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Abstract. The benefits of respiratory gating in quantitative PET/CT vary

tremendously between individual patients. Respiratory pattern is among many patient-

specific characteristics that are thought to play an important role in gating-induced

imaging improvements. However, the quantitative relationship between patient-specific

characteristics of respiratory pattern and improvements in quantitative accuracy from

respiratory-gated PET/CT has not been well established. If such a relationship

could be estimated, then patient-specific respiratory patterns could be used to

prospectively select appropriate motion compensation during image acquisition on a

per-patient basis. This study was undertaken to develop a novel statistical model that

predicts quantitative changes in PET/CT imaging due to respiratory gating. Free-

breathing static FDG-PET images without gating and respiratory-gated FDG-PET

images were collected from twenty-two lung and liver cancer patients on a PET/CT

scanner. PET imaging quality was quantified with peak standardized uptake value

(SUVpeak) over lesions-of interest. Relative differences in SUVpeak between static

and gated PET images were calculated to indicate quantitative imaging changes due

to gating. A comprehensive multidimensional extraction of the morphological and

statistical characteristics of respiratory patterns was conducted, resulting in 16 features

that characterize representative patterns of a single respiratory trace. The 6 most

informative features were subsequently extracted using a stepwise feature selection

approach. The multiple-regression model was trained and tested based on a leave-

one-subject-out cross validation. The predicted quantitative improvements in PET

imaging achieved an accuracy higher than 90% using a criterion with a dynamic

error-tolerance range for SUVpeak values. The results of this study suggest that our

prediction framework could be applied to determine which patients would likely to

benefit from respiratory motion compensation when clinicians quantitatively assess

PET/CT for therapy target definition and response assessment.

PACS numbers: 07.05.Kf, 29.85.Fj, 87.19.Wx, 87.57.uk
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1. Introduction

Combined positron emission tomography (PET) and computed tomography (CT)

imaging has gained prominence in detection and staging of abdominothoracic cancer

patients due to its strong association to clinical outcome (Imamura et al. Jan

2011, Vansteenkiste et al. Jun 1998). However, the quantitative accuracy of PET/CT

for defining target volumes (Bettinardi, Picchio, Muzio, Gianolli, Messa & Gilardi Oct

2010, Caldwell et al. Nov 2001, Senan & Ruysscher Dec 2005) and assessing response

to therapy (Avril & Weber Jan 2005) has been limited in part by respiratory-induced

tumor motion (Nehmeh et al. Jul 2002). Time-averaged PET/CT images acquired under

free-breathing conditions, known as static PET/CT, can artificially reduce apparent

lesion uptake and increase apparent tracer-avid lesion volumes from motion blurring (Liu

et al. Dec 2009). Methods to remove this blurring include respiratory-gated PET/CT by

compensating for tumor motion (Aristophanous, Berbeco, Killoran, Yap, Sher, Allen,

Larson & Chen Mar 2011, Nehmeh et al. Oct 2003).

Despite the potential for significant improvements in quantitative accuracy from

respiratory-gated PET/CT (Bettinardi, Picchio, Muzio, Gianolli, Gilardi & Messa Sep

2010, Bettinardi et al. Sep 2012, Guerra et al. Sep 2012), particularly for the definition

of biological targets (Aristophanous, Yap, Killoran, Chen & Berbeco Jul 2011), the gains

vary tremendously between individual patients due to numerous patient-specific factors.

While respiratory-gated PET/CT has the potential to increase contrast between tracer-

avid lesions and background in some patients, it can also lead to increased image noise

levels with no contrast improvement in other patients (Liu et al. Dec 2009). Therefore,

a key question is “can information gained from the respiratory traces help predict the

quantitative gains from respiratory-gated PET/CT?” These predictions could aid in

deciding between various motion compensation and motion suppression strategies prior

to PET/CT acquisition (Bowen et al. Aug 2012). For example, in patients where gating

would yield only small changes in quantitative accuracy, static scans with or without

active breathing control devices may be used instead (Keall et al. Oct 2006, Wong

et al. Jul 1999). As the clinical use of medical devices for motion suppression or control

is invasive, a prediction should ideally be made prior to PET/CT acquisition on whether

to gate under free-breathing conditions.

