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Normality is usually assumed in profile monitoring However, there are many cases in
practice where rormality does not hold. In such cases, conventional monitoring techniques
may not perform well. In this study, we propose a robust strategy for Phaserhonitoring of
quality profile data in the presence of nomnormality. This strategy consists of three
components: modeling of profiles, independent component analysidCA) to transform
multivariate coefficient estimates in profile modeling to independent univariate data, and
univariate nonparametric control charts to detect location/scale shifts in the dataTwo
methods for multiple change point detection are alscstudied. The properties of the
proposed methodare examined in a numerical study andit is applied to optical profiles
from low-E glass manufacturingin the case study
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1. Introduction

In some manufacturing processes, product quality is characterizetthebyelationship
betweena responseariable and amxplanatory variablecalledprofiles Monitoring of quality
profiles has received much attention recently due to the increasing popularity oypbioft
quality data in practide Parametric and nonparametric methods have been developed for this
purpose This study focuses on parametric profile monitoring where the shape of thegwafile
be characterized by a parametric model adequately.

The basic idea of parametric profile monitoring includes two steps: First, an appropriate

statistical modelis usedto characterize the profiles. The choice of models depends on the



characteristics of the profile data the studiedapplications. Linear models polynomial
models®, splined, mixedeffect model&® and nonlinear modefs have been used in existing
studies. Second, thmrameteestimates of thétted modelaremonitored by usingnultivariate
control chart techniques such @5 control chartand Multivariate EWMA control charts.
Woodall® and Noorossanet al! give excellent review of the state of art in this research area.
The majority of existing studiesn profile monitoringfocus onPhase limonitoring while
only a few efforts are maden Phase | analysisvahmoud and Woodafl develop anF test

approachfor Phase Imonitoring of linear profiles.Mahmoudet al**

propose a change point
method based on likelihood ratio test for Phassohitoring of linear profiles Kazemzadelet
al.™® comparethree approaches for Phase | analysis of polynomial profiledyding the
extension of the change point methtlde extension of thé& test approachand a standard
procedure based dif test.It is foundthatthe change point approach performs the best.

One limitation ofthe literature ighatmost studiesest on normality assumptisrthe random
erross in the profile modelsare typically assumed to be normally distributed, and the random
effects in mixeeeffect models are also bound by this assumption. However, this may not be the
case in some manufactng processesuch as the lovemittance (lowE) glass manufacturing
processllustratedin Figure 1 The lowE glasss a type of energefficient glass products which
is manufactured through physical or chemicahting processes, wherelid mateials, eg.,
metal, metal oxideand metal nitrideare depositedn the surfaceof flat glass. The coating
enhances the thermaptical performance dhe product so thdahey areable to reduce unwanted
heat gain in summer and heat loss in witit€r The qualiy of coating ismeasuredy optical
profiles of scanned locations on thlasssurface. Figure 1 shoves example oé typical type of
optical profiles, the reflectance proslewhich represent the percentage of lighttfiat reflects
from the glass suace over a range of wavelengtl® Due to the manghemicalsubprocesses
involved in lowE glass manufacturingariousrandom noises may be present in the production.
As a resultthe quality measurements may contain a consideratdeiat of extremealuesand
thus normality assumptiorsse not appropriate in modeling such profiles.

In fact, the effect of nomormality on the performance of profile monitoring has been
investigated by a group of researcheteh asMahmoud and Woodafl, Williams et d.%,
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Vaghefi et al“* and Noorossanat al“~ A generalconclusionin these studiess that vhen

normality is not satisfied, the conventiormabfile monitoring techniquemay give misleading



results Though ®me techniques are found to be robust foratertypes of deviationgrom

normality’, there lacks a generinethod for profile monitoring ithe presence of nenormality.
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Figure 1. LowE glass manufacturing process and example of optical profiles

This study aims tdill the gap in the literaturdy proposing aobuststrategy for Phase |
analysisof quality profiles. For nornormal datanonparametric control charts arsuallyused
to replace the conventional camitrchartsbased on normalityThis idea is adopteth the
proposed strategyMoreover, to avoid issues with multivariate monitoringpdependent
component analysis (ICA} used to transform multivariaefficientestimatesof the profile
modelsinto univariateindependentdata In addition, wealso study two methodsto detect
multiple change points as thisafienthe case in Phase | analysitie properties of this strategy
are demonstratedn a numerical studgonsidering differenscenarios ohon-normality. In the
case study, it is applied toptical profile data from lovwE glassmanufacturingas shown in
Figure 1

The renmainder of the paper is organized as follows. Section 2 presents the problem
formulationin Phase | analysis of profilesd thebasic ideaof the proposed strategetails of
eachcomponenin the strategy are given Section 3 Section 4 and Beportthe results of the
numerical study and the case study respectihally, Section 6summarizes the findings in

this work.

