover, to avoid issues with multivariate monitoring, independent 

component analysis (ICA) is used to transform multivariate coefficient estimates of the profile 

models into univariate independent data. In addition, we also study two methods to detect 

multiple change points as this is often the case in Phase I analysis. The properties of this strategy 

are demonstrated in a numerical study considering different scenarios of non-normality. In the 

case study, it is applied to optical profile data from low-E glass manufacturing as shown in 

Figure 1.  

The remainder of the paper is organized as follows. Section 2 presents the problem 

formulation in Phase I analysis of profiles and the basic idea of the proposed strategy. Details of 

each component in the strategy are given in Section 3. Section 4 and 5 report the results of the 

numerical study and the case study respectively. Finally, Section 6 summarizes the findings in 

this work.  

2. Problem Formulation 

2.1 Profile models and Phase I monitoring  

Without loss of generality, polynomial models which fit the optical profiles in Figure 1 will 

be used to illustrate the proposed method. Let x be the explanatory variable and y be the 

corresponding response. Suppose there are m profiles, each containing n sampling points, and the 

x values are fixed and constant among the profiles. Two types of polynomial models have been 

used in the literature: regular polynomial models
3-5

 and mixed-effect polynomial models
6
. 

Mathematical expressions of these models are given below: 

Regular polynomial model 
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where i=1,...,m is the index of profiles, j=1,...,n is the index of sampling points, and h=0,...,p is 

the index of the exponent of polynomials.  ɓ0,..., ɓp are the fixed, unknown coefficients, and Ůij is 

the random error which follows certain non-normal distribution with zero mean. 

Mixed-effect polynomial model 
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where each coefficient Ch consists of two parts: the fixed effect, ɖh, which is fixed and unknown, 

and the random effect, Ŭhi, which varies from profile to profile. The random effects are assumed 

to follow non-normal distributions with zero mean. The mixed-effect models are preferred when 

the within-profile correlation is significant
6,8

 or when there is intrinsic variation in the shapes of 

profiles.  

We take a change-point view in the Phase I analysis, that is, assume the historical data stream 

contains w change points, i.e.,   
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where K1,..., Kw are the change points, and M1,..., Mw+1 are the polynomial models followed by 

the data between adjacent change points. Two types of changes may occur in the data: location 

shift which corresponds to the change in the coefficients in (1) or the fixed effects in (2), and 

scale shift which corresponds to the change in the scale of the random error in (1) or the scale of 

random effects/error in (2). The goal of Phase I monitoring is three-fold: determine whether any 

change occurs in the data, identify the change points as accurately as possible, and establish in-

control parameters based on the change point estimates.     

2.2 Basic idea of the proposed strategy 

Following the standard practice of parametric profile monitoring, change detection will be 

applied to the coefficient estimates of the profile models, i.e., ɓs in (1) or Cs in (2). When those 

estimates are not normally distributed, a natural idea is to use nonparametric control charts. As 

multiple coefficients typically exist, we can either use a multivariate nonparametric control chart 

on all the coefficients simultaneously, or use univariate nonparametric control charts on each 

coefficient separately. Since the estimates of coefficients are correlated with each other, the first 
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solution appears to be more reasonable. It is also possible since multivariate nonparametric 

control charts are available in the literature, including the sign MEWMA chart proposed by Zou 

and Tsung
22

, and the rank-based MCUSUM chart and the nonparametric MCUSUM chart 

proposed by Qiu and Hawkins
23,24

. However, as calculating the statistics in these multivariate 

techniques involves matrix inversion operations, they may suffer instability issues in some cases. 

For example, according to our simulations, when the variation of the coefficient estimates is not 

balanced, that is, the variation of some coefficients is too large or too small, the statistics may not 

exist due to singularity of inverted matrices. In addition, the results from multivariate control 

charts do not have easy interpretation. In contrast, the second idea is free of instability issues and 

easy to implement and understand, given that the correlation between the estimates of 

coefficients can be eliminated in some way.  

In fact, the second idea is followed in the study of Kazemzadeh et al.
4
 for Phase II 

monitoring of polynomial profiles under normality assumptions, where orthogonal polynomial 

models are used for fitting the profile data. Since the coefficient estimates in orthogonal 

polynomial regression are independent, they can be monitored separately using univariate control 

charts. In this study, we propose a similar method to solve this problem in the context of non-

normality, which uses independent component analysis (ICA) to transform the multivariate 

coefficient estimates into univariate independent components (ICs), and then applies univariate 

nonparametric control charts to each IC. This method is generic in that it can be applied to 

different forms of polynomial models and other models. Moreover, as will be explained in 

Section 3.2, the use of ICA will bring special benefits in change point detection.  