Many types of respiratory motion prediction models exist. The majority have

focused on predicting the respiratory pattern at predefined time intervals in advance,

most commonly with auto-regressive moving average (McCall & Jeraj 2007, Ren

et al. 2007) or support vector regressive techniques (Riaz et al. 2009). These models

have many applications in respiratory-gated radiation therapy, which allow for the

prediction of future tumor positions in order to turn the treatment beam on/off during

the appropriate gating window, but thus far have not been applied to respiratory-gated
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imaging. In particular, the ability to predict changes in PET/CT quantification based

on respiratory motion features has not to our knowledge been reported elsewhere.

The purpose of this study was to develop a predictive model of quantitative benefit

from respiratory-gated PET/CT that can eventually be used as a clinical decision

support tool. Specifically, a new technique was developed to extract features of

respiratory patterns, and in turn to construct a model associating these features to

changes in PET imaging metrics. Such a model requires quantitative estimates of

improvements in respiratory-gated imaging relative to free-breathing static imaging for

training, but following validation it would be flexible enough to predict imaging changes

based only on respiratory pattern features acquired prior to PET/CT acquisition.

Several quantitative PET imaging metrics have been used clinically, ranging from

maximum standardized uptake value (SUVmax) to mean SUV (SUVmean) in a region-of-

interest. In this study, PET lesion tracer avidity was quantified with peak standardized

uptake value (SUVpeak) (Wahl et al. 2009), which was found to be more sensitive to

quantitative changes due to respiratory motion than SUVmean but less influenced by

increased noise in gated images than SUVmax. Relative differences in SUVpeak between

free-breathing static and respiratory-gated PET images, %∆SUVpeak, were calculated

across patient groups and constructed as a function of several independent respiratory

trace features. The final model was then validated for predictive power and robustness

to sample size.

2. Materials and Methods

In this study, respiratory motion features were characterized by a regression model to

predict changes of a PET imaging metric between free-breathing static and respiratory-

gated images, i.e., %∆SUVpeak. The predictive model was built iteratively over several

steps, spanning respiratory pattern post-processing, feature extraction and selection,

model generation, and final model validation against %∆SUVpeak. Figure 1 outlines the

flowchart for building the prediction model from respiratory trace features to predict

the measured differences in SUVpeak PET metric.
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Figure 1. The computational framework for building a prediction model for PET

quantification of imaging quality from respiratory trace features.
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2.1. Experimental Design and Data Acquisition

Twenty-two lung and liver cancer patients underwent PET/CT examinations, during

which a time series of abdominal displacement as a respiratory motion surrogate were

collected with the Real-time Position ManagementTM (RPM) (Varian Inc., Santa Clara,

CA) infrared camera and reflective marker block system. Retrospective patient data

review and analysis was conducted under approval from the appropriate Institutional

Review Board and in compliance with the Health Information Privacy and Portability

Act.

Patients were injected with 10.0± 0.8 mCi (MEAN±SD)of 2-deoxy-2-[18F] fluoro-

D-glucose (FDG), a surrogate of glucose metabolism, and scanned on a Discovery

STETM PET/CT scanner (GE Healthcare, Waukesha, WI) 60 minutes post-injection.

2D whole-body PET list-mode data were acquired over 7 minutes per bed position.

Static sinograms were generated via conventional rebinning of time-averaged list-mode

data. Gated sinograms were generated retrospectively by sorting the same list-mode

data into adaptive 20% amplitude gates determined between each set of consecutive

RPM triggers, known as cycle-based quiescent period gating (QPG) (Liu et al. Sep

2010).

No trigger rejection was enforced on the respiratory-gated sinograms. The QPG bin

utilized roughly half of all detected coincidence events and was designed to compensate

for cycle-to-cycle variation in respiratory amplitude. All static and gated images

were attenuation-corrected with helical or phase-averaged cine CT, reconstructed with

ordered subset expectation-maximization (OSEM) over 2 iterations and 28 subsets,

filtered with a 6 mm wide Gaussian post-filter, and sampled onto a grid of 3.65 mm x

3.65 mm x 3.27 mm voxels.

Post-acquisition and reconstruction, static and gated PET images were quantified

within a region of interest completely containing a single lesion to minimize the impact

of individual patients biasing the population. In the minority of cases which presented

with multiple lesions, only the lesion with highest FDG uptake was selected. The PET

measure SUVpeak was defined by the average pixel value within a 1 cm3 sphere. The

SUVpeak of a given patient image was found by moving the sphere within a user-selected

bounding box encompassing entire FDG avid lung lesion until the average voxel uptake

across the sphere was maximized (Wahl et al. 2009). The percentage change in SUVpeak

between gated and static PET images for each patient was recorded as the dependent

variable to which the prediction model was tuned to and compared against.