2. Problem Formulation
2.1Profile models andPhase Imonitoring

Without loss of generality, polynomial models which fit the optical profiles in Figure 1 will
be used to illustrate the proposed methbet x be theexplanatory variableandy be the
corresponding responssuppose there aneprofiles, each containingsampling points, and the
x values are fixed and constaarhongthe profiles. Two types of polynomial modelsakie been
used in the literatureregular polynomial moels®®> and mixedeffect polynomial modelS.
Mathematical expressisnf these models are givéelow.

Regular polynomial model



Y = b X+ b X+t by e (1)
wherei=1,...mis the index of profilesj=1,...n is the index of sampling points, ahd0,...p is
the index of the exponent of polynomiak,..., b, arethe fixed, unknowncoefficiens, and(j is
the random errawhich follows certain nomormal distribution with zero mean
Mixed-effect polynomiamodel

y; =C X +..+C X +..+C, + ¢ @)
C,=h, +a,
whereeachcoefficientCy, consists of two parts: thfexed effectd,, which is fixedandunknown,
and the random effgdtl;, whichvariesfrom profile to profile Therandom effectsre assumed
to follow non-normal distributions with zero meahe mixedeffect models arpreferredwhen
the within-profile correlationis significant® or when thee is intrinsicvariation in tke shapes of
profiles.
Wetakea changepointview in the Phase | analysihat is,assumehe historicabatastream
contairs w change points, i.e.,
Y ~ M, forl¢i ¢ K;

Yi ;MZ for K1+i¢|¢K2; 3)

Vi ~M,,, forK, +1¢i¢m
whereK,,..., K,are the change pointandMy,..., My.1 are the polynomial models followed by
the data between adjacent change poihig types of changesay occur in the datdocation
shift which corresponsl to the change in theoefficients in (1)or the fixed effectsin (2), and
scaleshift which corresponds to the change in skealeof the random error in (Igr the scale of
random effecterrorin (2). The goal of Phaserhonitoringis threefold: determine whier any
changeoccursin thedata,identify the change points as accuhatas possibleand establish in
control parameters based on dmange point estimates
2.2 Basic ideaof the proposed strategy

Following the standard practice ofgametric profile monitoring, change detectionl oié
applied to the coefficient estimatetthe profile models, i.efsin (1) or Cs in (2).When those
estimatesare na normally distributeda natural idea 80 use nonparamat control charts. As
multiple coefficientdypically exist we can either use autivariatenonparametricontrol chart
on all the coefficientssimultaneously, or usanivariatenonparametric control chartm each

coefficient separately. Since the estigsabf coefficients are correlated with each other, the first
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solution appeas to be more reasonable. It is also possible since multivariate nonparametric
control chartsare available in the literaturancludingthe sign MEWMA charproposed by Zou
and Tsmg®, and the ranlbased MCUSUM charnd the nonparametric MCUSUM chart
proposed by Qiu and Hawkii$* However,as calculating the statistics in these multivariate
techniquesnvolves matrix inversion operatiorthey may suffer instability issues irosie cases.
For example, aarding to our simulationsvhen thevariationof the coefficient estimates is not
balanced, that is, thariationof some coefficientss too large otoo small, the statistics may not
exist due tosingularty of inverted matries. In addition, the resslfrom multivariate control
charts do not have easy interpretatimncontrast, the secondeais free of instability issues and
easy to implementand understandgiven that the correlation betwedhe estimatesof
coefficientscan be eliminated in some way.

