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Abstract—This paper presents a new computational 

framework for early detection of driver distractions 
(map-viewing) using brain activity measured by 
electroencephalographic (EEG) signals. Compared to most 
studies in the literature, which are mainly focused on 
classification of distracted and non-distracted periods, this study 
proposes a new framework to prospectively predict the start and 
the end of a distraction period, defined by map-viewing. The 
proposed prediction algorithm was tested on a dataset of 
continuous EEG signals recorded from 24 subjects. During the 
EEG recordings, the subjects were asked to drive from an initial 
position to a destination using a city map in a simulated driving 
environment. The overall accuracies for the prediction of the 
start and the end of map-viewing were 81% and 70%, 
respectively. The experimental results demonstrated that the 
proposed algorithm can predict the start and end of map-viewing 
with a relatively high accuracy and can be generalized to 
individual subjects. The outcome of this study has a great 
potential to improve the design of future intelligent navigation 
systems. Prediction of the start of map-viewing can be used to 
provide route information based on a driver’s needs and 
consequently avoid map-viewing activities. Prediction of the end 
of map-viewing can be used to provide warnings for potential 
long map-viewing durations. Further development of the 
proposed framework and its applications in driver distraction 
predictions are also discussed. 

Index Terms—Online adaptive predictions, driver distraction 
prediction, time series pattern recognition, EEG 
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I. INTRODUCTION 

Distracted driving is one of the main causes of vehicle 
crashes. According to the statistics released by National 
Highway Traffic Safety Administration (NHTSA), 3,092 
people were killed, and 416,000 people were injured in vehicle 
crashes involving distracted drivers in 2010 [1]. Driver 
distraction is defined as a form of inattention which “delayed 
the recognition of information needed to accomplish the 
driving task safely because some event, activity, object, or 
person within or outside the vehicle compels or induces the 
driver’s shifting attention away from the driving task” [2]. In 
particular, with the wide application of electronic route 
navigation systems, the navigation-map-viewing behavior 
becomes an important source of driving distraction and 
vehicle accidents. The serious safety issue has directed many 
researchers’ attention to distracted driving performance that is 
associated with map-viewing behaviors and navigation 
systems. The corresponding human factors research of such 
systems is believed to contribute to the development of safe, 
usable and acceptable assist systems to vehicle customers.  

Navigation-map-viewing is a complex task, requiring the 
concurrent execution of various visual, motor, and cognitive 
skills, in addition to the normal driving task. Although 
map-viewing behavior is only a secondary task in driving, this 
activity is closely linked to the primary task of driving. A 
great number of studies have demonstrated that taking off eyes 
from road could result in driving performance decrement and 
raise significant safety issues [3], [4], [5]. Even when drivers 
have their eyes on the road, the cognitive distraction 
associated with in-vehicle devices can also have negative 
effects on driving performance [6], [7], [8], [9], [10]. This is 
because drivers may utilize too much cognitive capacity to 
process frequently received navigation information, and thus 
pay less attention to the driving task and road conditions. 
Therefore, both visual distraction (e.g. map-viewing) and 
cognitive distraction could lower driving performance and 
lead to dangerous situations [11], [12]. Moreover, another big 
problem of using the current navigation systems is that 
frequent redundant information may be provided in some 
periods. The navigation information provided for route 
assistance purpose may cause driving annoyance instead [13], 
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[14]. A driver would feel annoyed since processing such 
redundant information takes significant resources from the 
already limited cognition capacity for the primary driving task.  

To reduce the risk of driving distractions and avoid 
dangerous situations, eye movement tracking, video camera 
recognition, and lane keeping performance are popular 
techniques employed in current driver distraction studies [28, 
35]. These methods have been proved to be effective on 
classifying distraction and non-distraction periods. However, 
they have limitations in detecting navigation-related 
distractions in real-time. In recent years, many researchers 
have begun to use electroencephalographic (EEG) signals to 
study secondary tasks during driving [15], [16], [17]. 
EEG-based driving distraction studies offer a unique 
capability of real-time assessment of cognitive effort, 
engagement and workload through quantitative analysis of 
continuous EEG signals. In addition, EEG signals are 
generally unaffected by driving conditions and environments. 
Studies showed eye movement tracking techniques might 

become unstable in some driving environments [18]. For 
example, studies using eye trackers require an environment 
with dim illumination and low sunlight to minimize the glare 
and reflection [19]. An environment with strong glare and 
reflection could deteriorate the performance of eye movement 
tracking seriously [20]. Another advantage of EEG is its 
anonymous data in protecting the privacy for drivers. The 
methods using eye movement tracking and video recognition 
are hard to avoid the privacy issue of leaking drivers’ personal 
information, such as faces, expressions, or even conversations. 
In contrast, EEG signals only detect a driver’s electronic 
brainwaves without recording any other personal information. 
In addition, with recent advances of EEG technologies, the 
conventional wet EEG electrodes requiring skin preparation 
and conduction gels may be replaced by wireless dry 
electrodes, which enable remote acquisition of continuous 
EEG data conveniently [21], [22], [23]. Thus, EEG 
technologies provide a practical approach to study driver 
behaviors and handle driving distractions in the real world 
settings.   

Table I. The survey of driving distraction data collection methods 

Data collection 
method Studies 

The period studied 
(Classification/Prediction) 

Eye movement 
tracking 

Chisholm, Caird, & Lockhart, 2008; Donmez, Boyle, & Lee, 
2007, 2008, 2010; Garay-Vega et al., 2010; Kaber, Liang, 
Zhang, Rogers, & Gangakhedkar, 2012; Liang & Lee, 2010; 
Metz, Schömig, & Krüger, 2011; Reyes & Lee, 2008; K. L. 
Young, Mitsopoulos-Rubens, Rudin-Brown, & Lenné, 2012; 
H. Zhang, Smith, & Witt, 2006; Y. Zhang et al., 2013 

[3], [4], [5], [7], [9], [18], [19], [24], [25], [26], [27], [28] 

Classification of distracted and 
non-distracted period 

Video camera 
recognition 

Stutts et al., 2005; Wege, Will, & Victor, 2012 

[29], [30] 

Classification of distracted and 
non-distracted period 

Lane-keeping 

Performance 

Alm & Nilsson, 1995; Greenberg, Tijerina, & Curry, 2003; 
Reed & Green, 1999; Young, Lenné, & Williamson, 2011 
[31], [32], [33], [34], [35] 

Classification of distracted and 
non-distracted period 

EEG 

C. Lin, Ko, & Shen, 2009; C.-T. Lin, Chen, Chiu, Lin, & 
Ko, 2011; Mouloua, Ahern, & Quevedo, 2012; Sonnleitner, 
Simon, Kincses, Buchner, & Schrauf, 2012 