The raw respiratory traces were sampled at 30 Hz and acquired over times ranging

from 15-45 minutes. The 22 patients displayed a tremendous amount of inter-patient and

intra-patient variability, including differing periodic and aperiodic characteristics, which

is illustrated in Figure 2. In order to explain the variation seen in each patient, predictive

associations were sought out between respiratory pattern features and image metric

improvement in respiratory-gated PET/CT relative to static PET/CT. The respiratory

features were extracted and tested as independent variables for the prediction model.
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Figure 2. Example of respiratory motion patterns and the corresponding SUVpeak

percentage changes of the 22 patients. The respiratory pattern shapes vary significantly

across the patients.
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Figure 3. A respiratory trace before and after Fourier Transform-based signal

cleansing which only retained the signal within the frequency band of [0.1, 1]Hz, which

covers the most physiologically reasonable frequencies for respiratory motions. The

plot in the middle shows the Fourier spectrum of the respiratory traces. The ‘cleansed’

respiratory motion traces were reconstructed by an Inverse Fourier Transform of the

frequency components within 0.1-1 Hz.
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2.2. Fourier Spectrum Analysis and Signal Denoising

Periodicity was a significant distinctive characteristic of respiratory trace patterns.

However, raw motion signal of respiratory traces were heavily contaminated by signal

drifting and noises, as shown in Figure 3 (left). In the left-upper plot of the figure, there

are prominent signal drift and other sources of noise that distorts the original signal.

To remove these artifacts from the respiratory trace signal, harmonic analysis has been

widely employed to cleanse and characterize respiratory trace patterns (Hamalainen &

Kettunen Dec 2000, Riviere et al. Oct 2001). Specifically, peaks of the Fourier spectrum

were used to determine the dominating periodic behavior of temporal trajectory of time

series signal. The Fourier spectrum of a respiratory trace from a patient in our dataset

is also shown in Figure 3 (middle). The dominant breathing frequency was between 0.3-

0.6Hz. Although another dominant frequency below 0.1Hz was observed, the associated

breathing frequency was out of a physiologically reasonable range. Since a normal

breathing frequency was generally unlikely to exceed 0.1-1Hz, this range was used to

enforce a minimum and maximum threshold for the respiration frequency. A Fourier

filter was employed to eliminate physiologically unreasonable frequency components and

reconstruct respiratory motion traces. Fourier Transform was first applied to obtain the

frequency spectrum of a respiratory motion time series. Subsequently the ‘cleansed’

respiratory motion trace was reconstructed by an Inverse Fourier Transform of the

frequency components within 0.1-1Hz, as shown in Figure 3 (right). This approach

removes the low frequency components (e.g., signal drifts and body movements) and high

frequency components (e.g., electronics or sensory noises) from the raw respiratory trace,

while retaining the useful range of respiratory signal. All subsequent computational

experiments of the feature extraction technique and regression analysis in this study

were based on the ‘cleansed’ respiratory traces.

2.3. Feature Extraction

Characterization of respiratory trace patterns was a vital step of our approach to build a

prediction model for respiratory-gated PET imaging quantification. A two-level feature

extraction strategy was used to characterize temporal patterns of respiratory traces.

Given a respiratory trace, a set of morphological features of each signal breathing

cycle were extracted. Subsequently, the statistical and time-variation properties of the

extracted morphological features were quantified. The flowchart of the two-level feature

extraction procedure is illustrated in Figure 4.

2.3.1. Feature Extraction of Respiratory Morphology. Morphological characteristics of

breathing cycles were first analyzed. A respiratory cycle can be defined as a single

cycle of inhalation and exhalation. Since respiratory motion trajectory of inhalation

and exhalation were not necessarily symmetric, two types of periodic breathing cycles

were identified: exhale-inhale (EI) cycle and inhale-exhale (IE) cycle. The EI cycle was

defined by a peak-to-peak period, starting from one maximum inspiration to the next
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Figure 4. Flowchart of the two-level feature extraction procedure. A total number of

16 features are extracted for each respiratory trace of a patient.

maximum inspiration, to complete one respiratory cycle. The IE cycle was defined by a

valley-to-valley period, starting from one maximum expiration (exhalation) to the next

maximum expiration, to complete one respiratory cycle. Since our QPG approach only

performs gating for EI cycles during a PET/CT scan (Liu et al. Sep 2010), only EI cycle

features were considered to be most influential on the efficacy of the QPG approach.