In fact, the seconddea is followed in the study oKazemzadehet al* for Phase I
monitoring of polynomial profilesunder normality assumptiong/here orthogonal polynomial
models are used fofitting the profile data Since the coefficient estimates in orthogonal
polynomialregressiorare independenthey can be monitoreskeparatelyisingunivariate control
charts. In this study, we propose a simitathodto solve this problenmn the context of non
normality, which usesindependent component analygiI€A) to transform the multivariate
coefficient estimates into univariate independent compor{é@$3, and then applies univariate
nonparametric control charts to eakh This method is generic in that it can be aggblio
different forms of polynomial models and other modé#oreover,as will be explained in
Section 2, the use ofCA will bring specialbenefts in change point detection.

Figure 2 shows theomponentf the proposed strategy for Phasmadnitoring of profile
data. First, polynomial modelsre fitted for the datato obtain the estimates of coefficients.
Second,ICA is applied to themultivariate coefficient estimates. The selectéds are then
monitored using univariate nonparametric control chdd detect location/scale shifts
Considering that multiple change points may exist, once a change point is detected, the data
streamwill be segmented at the change point #meldetection willcontinueon theuninspected
data Details of eacltomponentwill be givenin Section 3.
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Figure2. The basic idea of the proposed stratiegyPhase monitoringof profile data

3. The Proposed Strategyor Phase IMonitoring of Profile Data
3.1 Statistical modeling

The first step in the Phase | analysis isfitoa polynomial model foreach profile in the
historical data stream The degree of polynomialg, can be determined through preliminary
analysiscomparingthe residualsunder different choices qd. Since noAormalty is assumed
ordinary least squares rhed can be used to fit the moddfsthe underlying model is a regular

polynomial model in (1)the estimates of coefficients are

gﬁm 3 Emg
¢4 4u
¢k, 3 &Y

where each column represents the estimates of one coefficient frompitwdiles. For mixed
effectmodels in (2), the obtained matrix represents the estimates dhe coefficient estimates
will be used in the folloimg analyses.
3.2Independent component analysis

ICA is a data projection technique whitchnsformsoriginal multivariatedata intounivariate
independent componentisrough linear transformatiéh Similar to another popular projection
tool, the principle component analysis (PCA), ICA is often used for dimension reduction
purposes in the literature as a number of significant ICs eaelected to represent the original
data. For example, it is usedmonitoringcomplex nonlinear profiles to reduce the dimension of
data points contained in each prdfileDing et al?® point out another advantageous aspect of
ICA: unlike PCA which prgects data onto a lower subspace that preserves the magbribye
variability in the original data, ICA projects data to a subspace where the distinction of any

existing structures in the data will be maximized in the resulting $30$he objective of CA



aligns well with the objective of Phase | analysis, i.e., separating data following different
structures

With the abovementionegroperties, ICAis appropriatein our study to transform the
multivariate coefficient estimates into univariate indepehd®mponents, so that univariate
nonparametriccontrol chars can be appliedo detect changessSome algorithms of ICA are
available in commercial software such as Matlab and R fa3$teCAfunction in Matlab is used
in this study.lt is worth mentioninghat & the degree of polynomials is typically not higfe
advantageof ICA in data reduction isiot a key concernhere Results of the numerical study
show clearly its role imanifestinghe changes in the data, as given in Section 4.
3.3 Univariate nonparametric control chart

Various univariatenonparametrienethodshave been developed for monitoring roormal
data including the bootstrap control chdny Jones and Woodal| and the rantbased tests by
Gordon and Poll#R and Hackl and Ledolt&t Here wechoose the control chart proposed by
Hawkins and Deritj for detecting location shifts and the one proposed by Ross>! for
detecting scale shifts. These two techniques are chosen because they do not require prior
knowledge of ircontrol paameters and easy to implemeMioreover, they can also be applied
for Phase Il monitoring of largeolume data streams whicbxist in many manufacturing
processes such as the kawvglass manufacturindlote that thee techniques are designed to
detect a imgle change point ithe datadetection of multiple change points is realizbcbugh
data segmentation which will be described in SectidnThe basics of the two techniques are
provided as follows.

AssumeZ;, € Znyare independemon-normalrandom variablewith distribution

Z ~F forl¢i ¢ K,
Z ~F, forK+1¢i¢m

whereK is the change poirietween the two different distributiofs andF,. Thefocus here is
to determine whethexrchangeexistsandif so, estimate the change poikit
The control chart oHawkins and Denij to detect location shifts ibased on thévann

Whitneytwo-sampletest Let

€l if Z,>Z,

l : _
D; =sgnZ, - Zj)=10 if Z =Z,

-1 ifz <z



where 1, | On. The ManaWhitney statistic is defined based on g
Uem ='alf. g D;
=1 ke
for 1CkQni 1. Thestandardized version of this statistic is
Uk m
Jk(m- k)(m+1)/3

Uim =

which follows a standard normal distributicesymptotically Note that his statistic holds for

each value ok. A natural estimate of the change point is the valletiodtgives the larges) ..