 [16], [36], [37], [38] 

Classification of distracted and 
non-distracted period 

Current work 
Prediction of the start (Event I) 
and the end (Event II) of 
distracted period 

 Table I summarizes the four main groups in current driving 
distraction studies. It is found that current studies are mostly 
focused on the retrospective classification of distracted periods 

and non-distracted periods. There have been very few studies 
focusing on real-time, prospective prediction of driving 
distractions. With the help of EEG technologies, it may be 
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possible to move from retrospective off-line analyses to 
distinguish distraction and non-distraction periods to 
prospective online analyses to predict the initiation and the 
end of a distraction period. This study is aimed to address this 
transition and provide a new framework for online detection of 
map-viewing distractions using continuous EEG signals. To 
be more specific, two map-viewing actions (events) are 
studied: Event I when the driver is starting to look at a map 
and Event II when the driver is starting to look back at the 
road. In our experiments, drivers were asked to arrive at a 
predefined destination in an unfamiliar environment using a 
city map. The task of navigating in an unfamiliar environment 
was employed in this study because it is cognitive demanding 
and well suited to study driver distractions [39].   

The proposed framework was designed to predict the start 
and the end of map-viewing periods through online 
monitoring of EEG recordings. Once the prediction of Event I 
is achieved, future navigation systems can subsequently 
provide verbal route instructions in advance. Driver’s view 
will then stay on the road rather than looking at the map. As a 
result, the navigation system is able to prevent the incoming 
map-viewing actions rather than letting drivers read the map 
themselves. Likewise, by predicting the time when the driver 
finishes a map-viewing behavior (Event II), the navigation 
system can provide a warning to the driver when the predicted 
map-viewing duration is longer than a safe threshold. The 
proposed real-time prediction framework has a great potential 
to improve the design of future route assist systems, including 
e-map and other intelligent navigation systems. The 
capabilities of providing route information based on a driver’s 
needs and warnings to potential long map-viewing actions 
would greatly improve the efficiency of a navigation system 
with reduced annoyance and enhanced safety.  

The rest of the paper is organized as follows. The driving 
experiment is discussed in Section II. In Section III, the online 
prediction framework is presented, including feature 
extraction, feature selection, adaptive prediction scheme, and 
the evaluation metrics of prediction performance. The 
computational experiments are provided in Section IV. A 
comprehensive discussion of the impacts of this study is 
presented in Section V, and finally we conclude this study in 
Section VI. 

II. SIMULATED DRIVING EXPERIMENT 

A. Participant 

Twenty-four participants (14 male and 10 female) took part 
in the current experiment with an average age of 23.3 (SD = 
2.77). All the participants have normal or corrected-to-normal 
vision and valid driving license. They are also free of 
psychiatric or neurological disorders to limit potential 

confounds on the behavioral/cognitive aspects of driving 
performance and navigation activity. 

 
Fig. 1.  The experiment setup using a STISIM® driving 

simulator and a Neuroscan system including one Quik-Cap, 
Nuamps Express and Scan software to record and analyze 
EEG signals during driving (map for navigation is not 
included in this picture). 

B. Apparatus 

The driving task was completed using a STISIM® driving 
simulator (STISIMDRIVE M100K, Systems Technology Inc., 
Hawthorne, CA; See Figure 1). The driving simulator consists 
of a Logitech Momo® steering wheel with force feedback, a 
gas and a brake pedal (Longitech Inc., Fremont, CA). The 
driving scenario was presented on a 27-inch LCD with 
1920×1200 pixels resolution. 

An 8.5×6 inches map with designed route used for the 
map-viewing task was shown by a 19-inch Dell LCD display 
(1098FP model), which was 50cm from the right hand of 
subjects and 91cm from their eyes (See Figure 3). The visual 
angle of the touch screen was 13.1 degree. The screen was 
controlled by a Dell PC (OPTIPLEX 745) and connected with 
the driving simulator via a Labjack® system.  

A Neuroscan system including one Quik-Cap, Nuamps 
Express and Scan software was used to record and analyze 
EEG in the study. The Nuamps Express is a 40 channel digital 
EEG and ERP recording system. There are four electrodes that 
were used for measuring eye movements to remove muscular 
artifacts. The rest 36 electrodes were mounted on the scalp and 
thus used for analyses in this paper. The placement of the 36 
scalp electrodes is shown in Figure 2. The SCAN software, a 
research grade data processing tool, was employed to remove 
noise and artifacts or decompose complex signals. The EEG 
signals were amplified by NuAmps Express system 
(Neuroscan Inc, USA) and sampled at 1000Hz. 
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Fig. 2.  The 36 EEG channels are divided into seven 
channel groups according to their spatial locations. In the 
feature extraction stage, features are first extracted from each 
single channel, and then averaged over each channel group. 

 
Fig. 3.  The simulated city map employed in the driving 

experiment. Each subject was required to drive from an initial 
position to a destination pointed out in the simulated city map. 

C. Experimental Procedure 

Participants seated themselves comfortably in the chair and 
wore a fitted EEG cap with 40 channels. After setting up the 
EEG cap, participants were trained for the driving and 
navigation task by completing a practice block. The practice 
block allowed participants to learn how to operate the driving 
simulator including the steering wheel, speedometer, brake 
and gas pedal. Also, they could get familiar with the 
map-viewing task along with driving task. After the training 
segment, participants completed the test block by driving from 
an initial position to a destination pointed out by the simulated 
city map as shown in Figure 3. The designed route was 
highlighted on the static map. In order to control potential 

confounding factors, drivers were constrained to look at the 
map for any route information. There was no verbal 
navigation instructions provided to distract drivers. In both 
practice and test blocks, participants were asked to operate the 
driving simulator by following normal traffic laws as if they 
were driving a vehicle in the real world. Continuous EEG 
signals were recorded during the driving tasks. The start and 
the end time of the map-viewing periods were also recorded. 

D. Target Event Definition 

Figure 4 plots the statistics of the time lengths of the normal 
driving periods (inter-arrival periods of Event I), and the time 
lengths of map-viewing periods. The two target events to be 
predicted in this study were defined as follows. 

  Normal Event I: Event I (starting to look at the map) 
after at least five seconds of continuous driving.  

  Dangerous Event II: Event II (looking back to the road) 
after at least two seconds of map-viewing. 