Figure 2 shows the components of the proposed strategy for Phase I monitoring of profile 

data. First, polynomial models are fitted for the data to obtain the estimates of coefficients. 

Second, ICA is applied to the multivariate coefficient estimates. The selected ICs are then 

monitored using univariate nonparametric control charts to detect location/scale shifts. 

Considering that multiple change points may exist, once a change point is detected, the data 

stream will be segmented at the change point and the detection will continue on the uninspected 

data. Details of each component will be given in Section 3. 
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Figure 2. The basic idea of the proposed strategy for Phase I monitoring of profile data 

3. The Proposed Strategy for Phase I Monitoring of Profile Data  

3.1 Statistical modeling 

The first step in the Phase I analysis is to fit a polynomial model for each profile in the 

historical data stream. The degree of polynomials, p, can be determined through preliminary 

analysis comparing the residuals under different choices of p. Since non-normality is assumed, 

ordinary least squares method can be used to fit the models. If the underlying model is a regular 

polynomial model in (1), the estimates of coefficients are  
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where each column represents the estimates of one coefficient from the m profiles. For mixed-

effect models in (2), the obtained matrix represents the estimates of Cs. The coefficient estimates 

will be used in the following analyses. 

3.2 Independent component analysis 

ICA is a data projection technique which transforms original multivariate data into univariate 

independent components through linear transformation
25

. Similar to another popular projection 

tool, the principle component analysis (PCA), ICA is often used for dimension reduction 

purposes in the literature as a number of significant ICs can be selected to represent the original 

data. For example, it is used in monitoring complex nonlinear profiles to reduce the dimension of 

data points contained in each profile
26

. Ding et al.
26

 point out another advantageous aspect of 

ICA: unlike PCA which projects data onto a lower subspace that preserves the majority of the 

variability in the original data, ICA projects data to a subspace where the distinction of any 

existing structures in the data will be maximized in the resulting ICs. So the objective of ICA 
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aligns well with the objective of Phase I analysis, i.e., separating data following different 

structures.  

With the abovementioned properties, ICA is appropriate in our study to transform the 

multivariate coefficient estimates into univariate independent components, so that univariate 

nonparametric control charts can be applied to detect changes. Some algorithms of ICA are 

available in commercial software such as Matlab and R. The fastICA function in Matlab is used 

in this study. It is worth mentioning that as the degree of polynomials is typically not high, the 

advantage of ICA in data reduction is not a key concern here. Results of the numerical study 

show clearly its role in manifesting the changes in the data, as given in Section 4.    

3.3 Univariate nonparametric control chart  

Various univariate nonparametric methods have been developed for monitoring non-normal 

data, including the bootstrap control chart by Jones and Woodall
27

, and the rank-based tests by 

Gordon and Pollak
28

, and Hackl and Ledolter
29

. Here we choose the control chart proposed by 

Hawkins and Deng
30

 for detecting location shifts and the one proposed by Ross et al.
31

 for 

detecting scale shifts. These two techniques are chosen because they do not require prior 

knowledge of in-control parameters and easy to implement. Moreover, they can also be applied 

for Phase II monitoring of large-volume data streams which exist in many manufacturing 

processes such as the low-E glass manufacturing. Note that these techniques are designed to 

detect a single change point in the data; detection of multiple change points is realized through 

data segmentation which will be described in Section 3.4. The basics of the two techniques are 

provided as follows.  

Assume Z1,é, Zm are independent non-normal random variables with distribution 
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where K is the change point between the two different distributions F1 and F2. The focus here is 

to determine whether a change exists and if so, estimate the change point K.     

The control chart of Hawkins and Deng
30

 to detect location shifts is based on the Mann-

Whitney two-sample test. Let 
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where 1Òi, j Òm. The Mann-Whitney statistic is defined based on the Dij, 
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which follows a standard normal distribution asymptotically. Note that this statistic holds for 

each value of k. A natural estimate of the change point is the value of k that gives the largest mkU ,
¡ . 