In the control charthe following statistidgs used

. Jhaxm 1¢T¢%X1‘U“ m‘
= argmaxUj .|

1¢kem-1

(4)

Thecontrol limit needs to be found through simulas@mder aspecifiedin-control average run
length (ARLn-contro)- It is required thamOi15.

The control chart of Rosat al®! to detect scale shifts is based on the Mood Tést. Mood
statistic is

m+1g2
2 =

k
n=d

vO %QJO

whereR; is the rank ofZ; among ¢, éz}. Thestandardized version is
My - k(m? - /12

M = _
JKk(m- K)(m+1)(n? - 4)/180

The statistiof the control chartakesa similar form as théMannWhitney statistic in (4),

M'i“axm 1¢k¢m 1"\/I i m‘
tE= argmaxMj .|

1ckem-1

(5)

The control limit also needs to be obtained through simulations. Fortunately,eRa$3"
provides polynomial approximations of the control limit undegroup ofin-control average run
lengtls. It is required thamCR0.
3.4 Data segmentatiorfor multiple change point detection

To identify multiple change pointhat may existin the datathe two control chartan

Section 33 needto beusedrepeatedly. There are two wagodo this asillustrated in Figures:



1 Binary segmentatio(BS). Change detection is first conducted alhthe dataWhenever a
change is detectethe data streanis split into two segments at the estimated change point.
Then change detection is conducted orhesegment separately

1 Sequential segmentatid®S) Change detectiors conducted sequentially starting from the
segment with minimum required number of daténts.If no change is detected,new data
point will be addedo the segmerand the detectionontinues when a change is detected
the segment by the estimated change point williseardedand change detection is applied

to thesubsequerdata.

Binary segmentation Sequential segmentation
!" PN ] I,’ —_— \‘I
| | P | ;
i - i ; L — —— !
| | . ' — |
iy > ',' ! —— J

N,
.

Figure 3. Two ways for data segmentation in multiple chaoge detection

Eachof the two methodshas beerused in existing studies for detecting Itiple change
points**!, but nostudy has been done to evaluate and compare their perforntargeneral
theybothhave pros and cons: tlBS method works on a whole segment to detect creangale
the SSmethodadds new data poimine by oneSo the sample size in the BS metlimtikely to
belarger than in the SS method, and thus the BS mea#ml$ tdbe more accurate in identifying
the change points; on the other hatid, segment used in the BS method may contain multiple
change points, while that used in the SS metbadore likely tocontain onesinglechange point
due to its sequential nature. 8w assumption of single change pohlnlds betterfor the SS
method, and thui is supposed to bmore accurateSimulationresults on the performancé

these two methods will be given $ection4.2

4. Numerical Study
Simulationsaredone toaddresghe following concerns

1. Performance ofthe two data segmentatiomethods described in Section 3 multiple
change point detectiomnd

2. Propertiesof the proposed stratedgr Phase Imonitoringof profile data

For the first concernunivariate nonrnormal data streamgontainingtwo change points are

simulated under different parameter scenarios, tedtwo data segmentatiomethodsare
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applied to eaclstream Their performancén identifying the true change pointsevaluatedand
compared.For the second concermprofile datawith nonnormal errors are simulateahder
different parameter scenarjandthe proposedhase | analysis applied Characteristicef the
proposed strategy will beaummarized In this section, we will first describeow data are
generated in the simulations, ahen eportthe results of the above studies
4.1 Data generation