Thus in this study, only respiratory pattern features based on EI cycle were extracted

and used in our prediction model.

The respiratory gating method extracted PET image data below a certain

amplitude threshold in each breathing cycle. The ‘gated’ respiratory curve patterns

of breathing cycles in each respiratory trace were deemed to provide meaningful

characteristics that may be linked with improvements of imaging quality. Given an

amplitude gating threshold P% of the maximum amplitude during a breathing cycle,

four metrics to characterize the gated respiratory motion curve patterns were proposed.

In this study, four values of the amplitude gating threshold P% (20%, 30%, 40%, and

50%) were tested, as these values have been used as gating thresholds for the QPG

method (Liu et al. Sep 2010). As illustrated in Figure 5, given a gating threshold P%,

the four pattern features were defined as follows:

• F1(P%) = h, amplitude of the cutoff curve at the amplitude threshold of P%.

• F2(P%) = w, period of the cutoff curve at the amplitude threshold of P%.

• F3(P%) = h/w, ratio between cutoff amplitude h and cutoff period w.

• F4(P%) = w/W , ratio between cutoff period and cycle duration, where W was the

time period of the breathing cycle.

In addition to the gated-curve pattern features, four additional features quantified the

morphology of entire EI cycle patterns. As shown in Figure 5, the four morphological
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features of an entire breathing cycle were defined as follows.

• F5 = w1/w2, ratio of expiration and inspiration time.

• F6 = H , cycle amplitude of the breathing cycle.

• F7 = w1 + w2, cycle duration of the breathing cycle.

• F8 = d/H , ratio of end-inspiration drift and cycle amplitude.

The relative timing of expiration and inspiration (F5), cycle amplitude (F6), and

cycle time period (F7) were commonly used in prior respiratory pattern analysis

(Strauss-Blasche et al. 2000, Tobin et al. 1983, Tobin 1992). In addition, prior

investigations on signal processing of respiratory traces have revealed that end-

expiration or end-inspiration displacement can also be an important metric with

which to group patients. Based on end-expiration displacement, patients were

be grouped into three broad categories: periodic breathers with reproducible end-

expiration displacement, periodic breathers with normal distributions of end-expiration

displacement, and chaotic breathers (Liu et al. Dec 2009). However, it was

still unknown whether these patient classification schemes carried associations to

quantitative differences in PET image parameters between static free-breathing and

respiratory-gated acquisitions. Thus, we introduced the feature F8, the relative relation

of end-expiration/inspiration displacement drift and cycle amplitude, to represent

characteristics of end-expiration/inspiration displacement in EI breathing cycles.
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Figure 5. The 8 morphological features of an EI breathing cycle given a amplitude

gating threshold P%.

2.3.2. Statistical Feature Extraction. Each respiratory trace contained hundreds of

breathing cycles as each PET scan lasted 45-60 minutes. Eight morphological features

were extracted from each EI cycle. Thus for a respiratory trace, each morphological

feature had hundreds of observation values. Additionally, statistical analysis on these

feature distributions was performed and summarized the characteristics of the entire

respiratory time series trace using a much smaller feature dimension. In particular,

numerous statistical measures such as mean, standard deviation, skewness, kurtosis,
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entropy, range, and maximum/minimum value were considered. However, features

were not selected directly from all the possible statistical measures together, since

that would incur serious problems in feature selection when the number of variables is

much larger than the sample size (Fan & Lv 2010). Instead a group selection structure

methods was employed to pick up only two statistical measures at a time and then a

stepwise feature selection approach was performed, which is discussed in the next section.

Two statistical measures, standard deviation and entropy, were selected to report in

this paper since they provided clear interpretations of physiological characteristics of

respiratory patterns, namely lower order variability due to periodic breathing and higher

order variability due to random breathing. Given a time series of a morphological feature

F = [f1, f2, . . . , fp], where the subscript indicates the index of a breathing cycle, the

seven statistical measures were calculated as follows.