We are particularly interested in the prediction of ‘normal 
Event I’ because it is associated with the initiation of 
`uncertainty' of future route. The prediction of such event in 
driving is very insightful to provide navigation information 
timely based on a driver’s need. It is noted that a driver may 
look at the map back and forth a number of times in a short 
period. These short-time frequent glances can be considered in 
one route-learning process. The corresponding Event Is are 
considered less typical to represent the initiation of cognitive 
uncertainty for future driving route after a relative long-term 
driving. Therefore, this study only focuses on the prediction of 
“Normal Event Is”, which are defined as the Event Is that 
have at least five seconds of driving prior to map-viewing. The 
five seconds were chosen to eliminate the non-uncertainty- 
initiation- related Event Is [27], [40].  

Also for the Event II, we only focus on the ‘dangerous 
Event II’, since we consider the Event IIs with short 
map-viewing durations are much less dangerous than those 
with relative longer off-road glance durations. The prediction 
of ‘dangerous Event IIs’ is meaningful to provide warning in 
advance if the predicted time of looking back to the road 
exceeds a safety limit. According to [41], we employed two 
seconds as the criteria to identify the ‘dangerous Event IIs’. 
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Fig. 4.   Boxplots of the lengths of normal driving periods 
(inter-arrival intervals of event I) and the lengths the 
map-viewing periods. On each box, the central mark is the 
median, the edges of the box are the 25th and 75th percentiles, 
the whiskers extend to the most extreme data points that are 
not considered as outliers, and outliers are plotted individually 
by the red ‘plus’ signs.  

III. ADAPTIVE-THRESHOLD-BASED PREDICTION FRAMEWORK 

In this study, we propose an adaptive-threshold-based (ATP) 
prediction framework to identify predictive patterns in EEG 
signals that are associated with Event I and Event II. The 
flowchart of the online prediction scheme is shown in Figure 5. 
A band-pass filter was employed to decompose EEG signals 
into four frequency bands; they are 8 to 13 Hz, 13 to 30 Hz, 2 
to 50 Hz, and 1 to 100 Hz, respectively. Then quantitative 
pattern analysis for prediction was then performed in each 
frequency band, separately. In general, raw continuous EEG 
signals were converted to pattern clusters consecutively 
through a two-level feature extraction process using sliding 
windows. The probabilistic relationship between pattern 
clusters and interested event occurrences was then estimated. 
If a pattern cluster is more likely to be in the pre-event period, 
an event prediction is triggered. In following, the key 
components of the EEG-based prediction system are presented, 
including first level feature extraction of raw EEG, 
second-level feature extraction, feature selection, 
pattern-cluster formulation, probabilistic-rule-based prediction 
scheme, and prediction performance evaluation criterion.  

A. First-Level Feature Extraction 

As shown in Figure 5, the first-level features are extracted 
directly from raw EEG signals through a sliding window 
approach. Thirty-six EEG channels were divided into 7 
channel groups according to their spatial locations (see Figure 
2 for exact locations). Each feature was extracted from each of 
the 36 channels, and then averaged within each channel group. 
In particular, univariate, bivariate and time-frequency features 
from raw EEG signals were extracted as follows.  

  Univariate features: For individual channel groups, 
nine univariate features were extracted, including 
mean, variance, skewedness, kurtosis, signal power, 
curve length, number of peaks, average nonlinear 
energy, and variance to range ratio. A detailed 
description of these EEG features can be found in [48]. 
Each feature was calculated from individual epochs of 
all 36 EEG channels and averaged among channels in 
the same group. Thus, 7 feature values (corresponding 
to 7 channel groups) were extracted for each univariate 
feature. In total, 7×9 = 63 features were extracted for 
the nine types of univariate features. 

  Bivariate features: Three bivariate features were 
extracted including pairwise Euclidean distance, 
pairwise T-statistics, and pairwise Pearson correlation. 
The bivariate features were first calculated within each 
channel group, and subsequently averaged over all the 
pairs in each channel group. Each EEG epoch of 36 
channels was transformed into 7 feature values (one for 
each group) for each bivariate feature. In total, 
7×3 = 21  features were extracted for all three 
bivariate features.  

  Time-frequency feature: Wavelet entropy was 
employed as a time-frequency feature. Specifically, 
discrete wavelet transform (DWT) was applied to each 
channel of EEG signal, and the wavelet entropy is 
computed based the relative energy associated with 
different frequency bands present in the EEG. The 
wavelet entropy provides information about the degree 
of order/disorder associated with a multi-frequency 
signal response [50]. Each EEG epoch of 36 channels 
was transformed into 7 wavelet entropy values for the 7 
channel groups. 

 In the first-level feature extraction, each raw EEG epoch in 
a sliding window was converted to 63 + 21 + 7 =91 features. 
It should be noted that we applied different lengths of sliding 
window to monitor normal driving periods and map-viewing 
periods. This is because there were two events to predict. The 
prediction of Event I relied on the EEG signals in normal 
driving periods whereas the prediction of Event II relied on 
the EEG signals in map-viewing periods. The two periods do 
not have any overlap. In a real-time monitoring process, two 
independent prediction systems actually work interactively. If 
Event I is detected, the prediction system of Event II is turned 
on and the prediction system of Event I is turned off, vice 
versa. As a result, the two types of sliding window were 
applied alternately to monitor raw EEG signals. The length 
and step size of the Event I sliding window were 1 second and 
100ms, respectively. The length and step size of the Event II 
sliding window were 250ms and 25ms, respectively.  
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Fig. 5.  Flowchart of the probabilistic adaptive-threshold-based online prediction scheme using the concept of pattern-cluster in 
discrete feature space.

B. Second-Level Feature Extraction  

The second-level features were designed to characterize 
temporal patterns of the 91 first-level features. As shown in 
Figure 5, we employed a second sliding window to monitor 
the first-level features simultaneously. Sequences of the 
first-level features can be viewed as time series of features, 
each point representing one sliding window. Different lengths 
of the second-level sliding window were tested from 1 second 
to 5 seconds for Event I, and 500ms to 1250ms for the Event 
II. Given a pre-defined length of the second-level sliding 
window, we first applied a piecewise linear approximation 
algorithm to partition the time series into piecewise linear 
segments. Then we characterize temporal pattern of the time 
series by four features as demonstrated in Figure 6. In 
particular, for a time series X = (𝑥!, 𝑥!,⋯ , 𝑥!), its key-turning 
points are shown in the figure. There are six sub-sections, 
three of which (segment a, c, e) showing an uptrend, and three 
of which (segment b, d, f) showing a downtrend. These trends 
indicate the degree of fluctuation of the time series. The 
following four important features are proposed to represent 
time series fluctuation patterns: 

Feature 1: accumulated vertical increase in the segmented 
piecewise linear time series, which is calculated as 
  𝐹!!! = 𝐻 𝑎 + 𝐻 𝑐 + 𝐻 𝑒 ,                                       (1) 
where the function 𝐻 .  means the vertical distance from the 
starting point to the ending point of a sub-segment. 