In the control chart, the following statistic is used 
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The control limit needs to be found through simulations under a specified in-control average run 

length (ARLin-control). It is required that mÓ15. 

The control chart of Ross et al.
31

 to detect scale shifts is based on the Mood test. The Mood 

statistic is 
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where Ri is the rank of Zi among {Z1,é,Zk}. The standardized version is  
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The statistic of the control chart takes a similar form as the Mann-Whitney statistic in (4), 
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The control limit also needs to be obtained through simulations. Fortunately, Ross et al.
31

 

provides polynomial approximations of the control limit under a group of in-control average run 

lengths. It is required that mÓ20.  

3.4 Data segmentation for multiple change point detection 

To identify multiple change points that may exist in the data, the two control charts in 

Section 3.3 need to be used repeatedly. There are two ways to do this as illustrated in Figure 3: 
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¶ Binary segmentation (BS): Change detection is first conducted on all the data. Whenever a 

change is detected, the data stream is split into two segments at the estimated change point. 

Then change detection is conducted on each segment separately.   

¶ Sequential segmentation (SS): Change detection is conducted sequentially starting from the 

segment with minimum required number of data points. If no change is detected, a new data 

point will be added to the segment and the detection continues; when a change is detected, 

the segment by the estimated change point will be discarded and change detection is applied 

to the subsequent data.  

 
Figure 3. Two ways for data segmentation in multiple change point detection 

Each of the two methods has been used in existing studies for detecting multiple change 

points
3,31

, but no study has been done to evaluate and compare their performance. In general, 

they both have pros and cons: the BS method works on a whole segment to detect changes, while 

the SS method adds new data point one by one. So the sample size in the BS method is likely to 

be larger than in the SS method, and thus the BS method tends to be more accurate in identifying 

the change points; on the other hand, the segment used in the BS method may contain multiple 

change points, while that used in the SS method is more likely to contain one single change point 

due to its sequential nature. So the assumption of single change point holds better for the SS 

method, and thus it is supposed to be more accurate. Simulation results on the performance of 

these two methods will be given in Section 4.2.  

4. Numerical Study 

Simulations are done to address the following concerns:  

1. Performance of the two data segmentation methods described in Section 3.4 in multiple 

change point detection, and 

2. Properties of the proposed strategy for Phase I monitoring of profile data.  

For the first concern, univariate non-normal data streams containing two change points are 

simulated under different parameter scenarios, and the two data segmentation methods are 

Binary segmentation Sequential segmentation
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applied to each stream. Their performance in identifying the true change points is evaluated and 

compared. For the second concern, profile data with non-normal errors are simulated under 

different parameter scenarios, and the proposed Phase I analysis is applied. Characteristics of the 

proposed strategy will be summarized. In this section, we will first describe how data are 

generated in the simulations, and then report the results of the above studies.  

4.1 Data generation 

Univariate data following non-normal distributions need to be simulated in this study. To be 

flexible, we use two large classes of non-normal distributions, the skew-normal distribution
32

 and 

the skew-t distribution
33

, which represent general cases of skewed and/or heavy-tailed 

distributions. For a random variable Z following the skew-normal distribution SN(ɛ, ů
2
, ɚ) with 

location parameter ɛ, scale parameter ů
2
 and skewness parameter ɚ,  its density function has the 

following form 
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where ɤ and Ű
2
 are the mean and variance of Z. Similarly, the skew-t distribution can be 

represented by 
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where v is the degree of freedom, and ɛ and ů
2
 can be obtained using the same formulas as in the 

skew-normal distribution.  
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Using the skew-normal and the skew-t distribution, we can simulate different situations of 

non-normality by manipulating their parameters. Sampling from these distributions can be done 

using Markov chain Monte Carlo (MCMC) algorithms
34

. In our study, we use the slice sampler
35

 

through the slicesample function in Matlab to generate samples following the two distributions. 

Figure 4 shows the empirical distributions of examples of the simulated data, where ɤ=0, Ű
2
=1 

and 100000 samples are generated in each case.