Univariate datdollowing nortnormal distributios need to besimulatedin this study To be
flexible, we usewo large classes of nemormaldistributions, the skemsormal distributioff and
the skewt distributior?®, which represent general cases of skewed and/or hadeg
distributions.For a random variablg following the skewnormal distributionSNe, (7, & with
location parametes, scale parametei® and skewness parametgrits density functiorhas the

following form

- My

t(Z|ms2/)=2N(z| ms? )CF

whereN(z, (7) is the density of normal distribution W|th mearand variance?, andi is the
cumulative distribution of the standard normal distributioneissuewith this parameterization
is thatit does not control the mean Bfdirectly so that the zermean assumption of theandom
errors/effects in modé€lL)-(2) cannot beémplementecdeasily To solve this problenwe adopian

alternativeparameterizatiom the simulations

Z~SNw,t?,1)
F(Z|wt?,/)=2N(z| ms?)F %4 Z;’"B
(; =
B 2 . 1 ) . t?
m=w- | =60 —-0, s2=———
p|1+/7 2 1. 28/
> p p 1+/°

where ¥y and 3 are the mean and variance Bf Similarly, the skewt distribution can be

represented by

Z~ ST(Wz‘ V)

e | @
f(Z|w,t? /v)——t(zlms vqg \/(v+1)/(v+ges—o)v+1§
¢ z

wherev is the degree of freedom, asdnd( can be obtained usirthe same formukas in the

skewnormal distribution.
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Using the skewnormal andthe skewt distribution, we can simate differentsituationsof
nortnormality by manipulating theparameters. Sampling from these distributions caddome
using Markov chai Monte Carlo (MCMC) algorithni& In our study, we ustheslice sampleP
through theslicesampldunction in Matlabto generate samples following theo dstributions
Figure 4showsthe empirical distributionof examplesof the simulated data, where=0, 3=1

and 100000 samples are generated in each case

0.4
0.3

SNo.2 102
0.1 { 0.1}
% 5 %
0.4 { 0.4 { 0.4
0.3 {03 { 03
STo.2 102 102
0.1 {01 {01
O r atll e, r 0 r | 0 Il
15 10 5 0 5 10 15 -10 -5 0 5 10 £ 5 0 5 10 15

Figure 4.Normalized histograms ofraulateddata fromskewnormal and skew distribution

4.2 Performance of datasegmentation methods

In this study, datatreans following skewnormal distribution &6) and skewt distribution
(=6, v=6) are simulatedTo obtain insight on the two data segmentation methods in multiple
change point detection, a sim@eenarias consideredn which eachdata streantontainstwo
equallyspacedchange pointgi.e., K;=100, K,=200, m=300 or in other wordsthreesegments
with equal length (100)The changes ardtkeer location or scale shift&V/hen location shifts
occur, the scale arameters of théhreesegments take the same vaflie1), while their location

parameters¥i, ¥, and ¥3 are different. Similarly, when scale shifts occur, tHecation
parameters of the three segments are the sam@)( while their scale parametet$, ¢2and?

take different valuesd cases are simulated under each type of shitisch lead to a total o8
cases.Table 1summarizes the parameter settings amdrpretationsn these cased-igure 5
showsan exampleof datastreamsgeneratedn each casewhere the solid line in each plot

indicates the true value of the location parameter
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Table 1.Parameter settings evaluating performance of data segmentation methods

'S ¥, ¥, t} t? t?
Location shift Scaleshift Interpretation
Case Y1 ¥ Y3 1.12 f: f32
I 0 1 0 1 25 1 asmall change, then back teaantrol
I 0 2 0 1 4 1 alarge change, then back tedontrol
Il 0 2 1 1 4 2.5 alarge change, followed by a small char
\Y 0 1 2 1 25 4 asmall change, followed by a large char

Scaleshift
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o 05
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6
4 4
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0 N
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4 4
vV 2 2
0
- 2

'
N
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Figure 5. Examples of dastreamgenerated under each cédiseed in Table 1

Under eaclcaselisted in Table 110000 datsstreans aresimulated The BS andthe SS
method are applied to each of the streamsusing thecontrol chartsn (4) and (5), a control
limit with ARLn-control =2000 isapplied The performance of the two metholseach casés
evaluated using the following meassr

R-, = probability that morethan 2 chage pointsare detectd

Rus = probability thatonly 1 change pointor no chaige point 5 detectec
R., = probability that thechange pait estimagis within 10% interal of K,
R-, = probability that thechange poit estimagis within 10% interal of K,

Here the Al0% interval o in the | a«tand[i8d, measu
210] forK,. The above performance measures essentigisesenthe false alarming rate, miss
detection rate, and accuracy in estimata@ndKo.
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Table 2givesthe results on the performance measumel®cation shift detectionFigure 6
shows the corresponding distributions of change point estimatekdworn®rmal data. The
change point estimates for skéwdata exhibit similar patterns. We find the following things
from the results:

1 The performance of the BS and the SS method shows some common characteristics:
According to results in Table Zoth method have lower miss detection rate and more
accurate change point estimates whenlalation differencebetween the two sides of the
change point is higheFrom the upper panel of Figure 6, we can see that the estimates of
in Case Il and lllhave a sharper distribution thamother casesneaning that the estimation
is more accuratelhis is because the difference in the locations at the two sidés ief
larger in theséwo casesForthe estimation oK,, Case llperforms the besisthelocation

difference at the two sides of the change pioitthis casas larger thann othercases.