Feature 2: accumulated vertical decrease in the segmented 
piecewise linear time series, which is calculated as 

 𝐹!!! = 𝐻 𝑏 + 𝐻 𝑑 + 𝐻 𝑓 .                              (2) 
Feature 3: percentage of the decreasing line segments, 

which is calculated as 
  𝐹!!! = 𝑇(𝑎 + 𝑐 + 𝑒) 𝑇 𝑋 ,                              (3) 

where  𝑇(. ) is the horizontal distance from the starting point to 
the ending point of a sub-segment. 

Feature 4: range of the time series, which is calculated as 
  𝐹!!! = 𝑚𝑎𝑥 𝑋 −𝑚𝑖𝑛 𝑋 ,                             (4) 

where 𝑚𝑎𝑥 𝑋 and 𝑚𝑖𝑛 𝑋  means the maximum and 
minimum values of the segmented time series, respectively. 

 
Fig. 6.  Four skeleton-point-based features are employed to 
represent the temporal fluctuation pattern of a time series. 

C. Feature Selection   

For each of the 91 first-level features, there are 4 
second-level features associate with it. That is, there are 
91×4 = 364 feature candidates to represent each EEG epoch 
in the sliding window. However, not all of the extracted 
features are informative to the target events, and the high 
dimensional feature space makes the online learning task 
extremely difficult to capture predictive pattern in a short 
period. Feature selection has to be performed to achieve 
dimensionality reduction. In particular, we employed Pudil's 
sequential floating search [42], which is popular and fitted into 
our problem to select the most discriminative features to 
separate the two classes of EEG epoch (pre-event and 
non-event). There are two floating search schemes, called 
forward floating search (FFS) and backward floating search 
(BFS). Since FFS generally works faster than BFS when the 
expected number of selected features is much smaller than the 
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complete feature dimension. Thus, we employed FFS in this 
study. Starting from an empty feature set, the FFS is basically a 
bottom up search procedure, which includes new features and 
excludes the worst features in the current feature set sequentially 
to improve a class separability criterion. In this study, the 
1-nearest neighbor classification error was used as the 
separability measure. The objective of SFFS is to select an 
optimal subset of features that minimize the 1-nearest 
neighbor classification error.  

Let Sk be the feature subset of k features that have been 
selected from the complete feature set Fd= {f1, f2, ...,fd} using a 
criterion function E(Xk). The values of E(Xi) for all preceding 
subsets of size i= 1, 2, ..., k-1, are known and stored. The SFFS 
procedure can be summarized as follows:  

• Step 1 (Inclusion): Select the most significant feature fi 
from the available feature set Fd - Sk to form the new 
feature set Sk+1 by E(Sk+ fi)≤E(Sk+ fj) < E(Sk), where fi, fj 
∈  Fd - Sk and i≠j.  

• Step 2 (Exclusion): Find the least significant feature fp in 
the subset Sk+1 such that E(Sk+1−fp)≤E(Sk+1−fq) for all fq ∈
  Sk+1 and p≠q. If E(Sk+1−fp)< E(Sk+1), then exclude fp from 
Sk+1 to form a new feature set 𝑆!! , We have E(𝑆!! )< E(Sk+1).   

• Step 3 (Exclusion Continuation): Similar to step 2, 
continue to find the least significant feature fm in the set 𝑆!! . 

If E(𝑆!!  −fm)≥E(𝑆!! ),  then set Sk =  𝑆!! , E(𝑆!! )=E(Sk), and 
return to Step 1 for a new cycle of feature inclusion. If 
E(𝑆!!  −fm)<E(𝑆!! ), exclude fm from 𝑆!!  to form a further 
reduced set 𝑆!!!! . Set k=k-1. Repeat step 3 if k>2. If k=2, 
set Sk =  𝑆!! , E(𝑆!! )=E(Sk) and go to step 1.  

• The FFS procedure stops when no features meet the 
criterion to be included in or to be removed from the 
current feature subset.  

The floating search approaches take use of backtracking and 
are capable of correcting wrong inclusion/removal decisions. 
Floating search has become widely popular because it can 
often provide either the optimal or a close to optimal solution, 
and also require much less computational time than the 
traditional branch and bound method and most other currently 
used suboptimal strategies. However, in our experiments with 
364 features, FFS still took long computing time due to the 
huge amount of possible feature combinations to be tested. 
And also based on the testing prediction accuracy, we found 
the obtained feature subset was suboptimal when compared 
with the features selected from a smaller pool of feature set.  

To tackle the problem of “curse of dimensionality”, we 
reduced the size of the feature candidates. In particular, we 
narrowed down the univariate features from nine to two: mean 
and curve length; and reduced the bivariate features from three 
to one: averaged pairwise Euclidean distance. The other two 
bivariate features were excluded mainly because their 
expensive cost of computing and they may not fit well to a fast 
online prediction task in this study. Together with the wavelet 
entropy, we narrowed the 1st level features to 4 candidates.   

In addition, EEG signals are often described in terms of 
rhythmic activity and divided into frequency bands by using 
band-pass filters. To improve signal to noise ratio and also 
investigate EEG patterns in different brainwave bands, we 
analyzed EEG signals in four frequency bands: 8-13Hz, 
13-30Hz, 2-50Hz, and 1-100Hz. The frequency bands 8-13 Hz 
and 13-30Hz generally correspond to the well-known alpha 
and beta bands of brainwaves, respectively. Alpha is 
considered to be an important brain frequency to learn and use 
information. When alpha is within normal ranges, one tends to 
experience good moods and have a sense of conscious and 
calmness. Beta waves represent some ‘fast’ cognitive activity 
of alert or anxious. The frequency band 2-50 Hz contains the 
five most useful brain frequencies that EEG researchers tend 
to follow: delta (below 4Hz), theta (4-7Hz), alpha (8-13Hz), 
beta (13-30Hz), and low gamma (30-45Hz). Finally, the EEG 
in frequency band 1-100Hz can be considered the cleaned raw 
EEG data for which the low frequency (<1Hz) and high 
frequency (>100Hz) noises are removed.   