 

 

 

Figure 4. Normalized histograms of simulated data from skew-normal and skew-t distribution  

4.2 Performance of data segmentation methods 

In this study, data streams following skew-normal distribution (ɚ=6) and skew-t distribution 

(ɚ=6, v=6) are simulated. To obtain insight on the two data segmentation methods in multiple 

change point detection, a simple scenario is considered in which each data stream contains two 

equally-spaced change points (i.e., K1=100, K2=200, m=300) or in other words, three segments 

with equal length (100). The changes are either location or scale shifts. When location shifts 

occur, the scale parameters of the three segments take the same value (Ű
2
=1), while their location 

parameters ɤ1, ɤ2, and ɤ3 are different. Similarly, when scale shifts occur, the location 

parameters of the three segments are the same (ɤ =0), while their scale parameters 2

1t , 2

2tand
2

3t  

take different values. 4 cases are simulated under each type of shifts, which lead to a total of 8 

cases. Table 1 summarizes the parameter settings and interpretations in these cases. Figure 5 

shows an example of data streams generated in each case, where the solid line in each plot 

indicates the true value of the location parameter.  
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    Table 1. Parameter settings in evaluating performance of data segmentation methods 

 
  

Interpretation  
Case 

Location shift Scale shift 

ɤ1 ɤ2 ɤ3 
2

1t  2

2t  
2

3t  

I 0 1 0 1 2.5 1 a small change, then back to in-control 

II  0 2 0 1 4 1 a large change, then back to in-control 

III  0 2 1 1 4 2.5 a large change, followed by a small change 

IV  0 1 2 1 2.5 4 a small change, followed by a large change 

 

 
Figure 5. Examples of data streams generated under each case listed in Table 1 

Under each case listed in Table 1, 10000 data streams are simulated. The BS and the SS 

method are applied to each of the streams. In using the control charts in (4) and (5), a control 

limit with ARL in-control =2000 is applied. The performance of the two methods in each case is 

evaluated using the following measures:  
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Table 2 gives the results on the performance measures in location shift detection. Figure 6 

shows the corresponding distributions of change point estimates for skew-normal data. The 

change point estimates for skew-t data exhibit similar patterns. We find the following things 

from the results: 

¶ The performance of the BS and the SS method shows some common characteristics: 

According to results in Table 2, both methods have lower miss detection rate and more 

accurate change point estimates when the location difference between the two sides of the 

change point is higher. From the upper panel of Figure 6, we can see that the estimates of K1 

in Case II and III have a sharper distribution than in other cases, meaning that the estimation 

is more accurate. This is because the difference in the locations at the two sides of K1 is 

larger in these two cases. For the estimation of K2, Case II performs the best as the location 

difference at the two sides of the change point in this case is larger than in other cases.     

¶ The two methods are different in two aspects: (1) From Table 2, the BS method has much 

smaller false alarming rate and considerably larger miss detection rate than the SS method. 

This means that the BS method tends to miss some change points, while the SS method 

tends to detect some false change points. This is consistent to our intuitive understanding of 

these two methods given in Section 3.4: since the BS method works on a whole segment 

which contains more information, it is less likely to signal a false change point; but 

meanwhile it is more likely to miss some true change points as it can only pick one change 

point from the segment being inspected which may in fact contain multiple change points. In 

contrast, the SS method examines the data sequentially so that it is more likely to detect the 

true change points; but meanwhile it tends to generate more false alarms due to the limited 

information used especially at the beginning of each detection. (2) From Figure 6, we can 

see that the change point estimates from the two methods have similar distributions in 

general, with the mode of the SS method being slightly higher than the BS method. Overall 

we can say that they provide change point estimates of similar accuracy.  

¶ Comparing the skew-normal and skew-t data: The results of the two distributions show 

similar patterns, but in most cases the skew-t data have higher false alarm rate and miss 

detection rate, and less accurate change point estimates than the skew-normal data.  

 



14 

 

Table 2. Performance of the BS and the SS method in detecting location shifts 

 
Case 

Binary segmentation  Sequential segmentation 

RFA RMIS RE1 RE2  RFA RMIS RE1 RE2 

 

SN 

 

I  0.1049 0.0234 0.8081 0.8034  0.4722 0.0002 0.8711 0.8720 

II  0.1306 0 0.9841 0.9834  0.5075 0 0.9830 0.9969 

III  0.0724 0.0011 0.9797 0.8848  0.5068 0.0003 0.9849 0.8708 

IV  0.1655 0.0064 0.8281 0.8132  0.4481 0.0002 0.8680 0.8678 

 

ST 

 