1 The two methods are different in two aspects1) From Table 2the BS method has much
smaller false alarming rate and considerably larger miss deteetie than the SS method
This means that the BS method tends to miss some change points, while the SS method
tends to detect some false change points. This is consistent to our intuitive understanding of
thesetwo methods given in Section 3.dince theBS method works on a whole segment
which contains more information, it is less likely stgnal a false change point; but
meanwhile it is more likely to miss some true change points as it can only pick one change
point from the segment being inspected whitayin factcontain multiple change points. In
contrast, the SS method examines the data sequentially so that it is more likely to detect the
true change points; but meanwhile it tends to generate more false alarms due to the limited
information used egeially at the beginningf each detectian(2) From Figure 6, we can
see that the change point estimates from the two methods have similar distributions in
general, withthe modeof the SS methobeingslightly higher than the BS method. Overall

we can sgthat they provide change point estimates of similar accuracy.

1 Comparing the skewnormal and skewt data: The resultsof the two distributionshow
similar patterns, but in most cases the skelga have higher false alarm rate amdss
detection rateand less accurate change point estimates than therskewal data.
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Table 2. Performamcof the BS anthe SS method in detecting location shifts
Binary segmentation Sequential segmentation

Rea Rwis Re1 Rez Rea Rwis Re1 Rez

| 0.1049 0.0234 0.8081 0.8034  0.4722 0.0002 0.8711 0.8720

Il 0.1306 O 0.9841 0.9834 05075 O 0.9830 0.9969

Case

SN i 0.0724 0.0011 0.9797 0.8848 0.5068 0.0003 0.9849 0.8708
v 0.1655 0.0064 0.8281 0.8132 0.4481 0.0002 0.8680 0.8678
I 0.1476 0.0938 0.6804 0.6820 0.6526 0.0025 0.8019 0.8075
ST [l 0.1885 0 0.9395 0.9403 0.6676 0 0.9477 0.9827
i 0.1305 0.0106 0.9393 0.8026 0.6718 0.0005 0.9538 0.8030
v 0.1948 0.0452 0.7301 0.7219 0.6139 0.0040 0.8062 0.8020
Estimateof the first change point
o2 I 15 I 12 11 o2 v
0.2 '1 0.2
0.15 1 08 0.15
BS o1 0.6 0.1 ‘
0.5 0.4
0.05 0l 0.05
O0 50 . 100 150 0O 50 ﬂolo 150 0O 50 SIL‘OO 150 OO 50 100 150
0.2! 15 L 0.2 -
0.15 1 O_z 0.1%
0.1 . 0.1
0.5 0.4
0.05 02 0.05
O'O 50 100 150 00 50 ;{00 150 O0 50 ;:OO 150 00 50 100 150
Estimateof the second change point
0.2 1.5 0.2! 0.3
02 02 0.23
0.15 ! 0.15 02
BS o 01 °'15
0.5 0.1
0.05 0.05 | 0.05
QOO 150 200 250 300 (1‘00 150 ZOF 250 300 900 150 ZOOI- 250 300 900 150 200 250 300
0.2 1.5 0.2!
02 02 0.23
0.15 ! 0.15 02
SS 0.15
0.1 0.1
0.5 0.1
0.05 0.05 0.05
i‘l

ull i
900 150 200 250 300 ‘;.EOO 150 200 250 300 900 150 200 250 300 900 150 200 250 300

Figure 6.Normalized histograms of change point estimates under locsttitia

The results on the performance measimedetectingscale shifts argivenin Table 3, and
the corresponding distributions of change point estimates for thersikemal data are shown in
Figure 7. In general, the performance of the two methods shows similar paiseim the case

of location shifts. Both methods perform thesbia Case Il where the difference at the two sides
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of the change qints islarger than in other cases. The BS method has higher miss detection rate,
while the SS method has higher false alarming rate. Both rates are larger thamcases of
location slifts. Correspondingly, the distribution of change point estimagedargervariance
This is because scale shifts are, in general, more difficult to detect than location shifts.