We performed FFS on the EEG of the four frequency bands 
separately and made online predictions for each frequency 
band separately. It is noted that the wavelet entropy was 
calculated based on the energy of different frequency bands 
and indicate the energy variations between bands. Thus, it is 
meaningless for single-band signals in 8-13 Hz and 13-30 Hz. 
For the two single-band EEG, the first-level feature candidates 
were three: mean, curve length and pairwise Euclidean 
distance. For EEG in 2-50Hz and 1-100Hz, we found that the 
features selection using 3 first-level features generated better 
prediction results than those using all the 4 candidates. The 
combination mean, pairwise Euclidean distance and wavelet 
entropy generated the best testing prediction performance. 
Thus, the experimental results of 2-50 Hz and 1-100 Hz 
reported in this paper used the selected features from a 
reduced feature set with these 3 first-level features. The FFS 
was performed on a reduced feature set with 84 features (7 
channel groups×3 first level features×4 second level features).  

Let the four first-level feature candidates denoted by: FI1 the 
averaged EEG signal within a channel group, FI2 the averaged 
curve length within a channel group, FI3 the averaged pairwise 
Euclidean distance within a channel group, and FI4 the 
averaged wavelet entropy within a channel group. The FFS 
selected features for event I and event II are summarized in 
Table II and Table III, respectively.  

Table II. The FFS selected features for event I.
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Table III. The FFS selected features for event II.

 

As summarized in Table II and Table III, the selected features 
form a feature vector to represent the 'pattern' of each 
monitored EEG epoch in the sliding window.  

D. Pattern Cluster in a Discrete Feature Space   

For all N features that were selected, we partitioned each 
feature space into a number of non-overlapping intervals using 
linear equi-volume partitioning. The feature-vector patterns 
that fall into the same interval in all the 8 feature dimensions 
represent a set of close-by patterns with similar underlying 
cognitive activities. A set of such feature-vector patterns was 
considered as a pattern cluster. Using the pattern cluster, one 
can represent millions or billions of feature-vector patterns by 
a fixed number of pattern clusters representing groups of 
similar brain activities. In this study, we explored different 
numbers of partition bins ranging from 4 to 10. The partition 
with 8 intervals obtained relative better results and thus 
reported in this study. For example, for an 8-dimensional 
feature space with each dimension partitioned into 8 intervals. 
Then the total number of all possible pattern clusters 
was  8! = 16777216, which accounted for numerous brain 
activities during driving. Although this was a very large 
number, our experiments showed that recorded pattern clusters 
were in a level of one thousand.  

E. Probabilistic Prediction Score   

A probabilistic prediction score was used to identify pattern 
clusters that are predictive to the two target events. In general, 
each EEG epoch in the sliding window was converted into a 
feature pattern cluster and then stored in a pattern-recording 
table. A prediction score that was associated with the 
likelihood in the pre-event period was calculated based on the 
appearance frequency of the pattern cluster in pre-event and 
non-event periods. A prediction was made if the 
prediction-score of the pattern cluster exceeded an adaptive 
score threshold, which was optimized after each occurrence of 
a target event.  

1) Prediction Score: Given a pattern cluster indexed as the 
𝑘th cluster in the pattern-recording table, its prediction score 
𝑆! is defined as follows: 

  𝑆! =
!!"# !!"!

!!"#
× !!"#!"#$

!!"#
 ,                                 (5) 

where 𝑁!"#    is the number of occurrences of the pattern cluster 
in all previously monitored pre-event periods; and 𝑁!"#!"#$ is the 
number of pre-event periods such that the pattern cluster 

appears at least once in each of them; 𝑁!"! is the total number 
of occurrences of the pattern cluster, and 𝑁!"#  is the total 
number of events that have occurred. For example, if two 
events have been monitored, a pattern cluster occurs three 
times in the first pre-event period, 2 times in the non-event 
periods, and does not show up in the second pre-event period, 
then 𝑁!"# = 3 , 𝑁!"#!"#$ = 1 , 𝑁!"! = 5 , and 𝑁!"# = 2 . Finally, 
𝑅!"# is the time ratio between pre-event periods and non-event 
periods. In particular, it is calculated as follows:  

                  𝑅!"# =
!!"#

!!"!!!!"#
= !!"#×!!!"#

!!"!!!!"#×!!!"#
,                        (6) 

where 𝑇!"#   is the total length of monitored pre-event periods, 
𝑇!"!  is the total length of monitored EEG time series; and 
𝑇!!"#   is the length of prediction horizon. 

The predictive score proposed in Eq. (5) indicates how 
strong a pattern cluster is associated with the target event. In 
particular, the first term of Eq. (5) is to evaluate if the pattern 
cluster occurs in pre-event periods at a random level. If the 
pattern is purely random in both pre-event periods and the 
non-event periods, then we have  𝐸(𝑁!"# 𝑁!"!) = 𝐸 𝑅!"# . If 
the pattern occurs more frequently in pre-event periods than 
the non-event periods, we have  𝐸(𝑁!"# 𝑁!"!) > 𝐸 𝑅!"# . The 
higher the ratio value, the more likely the pattern cluster is 
associated with the target event. If the pattern occurs less 
frequently in pre-event periods than the non-event periods, we 
have  𝐸(𝑁!"# 𝑁!"!) < 𝐸 𝑅!"# . The second term of Eq. (5) is 
to evaluate if a pattern cluster occurs in many pre-event 
periods. We expect that an ideal candidate of predictive 
pattern should appear in most pre-event periods, not only in a 
few ones. That is 𝑁!"#!"#$ 𝑁!"# ≈ 1 . In summary, Eq. (5) 
estimates the likelihood of a pattern cluster in the pre-event 
period and reduces the bad effects of some extreme situations. 
In general, the higher the prediction score, the higher 
probability the pattern cluster appears in the pre-event period, 
and thus the more prominent it is to predict events.  