I  0.1476 0.0938 0.6804 0.6820  0.6526 0.0025 0.8019 0.8075 

II  0.1885 0 0.9395 0.9403  0.6676 0 0.9477 0.9827 

III  0.1305 0.0106 0.9393 0.8026  0.6718 0.0005 0.9538 0.8030 

IV  0.1948 0.0452 0.7301 0.7219  0.6139 0.0040 0.8062 0.8020 

   

 
        Figure 6. Normalized histograms of change point estimates under location shifts  

The results on the performance measures in detecting scale shifts are given in Table 3, and 

the corresponding distributions of change point estimates for the skew-normal data are shown in 

Figure 7. In general, the performance of the two methods shows similar patterns as in the cases 

of location shifts. Both methods perform the best in Case II where the difference at the two sides 
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of the change points is larger than in other cases. The BS method has higher miss detection rate, 

while the SS method has higher false alarming rate. Both rates are larger than in the cases of 

location shifts. Correspondingly, the distribution of change point estimates has larger variance. 

This is because scale shifts are, in general, more difficult to detect than location shifts.  

Table 3. Performance of the BS and the SS method in detecting scale shifts  

 
Case 

Binary segmentation  Sequential segmentation 

RFA RMIS RE1 RE2  RFA RMIS RE1 RE2 

 

SN 

 

I  0.0702 0.5057 0.3470 0.3460  0.6097 0.0256 0.5994 0.5743 

II  0.1341 0.0757 0.7613 0.7618  0.6563 0.0007 0.8016 0.8137 

III  0.0411 0.5819 0.8383 0.1378  0.5213 0.2055 0.7737 0.2420 

IV  0.0280 0.7749 0.4958 0.1259  0.5918 0.1367 0.5895 0.2779 

 

ST 

 

I  0.0890 0.5385 0.3032 0.3072  0.6715 0.0324 0.5381 0.5319 

II  0.1670 0.1051 0.6943 0.6924  0.7195 0.0016 0.7672 0.7580 

III  0.0651 0.5775 0.7730 0.1312  0.6157 0.1547 0.7420 0.2575 

IV  0.0419 0.7679 0.4404 0.1296  0.6522 0.1223 0.5469 0.2855 

 

 

Figure 7. Normalized histograms of change point estimates under scale shifts 
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4.3 Properties of the proposed strategy for Phase I monitoring 

In this study, we simulate streams of profile data following the regular polynomial model in 

(1) or the mixed-effect model in (2) with degree-2 polynomials and apply the proposed strategy 

for Phase I monitoring on each stream. Like the simulated data in Section 4.2, each stream 

contains three segments, and each segment contains 100 profiles following a different model. 

The random errors/random effects in the models are generated from skew-normal distributions. 

The in-control models are  

Regular polynomial model:             ebbb +++= 01

2

2 xxy  

                                                        )6 ,1 ,0(~   ,2 2

012 ====== ltwebbb SN   

Mixed-effect polynomial model:     eaaahhh ++++++= iiii xxxxy ,0,1

2

,201

2

2  

                                                         

)6 ,1 ,0(~

)6 ,1 ,0(~

)6 ,1 ,0(~

)6 ,1 ,0(~

2

2

2

0,0

2

1,1

2

2,2

012

===

===

===

===

===

ltwe

ltwa

ltwa

ltwa
hhh

eSN

SN

SN

SN

i

i

i

  

where the explanatory variable x takes values [0, 0.1, 0.2,é., 3.0]. To be convenient, the change 

structure in Case I and II in Table 1 is applied to each data stream, that is, the first and third 

segments follow the above in-control model, while the second segment follows a different model. 

6 cases are simulated considering different settings of the parameters of the second segment, 

which are listed in Table 4. Under each case, profile streams are generated and the proposed 

Phase I analysis is applied to each stream. The results of one typical example under each case are 

shown in Figure 8. In each plot of the figure, the left column displays the estimates of 

coefficients, while the right column displays the selected independent components. The 

estimated change points are marked in the plots of ICs. 