• Standard Deviation: SF1 =
√∑p

1
(fi−µ)2

p−1
, where µ was the feature mean with

µ =
∑p

1 fi/p. Standard deviation represented how much variation existed from

the average level. Here for each extracted EI feature from a patient, the standard

deviation indicates the feature variations over all the breathing cycles in the

respiratory trace of the patient. A low standard deviation indicates that the feature

values tend to be very close to the average; and a high standard deviation indicates

that the EI feature values were spread out over a large range of values.

• Entropy: SF2 = −
∑p

i=1 P (fi)logbP (fi), where P (fi), the probability of the value

of fi from the estimated probability mass function P (F ) from samples; b was the

base of the natural logarithm (i.e. b = e ≈ 2.71828). Entropy was defined as the

uncertainty in a random variable in information theory. For an extracted EI feature

of a patient, if the feature values were more deterministic (or stable) over breathing

cycles in the respiratory trace of the patient, the entropy was low (close to 0).

Otherwise, the entropy of this feature was high (close to 1), which indicated the

EI feature was more irregular and likely to change significantly from one breathing

cycle to another.

2.4. Regression Analysis and Prediction Model

The regression analysis explored the relationships between the imaging variable to

be predicted and a set of potential predictor variables from the respiratory pattern.

In particular, multiple linear regression with linear functions of a set of predictor

variables was used for prediction since it is mathematically well established and usually

easy to interpret. In this study, multiple linear regression was applied to construct

a prediction model between quantitative imaging improvement (%∆SUVpeak) and the

feature variables extracted from the respiratory motion traces of the 22 patients. To

construct a valid regression model for prediction without overfitting and over-complexity,

a feature selection step was utilized to prune unnecessary predictor variables and only

keep the most important predictor variables in the model based on certain prediction

performance evaluation. The prediction performance measure, the feature selection and
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the model validation will be discussed in the following subsections.

2.5. Prediction Performance Measure

A performance measure was introduced, called hit rate, to evaluate prediction

performance of our regression model. The hit rate was defined as follows:

Definition 1 Hit Rate: Given a tolerable error limit, say p%, for each subject, if

the predicted value was within actual %∆SUVpeak ±p%, it was counted as a correct

prediction. The hit rate was the percentage of correct predictions over all predictions.

The error limit was either fixed or adaptive with respect to %∆SUVpeak ±p%.

Thus, fixed hit rate and adaptive hit rate were defined respectively. A fixed hit rate

was defined by a fixed value of error limit. A prediction was considered correct if the

predicted value was within the error limit of the measured %∆SUVpeak ±p%. In this

study, the fixed error limit values were set to 3%, 5%, and 7%, corresponding to hit(3%),

hit(5%), and hit(7%), respectively.

In addition, the increases of SUVpeak around 10% was used to determine the

effectiveness of the gating approach, as this magnitude was considered to reside above

the noise threshold (Efron Jun 1983). The gated method was considered to be effective

if the increase of SUVpeak was higher than 10%. Thus, it was practically important to

make accurate predictions around 10% to provide useful decision-making information

for physicians to decide whether to use gated approach. To meet this practical

consideration, an adaptive hit rate was designed to evaluate prediction performance.

Lower error tolerance was assigned between 5% and 15% of %∆SUVpeak ±p% and

allowed larger prediction errors in other areas. In particular, the adaptive hit rate

was defined as follows (see Figure 6),

• for 5% ≤ %∆SUVpeak < 15%, the error limit was 5%. A prediction within 5% was

considered as a correct prediction;

• for %∆SUVpeak ≥ 25% and %∆SUVpeak < −5%, the error limit was 10%. A

prediction within 10% was considered as a correct prediction;

• for −5% ≤ %∆SUVpeak < 5% and 15% ≤ %∆SUVpeak < 25%, the error limit

increased linearly from 5% to 10% in the %∆SUVpeak range of [-5%, 5%] and [15%,

25%], respectively.

2.6. Stepwise Feature Selection

Eight morphological features were extracted for each EI cycle, and each morphological

feature had two statistical measures. Thus, each respiratory trace contained (8)×2 = 16

features as demonstrated in Figure 4. Although these 16 features described a respiratory

trace in great detail, it was undesirable to use them all in a prediction model in order

to avoid over-fitting, as the number of features was larger than the number of samples.
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Figure 6. Error limit of the adaptive hit rate with respect to measured %∆SUVpeak.