2) Score-Based Prediction Rule: The pattern-recording table 
stores and summarizes the recorded pattern clusters as well as 
calculates their prediction scores according to Eq. (5). We 
employed an adaptive threshold on the prediction score to 
discriminate the pre-event and non-event pattern clusters. 
Since for the recorded patterns we already know their class 
(event or pre-event) and prediction score, for any given score 
threshold, it is convenient to calculate the corresponding 
sensitivity and specificity retrospectively. We employed a 
heuristic search approach set the value of threshold S∗. In 
particular, we tried 30 values within the current prediction 
score range (Smax-Smin), starting from 1/30 of the range with an 
increment of 1/30 range each time. The optimal threshold 𝑆∗ is 
set to the value that maximized the overall prediction 
performance (sensitivity + specificity) based on the previously 
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recorded patterns and their prediction scores. The threshold 
𝑆∗was updated after each occurrence of a target event. The 
prediction rule works as follows.  Each impending EEG epoch 
in the sliding window was first converted to a pattern cluster. 
Assume the pattern cluster was indexed as the 𝑘th cluster in 
the pattern-recording table, its prediction score is denoted as 
𝑆!. Then the prediction rule is defined by: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 = 1, 𝑖𝑓  𝑆! > 𝑆∗   𝑚𝑎𝑘𝑒  𝑎  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
    0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑛𝑜  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛                      

F. Evaluation of Prediction Performance 

The most commonly used prediction performance measures 
are specificity and sensitivity. However, the traditional 
definition of specificity and sensitivity only focus on the 
correctness of each individual prediction and do not consider 
the prediction horizon and event-specific information. They 
are inappropriate to measure prediction performance directly 
for our online prediction problem, which has to consider the 
effects of prediction horizon and the event-specific 
requirements. Thus, we proposed a modified version of 
sensitivity and specificity that are well suited to evaluate the 
online event-prediction problem. In particular, we introduced a 
time-block-based sensitivity, denoted by   𝑠𝑒𝑛!"# , which is 
defined as portion of correctly predicted events in the total 
number of events. An event is considered to be correctly 

predicted if there is at least one true prediction within its 
preceding prediction horizon. According to Mormann et al. 
[43], we also employed a time-block-based specificity, 
denoted by   𝑠𝑝𝑒!"# , which is defined as the portion of 
non-event time period that is not in false awaiting state. A 
demonstration of the   𝑠𝑒𝑛!"#  and   𝑠𝑝𝑒!"#  quantification is 
shown in Figure 7. 

 
Fig. 7.  A demonstration of the time-block-based 

sensitivity  𝑠𝑒𝑛!"# and the time-block-based specificity  𝑠𝑝𝑒!"#. 

TABLE IV. Computational and parameter settings of our prediction framework. 

 

IV. COMPUTATIONAL EXPERIMENTS 

A. Computational Settings 

The proposed prediction framework was implemented and 
tested on the EEG recordings of 24 subjects for both ‘normal 
Event I’ and ‘dangerous Event II’. The complete parameter 
settings of the prediction framework discussed in the previous 
section are summarized in Table IV. 

B. Experimental Results 

For the prediction of Event I, the averaged training and 
testing results over the 24 subjects for different prediction 
horizons and frequency bands are summarized in Table V. The 
best testing performance of our prediction algorithm was 
achieved with a 𝑠𝑒𝑛!"# of 0.79 and a 𝑠𝑝𝑒!"#  of 0.83 using a 
prediction horizon of 400ms in frequency band 2-50 Hz. The 
average and standard deviation of prediction times are 
provided in Table VI. The detailed prediction results of Event 
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I for individual subjects based on the best prediction horizon 
and frequency band are shown in Table VII.  

TABLE V. Training and testing prediction results for Event 
I averaged over the 24 subjects using the best parameter over 

different prediction horizons and frequency bands.  

 
 

TABLE VI. Prediction time statistics of Event I averaged over 
the 24 subjects using the best parameter over different 

prediction horizons and frequency bands. 

TABLE VII. Training and testing results of Event I for 24 
individual subjects using the prediction horizon of 400ms and 

the frequency band of 2-50 Hz. 

 

Figure 8 illustrates an example of the prediction results of 
Event I in Subject 2 using the best training parameter settings. 
From the figure, it can be seen that our prediction algorithm 
yielded accurate prediction performance for the prediction of 
Event I. The high specificity achieved by our algorithm 
indicates that our framework is robust to signal noises because 
an alarm is only triggered when a monitored pattern cluster is 
already identified as a pre-event pattern with a higher than 
threshold prediction score in the pattern-recording table. All 
other noisy patterns cannot trigger any warning alarms. 

For the prediction of Event II, the training and testing 
results averaged over the 24 subjects are reported in Table 
VIII. The best testing performance was achieved with a 𝑠𝑒𝑛!"# 
of 0.96 and a 𝑠𝑝𝑒!"# of 0.45 using the prediction horizon of 
500ms and the frequency band of 13-30 Hz. The average and 
standard deviation of prediction times are provided in Table 
IX. Detailed prediction results for individual subjects are 
shown in Table X. Note that the prediction performance of 
Event II was worse than that of Event I. We postulate that, 
because in addition to the normal driving task the 
map-viewing process requires concurrent execution of various 
cognitive, visual and motor activities in a short period, EEG 
signals are more complex and it is harder to discover 
predictive patterns that are associated with the intention of 
looking back to the road.  

TABLE VIII. Training and testing results Event II averaged 
over the 24 subjects with the best parameter over different 

prediction horizons and frequency bands.  

 
 

TABLE IX. Prediction time statistics of Event II averaged 
over the 24 subjects using the best parameter over different 

prediction horizons and frequency bands. 
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Fig. 8.  A demonstration of the prediction outcome of Event I in Subject 2 using the prediction horizon of H= 400ms with 
𝐿!" = 4000  𝑚𝑠 and 𝐿!"#$ = 100  minute in the frequency band 2-50 Hz. The vertical black lines indicate the starting times of 
Event I. The cross sign on top of a vertical black line indicates the system failed to predict the corresponding event I within the 
prediction horizon of 400ms. The circle sign on top of a vertical black line indicates the corresponding event I was successfully 
predicted. The vertical red lines represent the timing of the predictions. The horizontal blue lines represent the threshold level, 
whose value is updated after each occurrence of event I. 
 

TABLE X. Training and testing results of Event II for 24 
individual subjects using the prediction horizon of 500ms and 

the frequency band of 13-30 Hz. 

 

C. Effectiveness of Adaptive Updating 

The threshold level of prediction score was updated 
(optimized) after each event. To test the effectiveness of the 
adaptive threshold-updating scheme, we compared the 
prediction performances for different updating periods in the 
frequency band of 2-50 Hz. In particular for each subject, we 
updated the threshold in the first 0%, 10%, 30%, 50%, 70%, 
90%, and 100% of the total target events, respectively. That is, 
0% means that the initial threshold was unchanged throughout 
the prediction process, and 100% means that the threshold was 
updated for all events. Figure 9 plots the averaged prediction 
performances of the seven different parameters of updating 
periods. It can be seen that the overall prediction accuracies 
increased as the portion of EEG data used to update the 

threshold increased. The strong increase trend of prediction 
accuracy indicates that the adaptive threshold-updating 
scheme is truly effective in increasing the prediction 
performance over time  

 

Fig. 9.  The effectiveness of the adaptive threshold-updating 
scheme using the EEG data in the frequency band 2-50 Hz. 
The horizontal axis indicates the portion of events the 
threshold of the ATP scheme was actively updated. The point 
0 indicates that the initial score threshold was unchanged 
throughout the prediction process; and the point 1 means that 
the threshold was updated for all events throughout the entire 
prediction process. The strong increase trend of prediction 
accuracy indicates that the adaptive updating scheme ATP is 
effective to increase online prediction performance over time. 