Table 4. Parameter settings of the second segment in the simulated profile data 

Case Model Parameters  Interpretation  

1 Regular 5.22 =b  Small location shift in quadratic coefficient 

2 Regular 31=b  Mild location shift in linear coefficient 

3 Regular 5.21=b , 5.20 =b  
Small location shift in both linear coefficient 

and intercept 

4 Regular 5.22 =t  Small scale shift 

5 Regular 15=l  Mild shift in skewness 

6 Mixed-effect 82

1 =t  Large shift in random-effect variance 

 

 



17 

 

      
                               (a) Case 1                                                              (b) Case 2 

                                     
                                (c) Case 3                                                               (d) Case 4           

       
                                (e) Case 5                                                                (f) Case 6 

Figure 8. Example of coefficient estimates and selected ICs under each case listed in Table 4 
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The results in Figure 8 can be summarized in the following aspects 

¶ The effect of ICA: We can see that the shifts manifest themselves more clearly in the ICs 

than in the coefficient estimates. This is particularly the case in Figure 8(c) where the data 

contain two small location shifts. Little evidence of the shifts can be found in the coefficient 

estimates, while the evidence is quite apparent in the ICs. This validates the intrinsic capacity 

of ICA in manifesting the structure in the data. Another observation is that the shifts tend to 

appear in the first ICs, which implies the potential of ICA for data reduction when a large 

number of coefficients exist.  

¶ Change point estimation: From Figure 8(a)-(c), it is seen that the change points of location 

shifts are estimated accurately. Not surprisingly, from Figure 8(d), we see that it is more 

difficult to estimate change points of scale shifts than location shifts. In Figure 8(f), due to 

the random effects of the coefficients in the mixed-effect model, estimation of the change 

points in scales becomes even more difficult. But according to our simulations not shown 

here, the accuracy in the estimation gets improved when the magnitude of the shift is larger. 

Finally, as shown in Figure 8(e), the two nonparametric control charts cannot detect shifts in 

skewness, which is reasonable as they are designed for location/scale shifts. 

5. Case Study 

In this study, the proposed Phase I analysis is applied to a set of optical profile data as shown 

in Figure 1. The data were from a large-scale low-E glass producer in the US. For confidentiality 

reasons, the name of the company and information of their products are not disclosed in this text. 

The data set consists of 314 optical profiles and each profile contains 30 data points 

corresponding to ɚ=[705nm, 710nm, é,850nm]. Before implementing the analysis, some 

preprocessing is done on the raw data. This includes the centering/scaling transformation of l 

values, i.e., x=[lïaverage(l)]/150, which can improve the numerical properties of the fitting, and 

determining the appropriate degree of polynomials through fitting polynomial models to each 

profile and checking the residuals. As an example, Figure 9 shows the fitted models and resulting 

residuals for one profile. We can see that the residuals become very small and exhibit random 

patterns with equal variance when p=4. Therefore, we decide that the degree-4 polynomial model 

gives adequate fitting and will be used in the Phase I analysis.  

 



19 

 

 
Figure 9. Example of fitted polynomial models and residuals 

First, coefficient estimates are obtained from each profile, which are shown in Figure 10. The 

estimates consist of a considerable amount of extreme values, a sign of non-normality. It appears 

that multiple change points may exist in the data, and an apparent one of which occurs during 

profiles #200~#250. Then ICA is applied to these estimates. Figure 11 shows the resulting ICs. 

The apparent shift can be seen in the first IC, and there is also evidence of shifts in other ICs.   

The BS and the SS method are applied to each IC. The estimates of change points are listed 

in Table 5. As expected, more change points are detected by the SS method, especially in 

detecting scale shifts. But the change point estimates from the two methods are very similar. For 

location shifts, multiple change points are detected including the apparent one (#232) in Figure 

10. Fewer change points are detected for scale shifts. Particularly, only one change point is 

obtained by the BS method. Using the detected change points, the data are divided into multiple 

segments. Figure 12 and 13 show the segments based on the results of the SS method.   

Table 5. Estimates of change points for each independent component 

IC 
Location shift detection Scale shift detection 

Binary seg. Sequential seg. Binary seg. Sequential seg. 

IC1 55, 100, 159, 232 55, 100, 159, 229 234 5,160, 232 

IC2 89, 148, 232, 246 89, 148, 232, 246 N/A 36, 48,246 

IC3 50, 140, 304 50, 140, 291 N/A N/A 

IC4 14, 100, 122, 162, 232, 248 14, 99, 122, 159, 232 N/A 118, 251 

IC5 69, 128 13, 69, 128, 158, 247 N/A 159 
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Figure 10. Estimates of coefficients of degree-4 polynomial models 

 

 

 
Figure 11. Independent components obtained from the coefficient estimates 
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