In addition, a regression model with too many variables would be hard to interpret and

inconvenient to use in clinical practice. Not all of the extract features were necessarily

informative to respiratory-gated PET imaging quality quantification. A prediction

model only with a few informative features would result in more interpretability, shorter

training times, and enhanced generalization with reduced over-fitting.

A stepwise feature selection approach was implemented, which is a popular and

widely used approach in statistics to select variables for regression models (Draper &

Smith 1998, Miller 2002, Hocking 1976). Starting with no variables (features) in the

model, it selects and removes predictive variables in a regression model automatically

by a sequence of statistical significant test, such as F-tests, t-test, Akaike information

criterion, etc. The stepwise feature selection procedure was based on the p-value of

F-test, which is described as follows.

• Starting with no feature, a variable was added or removed according to the p-value

of the F-statistic in F-test of regression coefficients. The maximum p-value for a

variable to be added was 0.05; The minimum p-value for a term to be removed was

0.10.

• The procedure continued iteratively until the regression model could not be

improved based on the F-test.

• The selected features were those in the final regression model after stepwise

selection.

2.7. Predictability Evaluation Framework by Cross-Validation

In order to reduce the bias of training and testing data, cross-validation techniques

have been extensively used as a method to estimate the generalization error based

on ‘resampling’ by assessing how well the regression model obtained in the training
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phase perform on future unseen data in the testing phase. The n-fold cross-validation

usually divided a dataset into n subsets of (approximately) equal size. Each time a

subset was left-out, a regression model was trained on (n − 1) subsets and tested on

the left-out subset. The procedure repeats until all the subsets have been left-out

and tested once (Efron Jun 1983). In this study, due to the limited respiratory traces

available (only 22), n-fold cross-validation was not appropriate because the various folds

of the training and the fold of the testing would include many respiratory traces that

were drawn from the same patients. This situation would increase the likelihood of

bias and, thereby, would artificially increase the prediction accuracy. To avoid such

a situation, a leave-one-patient-out cross-validation methodology was applied, which

trained a regression prediction model using respiratory traces of 21 patients, and tested

the obtained prediction model to predict the value of %∆SUVpeak of the left-out patient.

This procedure was repeated 22 times for the 22 patients. The leave-one-patient-out

cross-validation methodology removed the potential for assessment bias. The flowchart

of the implemented leave-one-out cross validation procedure is shown in Figure 7.

In addition to training our regression model to optimize regression parameters,

respiratory features must also be selected optimally for inclusion in the regression

models. Since the patient sample size (22 patients) was not high relative to the number

of candidate variables (16 extracted features), the traditional information criteria such

as Bayesian information criterion (BIC) and Akaike information criterion (AIC) were

not appropriate as the stopping rules in the stepwise searches of small sample sizes

would not be strict enough (Kadanea & Lazara 2004). Thus, as illustrated in Figure 7,

a nested leave-one-out cross validation was employed, in which a leave-one-out feature

selection procedure was performed to validate the goodness of selected features under

each cross validation fold. Particularly, in each fold of leave-one-out cross validation of

the regression model, our training dataset contained 21 subjects, whereby one (subject)

cross validation was utilitized to train and test our prediction model 21 times (folds). In

each fold, data from 20 subjects were used to select features and train our final prediction

model, which was tested on the one left-out subject. To select features and train our

model, a stepwise feature selection approach was performed for each subset of 20 subjects

20 times using a leave-one-out cross validation. The features selected in different subsets

were different, and the numbers of selected features were also different. These sets of

selected features were investigated for different subject subsets, and observed that, in

most cases, there were six features that were most frequently selected in different sets

of selected features. Thus, 6 features remained as a final robust feature set used to

construct regression prediction models in this study.
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Figure 7. Flowchart of the leave-one-out cross validation procedure.

3. Experimental Results

3.1. Evaluation of the Predictability of %∆SUVpeak

The leave-one-out cross validation results with respect to four cycle-gating threshold

levels are summarized in Table 1. Four values of amplitude gating threshold (20%,

30%, 40%, and 50%) were employed in feature extraction. The best cross-validation

performances were achieved by using the cycle-gating threshold 30%. The hit rates

were hit(3%)=0.59, hit(5%)=0.95, hit(7%)=0.95, and hit(adapt)=0.95. The correlation

coefficient between the measured %∆SUVpeak and the predicted values was 0.88. The

predicted %∆SUVpeak values were highly correlated with the actual measured values.