D. Effectiveness of Feature Selection  

As discussed in subsection III.C, we did experiments with 
different size of feature candidates. The Figure 10 and Figure 
11 show the prediction performance using three different 
feature sets. The first feature set is the complete feature set 



 12 

with all extracted features. The second feature set is the 
FFS-selected feature subset from the complete feature set. The 
third feature set is the FFS-selected feature subset from feature 
sets with reduced number of features. We discussed how we 
selected the reduced feature set in a heuristic manner in 
subsection III.C. The prediction performance boxplots clearly 
show that the complete feature set with around 300 features 
generated the worst prediction performance. The FFS-selected 
features from the complete feature set generally improved the 
prediction performance cross the 24 subjects. However, it 
clearly provided a suboptimal solution, since the FFS-selected 
features from a reduced feature set generated considerable 
better prediction results (the reduced feature set is a subset of 
the complete subset). Currently, the feature selection problem 
is still an open question for a high-dimensional data-mining 
task. Better feature selection frameworks are needed to search 
for the optimal feature subset in a high dimensional space 
while maintaining a good performance/speed ratio.  

 

Fig. 10. Boxplot of the testing event I-prediction performance 
of the 24 subjects in 2-50 Hz using all 308 features, the 
selected features from the 308 features, and the selected 
features from a reduced set with 84 features, respectively. The 
feature set with 308 features was formed by 11 first-level 
features (9 univariate features +  pairwise Euclidean distance+ 
wavelet entropy) × 4 second-level features ×7 EEG channel 
groups. The feature set with 84 features used four first-level 
features (mean, curve length, pairwise Euclidean distance, and 
wavelet entropy).     

 

Fig. 11. Boxplot of the testing event II-prediction performance 
of the 24 subjects in 13-30 Hz using all 280 features, the 
selected features from the 280 features, and the selected 
features from a reduced set with 84 features, respectively. The 
feature set with 280 features was formed by 10 first-level 
features (9 univariate features + pairwise Euclidean distance) 
×  4 second-level features×7 EEG channel groups. The 
feature set with 84 features used four first-level features (mean, 
curve length, and pairwise Euclidean distance).     

V. DISCUSSION 

A. Prediction Performance 

There has been an explosion research on detection of driver 
state for driving assistance systems. However, very few 
investigations have been performed on real-time prospective 
prediction of cognitive activity. Most of the current studies 
were concentrated on the detection or predictability of mental 
states. Recently, Stefan et. al. investigated the online 
prediction of a driver’s intention to brake before any actions 
become observable [44]. A linear discriminant analysis (LDA) 
classifier was trained using the EEG signals between 260ms 
pre-response and the response onset. The detection rate was 
80% using the combination of features of EEG, EMG, and 
several driver behavior features. The false alarm rate was 1.96 
per hour, and the average alarm time was 167ms. Berka et. al.   
employed EEG data to monitor the levels of task engagement 
and mental workload continuously in an operational 
environment [45]. A second-by-second classification was 
applied to detect workload in different engagement levels. A 
problem of the existing approaches is that the trained online 
classifier cannot be adaptive to each person, and thus limit 
their prediction performance and application potentials. In this 
study, we develop an adaptive prediction framework to predict 
driver distraction prospectively. The proposed ATP scheme 
generated very promising prediction results based on a dataset 
of 24 subjects. Using the best training parameter settings, the 
average testing sensitivity and specificity of the ATP scheme 
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are 79% and 83%, respectively, to predict the intention of 
looking to the map.  

The probabilistic ATP scheme constructs a pattern library 
for each subject specifically and gains the predictive pattern 
knowledge of each subject over time. With the pattern-cluster 
approach in discrete feature space, the size of the pattern 
library is limited. In real-life applications, the pattern-cluster 
library only takes a very small space and is extremely 
computational efficient. In this experiment, the total number 
of stored pattern clusters for each subject is at a level of one 
thousand, and the number of identified pre-event 
pattern-clusters is at a level of one hundred. Another 
significant advantage of the ATP scheme is that it is not 
sensitive to pattern noises and outliers in the online monitoring 
process. A prediction is only triggered if the monitored pattern 
cluster is an already identified as a pre-event pattern cluster in 
the pattern library. All other monitored patterns (including any 
pattern noises and outliers) cannot trigger any warning alarms. 
This makes the proposed probabilistic ATP prediction very 
attractive in real-life applications. The proposed ATP 
prediction framework provides a useful analytical tool for 
online monitoring and prediction of driver distraction using 
multichannel EEG signals. 

B. The Application of Prediction of Two Events in Developing 
Information System 

Previous work laid the foundation to differentiate distracted 
periods from non-distracted periods during driving. When 
drivers look at a map for route information, distraction is 
inevitable to some extent. Therefore, the proposed prediction 
approach of driving distraction has a potential to prevent the 
driver distraction in advance or at least help to reduce the 
extent of distraction and its resulting hazards. With such 
approach being applied, in-vehicle navigation systems can be 
improved by adopting a need-based design. 

 
1) Application of Prediction of ‘Normal Event I’ 

The prediction of ‘normal Event I’ can be applied to prevent 
head-turning distraction in advance. An improved design of 
navigation systems can be achieved by integrating the 
capability of predicting drivers’ needs of route information. In 
other words, the route information would be presented only 
when a driver is uncertain about route and intends to look at 
the map for assistance. The route information provided in 
advance would prevent drivers from being distracted by 
reading a map passively, meantime, the 
redundant/unnecessary navigation information which leads to 
drivers’ annoyance and takes up cognitive resources from the 
primary driving task, would be reduced. 

The rules presented in Table XI with respect to ‘Normal 
Event I’ can be applied in the design of navigation and 
warning systems. Tp1 is the prediction time ahead of the 

occurrence of Event I; and Tr is the average simple braking 
reaction time of auditory stimuli, which is 514ms [46].  

 

TABLE XI. Application of prediction of “Normal Event I” 
in navigation systems design. 

Hazard 
detection  

Condition System Operation 

No/ 
Unknown  

Tp1 > Tr Provide verbal route information 
in advance to avoid the map- 
viewing activity 

Tp1 < Tr, Switch on the prediction of 
‘dangerous Event II’  

Yes 

Tp1 >Tr  Provide a verbal warning: Do not 
look away from the road 

Tp1 <Tr  Provide a verbal warning: Look 
back to the road immediately. 