Table 3.Performance of the BS amlde SS methodn detectingscale shifts

Binary segmentation Sequential segmentation

Rea Ruis Re1 Re> Rea Ruis Re1 Re>
| 0.0702 0.5057 0.3470 0.3460 0.6097 0.0256 0.5994 0.5743

Il 0.1341 0.0757 0.7613 0.7618 0.6563 0.0007 0.8016 0.8137

Case

SN 11 0.0411 0.5819 0.8383 0.1378 0.5213 0.2055 0.7737 0.2420
v 0.0280 0.7749 0.4958 0.1259 0.5918 0.1367 0.5895 0.2779
I 0.0890 0.5385 0.3032 0.3072 0.6715 0.0324 0.5381 0.5319
ST [l 0.1670 0.1051 0.6943 0.6924 0.7195 0.0016 0.7672 0.7580
11l 0.0651 0.5775 0.7730 0.1312 0.6157 0.1547 0.7420 0.2575
v 0.0419 0.7679 0.4404 0.1296 0.6522 0.1223 0.5469 0.2855
. Estimate of the fi[st change point i
0.0 | 0. M 0. M 3 0.0 v,
0.06 0.15 0.15 0.06f
BS 0.04 0.1 0.1 0.04
0.02 0.05 -‘k 0.05 0.02)
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Figure 7. Normalized histograms of change point estimatdsrscale shifts
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4.3 Properties of the proposed strategy for Phase monitoring

In this study, we simulatstreamsof profile data following the regular polynomial model in
(1) or the mixeeeffect model in (2with degree2 polynomialsand apply the proposed strategy
for Phase Imonitoring on eachstream Like the simulated datan Section 4.2 eachstream
contains three segments, and each segment contains 100 profiles folosfferent model.
The random errors/random effects in the moaetsgenerated from skemormal distributios.

Thein-controlmodek are

Regular polynomial wdet y=b,X*+bx+b,+e
b,=b,=b,=2, e~SNw=0,t2=1/ =6)
Mixed-effect polynomial model 'y, =/h,x* +hAx+h, +a, x* +a, x+a,; +e
hy=h =h,=2

a, ~SNw=0,t2=1/ =6)
a, ~SN(w=0,t? =1,/ =6)
a, ~SNw=0,t2=1/ =6)
e~SNw=0,t2=1,/ =6)

where the explanatory variabtd a k es v al ues [ Tbpe cOnvehient, he change. ,
structure inCase | and Il in Table 1 is applied to eatdta streamthat is, the first and third
segmentdollow the above ircontrol model while the econd segmeribllows adifferentmodel

6 casesare simulated considering different settings of the parameters of the second segment,
which are listed in Table 4Jnder eachcase profile streamsare generated artthe proposed
Phase | analysis sppliedto each streanThe esultsof one typical examplander each case are
shown in Figure 8.n each plotof the figure the left columndisplays the estimates of
coefficients, while the right columndisplays the selectedindependent componentThe

estimatedchange points are marked in the plots of ICs.

Table 4. Parameter settmgf the second segment in the simulated profile data

Case Model Parameters Interpretation
1 Regular b, =25 Small locatiorshift in quadratic coefficient
2 Regular b, =3 Mild locationshiftin linear coefficient
3 Regular b, =25, b,=25 Small Io_catlorshlft in both linear coefficient
and intercept
4 Regular t?2=25 Small scaleshift
5 Regular / =15 Mild shiftin skewness
6 Mixed-effect t2=8 Largeshift in randomeffect variance
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Figure 8.Exampleof coefficient estimate and selected IGsdereach case listed in Table 4
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The results in Figure &n be summarized the following aspects

1 The effect of ICA: We can se¢hat the shifts manifestthemselvesnore clearly in thdCs
than in the coefficient estimates. This is particularly the casegure 8(c)where the data
contain two small location shiftsittle evidenceof the shifts can be found the coefficient
estimates, whil¢he evidencés quiteapparentin the I1Gs. This validates thentrinsic capacity
of ICA in manifestingthe structure in the data. Another observation is thashifts tendto
appearin the first ICs, whichmplies the potential of ICAfor data reductiorwhen a large
number of coefficients exist