Since the trained prediction models in cross validation did not use any information

from the left-out testing patients, the high testing prediction accuracies and high

correlation indicated the feasibility of predicting value changes in the imaging quality
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metric SUVpeak using only motion pattern features from respiratory traces.

Table 1. The leave-one-patient-out cross-validation results with respect to four cycle-

gating threshold levels (20%, 30%, 40%, and 50%).

Cycle Gating Leave-One-Out Cross Validation

Threshold (P%) Correlation Hit(3%) Hit(5%) Hit(7%) Hit(Adapt)

20% 0.76 0.50 0.73 0.95 0.77

30% 0.88 0.59 0.95 0.95 0.95

40% 0.80 0.41 0.77 0.95 0.95

50% 0.67 0.36 0.73 0.91 0.86
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Figure 8. The measured and predicted %∆SUVpeak for the 22 patients in the leave-

one-patient-out cross validation. In each cross validation run, a regression model was

obtained from 21 patients and tested on the left-out patient. The testing regression

model did not use any information from the left-out patient. The testing performances

are Hit(3%)=0.59, Hit(5%)=0.95, Hit(7%)=0.95, Hit(adapt)=0.95.

Table 2. The selected prediction variables by stepwise feature selection from EI cycle

feature set.
Selected Respiratory Motion Features from EI Cycles Selected Statistical Features Variable Denotation

F1: cutoff cycle amplitude at gating threshold of 30% SF2: entropy X1

F2: cutoff cycle duration at gating threshold of 30% SF2: entropy X2

F3: ratio of cutoff amplitude and cutoff period at gating threshold 30% SF1: standard deviation X3

F4: ratio of cutoff period at gating threshold 30% and cycle duration SF1: standard deviation X4

F7: cycle duration SF1: standard deviation X5

F8: ratio of end-inspiration drift and cycle amplitude SF1: standard deviation X6
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Table 3. Three prediction models with the six selected prediction variables

obtained by averaging over leave-one-out, leave-two-out, and leave-three-out procedure,

respectively.
Model 1: Averaged Over Leave-One-Out %∆SUVamp = -42.73 +18.57X1+0.18X2 - 116.40 X3 - 0.11 X4 - 17.18 X5 + 9.80 X6

Model 2: Averaged Over Leave-Two-Out %∆SUVamp = -42.89 +18.72X1+0.18X2 - 116.95 X3 - 0.11 X4 - 17.19 X5 + 9.83 X6

Model 3: Averaged Over Leave-Three-Out %∆SUVamp = -43.00 +18.86X1+0.18X2 - 117.54 X3 - 0.11 X4 - 17.19 X5 + 9.86 X6

Testing Prediction Accuracy Hit(3%)=0.95, Hit(5%)=1, Hit(7%)=1, Hit(adapt)=1

(The testing prediction accuracies were same for model 1, 2, and 3.)

Table 4. Testing Prediction performance for the 22 Patients using the Prediction

Model which was averaged over the Leave-One-Out procedure: %∆SUVpeak = -42.73

+18.57X1+0.18X2 - 116.40X3 - 0.11X4 - 17.18X5 + 9.80X6. The hit rates were

Hit(3%)=0.95, Hit(5%)=1.00, Hit(7%)=1.00, and Hit(adapt)=1.00.
Patient Measured Predicted Prediction Hit Hit Hit Hit

Index %∆SUVpeak %∆SUVpeak Error (3%) (5%) (7%) (adapt)

1 20.9 20.87 0.03 1 1 1 1

2 18.4 17.25 1.15 1 1 1 1

3 3.4 1.49 1.91 1 1 1 1

4 2.7 -0.27 2.97 1 1 1 1

5 5.1 6.60 -1.50 1 1 1 1

6 0.2 0.47 -0.27 1 1 1 1

7 8.2 10.69 -2.49 1 1 1 1

8 5.6 5.60 0.00 1 1 1 1

9 0.5 2.56 -2.06 1 1 1 1

10 8.6 7.69 0.91 1 1 1 1

11 2.2 0.16 2.04 1 1 1 1

12 -1.1 2.58 -3.68 0 1 1 1

13 2.2 -0.39 2.59 1 1 1 1

14 -1.3 -1.41 0.11 1 1 1 1

15 1.4 2.50 -1.10 1 1 1 1

16 2.9 1.55 1.35 1 1 1 1

17 4.6 5.76 -1.16 1 1 1 1

18 12.5 10.46 2.04 1 1 1 1

19 -0.8 0.01 -0.81 1 1 1 1

20 5.1 3.74 1.36 1 1 1 1

21 -2.8 -0.77 -2.03 1 1 1 1

22 -3.5 -2.37 -1.13 1 1 1 1

Prediction Accuracy 0.95 1.00 1.00 1.00

3.2. Training and Robustness Analysis of Prediction Models

The cross-validation results confirmed the possibility to predict SUVpeak changes using

few variables. However, the trained regression models in different cross-validation runs

could produce highly variable results as different subsets of features could be selected.