 
When Tp1 is longer than Tr, route information can be 

delivered before the driver looks at the map. If there is no 
hazard detected (or unknown), the driver will obtain the route 
information without being distracted from the road. Thus, the 
risk of eye-off-road can be largely reduced. However, when 
Tp1 is shorter than Tr, the map-viewing action cannot be 
avoided, since the driver may already start looking at the map 
when the route information is presented. Thus, the system let 
the driver keep on reading maps rather than interrupting the 
driver by providing the route information to add on additional 
distraction. At this time, the prediction of ‘dangerous Event II’ 
is switched on, and the system will provide warnings to the 
driver in advance if the predicted map-view duration is longer 
than the safety threshold.  

When there is a hazard event being detected and Tp1 is 
longer than Tr, the system would alarm the driver to watch out 
the hazard and do not look away from the road. However, 
when Tp1 is shorter than Tr, the driver may already look at the 
map when the warning message is provided. Therefore, the 
message should warn the driver to look back to the road and 
pay attention to the detected hazard.  

 
2) Application of Prediction of ‘Dangerous Event II’ 

The prediction of ‘dangerous Event II’ can be used to 
design a warning system to reduce the risk of long-time 
map-viewing activities in driving. When looking at a map, a 
driver loses attention to the driving task and road conditions. 
Thus, the map-viewing behavior would result in an impaired 
driving performance and may lead to dangerous situations. 
With the capability of predicting ‘dangerous Event II’, the 
system can predict the time duration of a map-viewing process 
ahead of time. If the predicted time duration of the 
map-viewing process exceeds a safe time length, the system 
can warn the driver ahead of time to look back and turn 
attention to road conditions.  
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The rules presented in Table XII with respect to ‘dangerous 
Event II’ can be applied to design navigation and warning 
systems. Tp2 is the prediction time ahead of the occurrence of 
Event II and 𝑁 is the number of prediction horizon.  𝑇!!"#   
denotes the length of prediction horizon. The summation of 
Tp2 and 𝑁×𝑇!!"# denotes the predicted time duration of map 
viewing task, which is the time interval between the predicted 
time of event II occurrence and the time of event I actual 
occurrence. The safety threshold is set to two seconds to select 
long map-viewing periods with high risk during driving [43]. 

 
TABLE XII. Application of prediction of “Dangerous Event 

II” in navigation systems design. 

Hazard 
detection 

Condition System Operation 

No/ 
Unknown 

 

Tp2+N×Thrzn 
   >safety 
threshold 

Provide a warning in advance 
to prevent longer duration of 
maps-viewing and decrease 
the associated driving risks 

Tp2+N×Thrzn 
<safety 
threshold 

Keeps on predicting the 
‘dangerous Event II’ until the 
Tp2>safety threshold or the 
driver’s attention return to 
the road.  

Yes 
Tp2+N×Thrzn 
 ≤  or >safety 
threshold  

Provide warning: Look back 
to the road immediately. 

 

A longer Tp2+N×Thrzn than the safety threshold indicates 
that the duration of eye-off-road may exceed the safety limit. 
Therefore, when there is no hazard detected (or no hazard 
detection system is installed) the system should warn the 
driver to look back to the road without getting distracted for a 
long time. A shorter Tp2+N×Thrzn than the safety threshold 
indicates a relatively safe map-glance action. In that case, 
when there is no hazard detected (or no detection system is 
installed), the system continues to monitor EEG signals and 
keeps on predicting the ‘dangerous Event II’ until the 
Tp2+N×Thrzn is longer than the safety threshold or the driver 
return to the road.   
However, when there is a hazard event being detected, a delay 
to return to the road may lead to less time to response to the 
hazard and cause dangerous situations. Therefore, the system 
should alert the driver to watch out the hazard immediately no 
matter the Tp2+N×Thrzn is longer or shorter than the safety 
threshold.  

C. Practical Applications of EEG Techniques 

From a practical application standpoint, EEG technique 
applied in this study has its advantages in several situations 
compared to eye movement tracking used in previous studies. 
Firstly, it enables the system to obtain a driver’s cognitive 

activities in real-time and provide appropriate feedbacks to 
assist the driver. The performance of the 
eye-movement-tracking-based methods can be serious 
deteriorated in the presence of strong light, while EEG signals 
are usually stable under various environmental conditions. 
This characteristic of EEG data is really attractive in the real 
world applications. In addition, EEG data are superior to 
protect driver privacy without recording any personal 
information. With higher and higher privacy standard in the 
current market, drivers would accept a system with techniques 
of high standard privacy protection more easily. 

Although this study was carefully prepared, there are still 
several limitations. First of all, although the proposed 
computational prediction approach provides a promising tool 
to improve the current design of driving assistant systems, the 
influence of the driver-distraction prediction on driving 
behaviors is unknown. For example, the false predictions may 
also incur extra distractions and annoyance to drivers. This 
problem will be addressed in the future work. Secondly, the 
reaction period that allows drivers to response to the 
prediction outcomes was not considered in the current work. 
Reaction time can be used to evaluate whether a driver has 
enough time to react to an upcoming event or note. To 
enhance the practical utility of the proposed ATP prediction 
framework in the design of new navigation systems, we will 
consider the reaction time in the prediction system in future 
work. In addition, we employed the conventional wired wet 
EEG electrodes in the present experimental setup, which are 
difficult and inconvenient to be applied for real-world 
applications. In the further work, we will test EEG devices 
with dry electrodes and wireless data transfer function, and 
investigate the prediction power and stabilization of the 
remotely collected EEG data from dry electrodes.  

VI. CONCLUSION 

In this study, we investigated the online monitoring and 
prediction of driver distraction using EEG signals of 24 
subjects. We propose an adaptive online prediction framework 
that is capable of capturing subject-specific predictive patterns 
autonomously by constructing a subject-specific pattern 
library, based on which a probabilistic prediction rule is 
established. The proposed online prediction system achieved 
promising prediction results with overall prediction accuracy 
of 81% for Event I and 70% for Event II. Under the best 
performance settings, the average prediction time of Event I is 
234ms ahead of the real Event I occurrence, and the average 
prediction of Event II is 430ms ahead of the real Event II 
occurrence. The proposed methodology provides a practical 
tool to solve the challenging problem of online predicting of 
driver distraction using multivariate EEG signals. It has a 
potential to improve design of future intelligent navigation 
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systems from a novel perspective by preventing driver 
distractions in advance and the related safety risks. 
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