1 Change pointestimation: FromFigure 8(a)(c), it is seen thathe change poistof location
shifts are estimated accurately. Not surprisingfyom Figure 8(d) we see thatt is more
difficult to estimatecharge poins of scaleshifts than location shiftsin Figure 8(f) due to
the random effects ofhe coefficientsin the mixedeffect model,estimationof the change
points in scales becomes even more difficlBtit according to our simulations not shown
here,the accuracy ithe estimation gets improvedhen themagnitude of the shift ilrger.
Finally, as shown ifFigure 8(e) the twononparametric control charteinnot detecshiftsin

skewnesswhich is reasonable as they are designed for location/sdfige sh

5. Case Study

In this study, he proposed”hase | analysis applied b a set of optical profile dats shown
in Figure 1. The data were from a larggalelow-E glass producer ithe US. For confidentiality
reasons, the name of the company and information of their products are not disclosed in this text.
The data set consists of 3lagptical profiles and each profile contains 30 data points
corresponding toe=[705nm, 710m, € ,ni8].5 Before implementing the analysis, some
preprocessing is done on the raw data. This includes the centering/scaling transformétion of
values, i.e.x=[/ T average()]/150, which can improve the numerical properties of the fitting, and
determiningthe approprite degree of polynomials through fitting polynomial models to each
profile and checking the residuafss an examplekigure 9 shows the fitted models and resulting
residualsfor one profile We can see that the residuals becamgy small and exhibit raran
patterns with equal variance wher4. Therefore, we decide thile degreel polynomial model

givesadequate fittingindwill be used in the Phase | analysis.

18



p=3
40}

35|
30r
25|
20

15

Fj‘t:ted polynomial profiles4

9

40+

35

30r

25

20

15

p=4

45,

40

35

30r

25

20,

15

B 0 0.5
Residuals

)

0 0.5 185 0 0.t

D)
o0

0.1!
0.1

| 0.05
.

0

0.0
.

0.01-

.
-0.01

-0.02

07'. .

0.02
0.01
.

07.. o o0
3
-0.01

-0.02

| oot
o

-0.4
- .0.03 .0.03
0'8.5 0 0.5 09 .5 0 0.5 09 5 0 0.t
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First, coefficientestimates are obtainéem each profile, whiclare shown in Figure 10 he
estimatesonsist ofa considerable amount of extreme values, a sign choomality. It appears
that nultiple change points may exist in the daadan apparent one of whichcours during
profiles #200~+#250. Then ICA is applied to ttse estimatesFigure 11 shows theesulting ICs
The apparerghift can be seeim the first IC, andhere isalsoevidence of shifte other ICs.

The BS andhe SS method are appligd each IC The estimates of change points are listed
in Table 5. As expected, more change points are detebtethe SS method, especially in
detecting scalshifts But the change point estimatiem the two methodare very similarFor
location shifts, multiple change points are detected includingathgarenne ¢232) in Figure
10. Fewer change points adetectedfor scaleshifts. Particularly,only one change poins

obtained by the BS methodsingthe detected change points, the datdivided into multiple

segments. Figure 12 and 13 show the segments based on the resul&Srhétkod.

Table5. Estimates of change points for each independent component

IC Location shift detection Scaleshift detection
Binary seg. Sequential seg. Binary seg. Sequential seg.

IC1 55,100, 159, 232 55,100, 159 229 234 5,160, 232

IC2 89, 148 232 246 89, 148 232 246 N/A 36, 48,246

IC3 50,140 304 50, 140, 291 N/A N/A

IC4 14,100 122 162,232 248 14,99, 122 159 232 N/A 118 251

IC5 69 128 13,69, 128 158 247 N/A 159

19



0 50 100 150 200 250 300
1 1 I I 1 I
3o SR e e Acman e AT -\
& 30— [ e
ol [ [ [ [ [ [
0 50 100 150 200 250 300
40 1 1 I I 1 I
E 30/ ol s . 2 LS | PR, X S I N
20 [ [ [ [ [ [
0 50 100 150 200 250 300

Figure 10 Estimates otoefficients ofdegree4 polynomial models

Figure 11. Independent components obtained froncdb#icientestimates
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