In clinical practice, it would be desirable for physicians to have one prediction model

with the most important variables to make predictions and assist their decision-making

process. Only using the EI feature set, the selected features in all the 22 cross-validation

experiments were recorded to pick the top six most frequently selected features as a

robust set of important features for prediction of SUVpeak changes. The six selected

features are listed in Table 2 and include entropy of cutoff cycle amplitude at gating
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threshold of 30%, entropy of cutoff cycle duration at gating threshold of 30%, standard

deviation of the ratio between cutoff amplitude and cutoff period at gating threshold

30%, standard deviation of the ratio between cutoff period at gating threshold 30%

and cycle duration, standard deviation of cycle duration, and standard deviation of

the ratio between end-inspiration drift and cycle amplitude. With the six selected
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Figure 9. The measured and predicted %∆SUVpeak for the 22 patients using the

prediction model which was averaged over the leave-one-out procedure: %∆SUVpeak

= -42.73 +18.57X1+0.18X2 - 116.40X3 - 0.11X4 - 17.18X5 + 9.80X6. The testing

prediction performances are Hit(3%)=0.95, Hit(5%)=1, Hit(7%)=1, Hit(adapt)=1.

variables, the regression model was trained from the 22 patients to predict SUVpeak

value changes. To avoid potential bias in prediction validation, a leave-N-out strategy

determined the regression coefficient values in the final prediction model. Specifically, a

set of regression coefficients was obtained in each leave-N-out run, where N = 1, 2, and

3 in the experiments. The coefficients of the final prediction model were the averaged

coefficients over all leave-N-out runs. Table 3 shows three prediction models whose

regression coefficients were averaged from leave-one-out, leave-two-out, and leave-three-

out experiments, respectively. The testing hit rates of the three models on the 22 patients

are also reported in the Table 3. Though slight variations in regression coefficients were

observed, the three models achieved the same prediction accuracy when they were tested

on the 22 patients. The hit rates were Hit(3%)=0.95, Hit(5%)=1.00, Hit(7%)=1.00, and

Hit(adapt)=1.00. Table 4 shows the measured and predicted values of %∆SUVpeak for

the 22 patients using the prediction model averaged over the leave-one-out procedure

(model 1 in Table 3). The table also summarizes each patient’s testing prediction results

with respect to the four prediction error limits (3%, 5%, 7% and adaptive). A patient
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Table 5. Robustness of the regression coefficients with respect to Leave-One, -Two,

and -Three-Out model averaging procedures.
Prediction Model 1: Averaged Over Leave-One-Out Model 2: Averaged Over Leave-Two-Out Model 3: Averaged Over Leave-Three-Out

Variable Coefficient Std. Std./abs(Coefficient) Coefficient Std. Std./abs(Coefficient) Coefficient Std. Std./abs(Coefficient)

Intercept -42.73 2.02 0.05 -42.89 2.94 0.07 -43.00 3.77 0.09

X1 18.57 2.04 0.11 18.72 3.00 0.16 18.86 3.84 0.20

X2 0.18 0.01 0.07 0.18 0.02 0.10 0.18 0.02 0.14

X3 -116.40 6.57 0.06 -116.95 9.71 0.08 -117.54 12.46 0.11

X4 -0.11 0.01 0.12 -0.11 0.02 0.20 -0.11 0.03 0.28

X5 -17.18 0.66 0.04 -17.19 1.00 0.06 -17.19 1.32 0.08

X6 9.80 0.40 0.04 9.83 0.57 0.06 9.86 0.73 0.07

was marked as 0 if the prediction error was larger than the error limit; otherwise, the

patient was marked as 1. One can see that only patient 12 was mispredicted using

the error limit of 3% and all others were correctly predicted with errors within the

corresponding error limits. The measured and predicted values of %∆SUVpeak are also

plotted in Figure 9. As shown in the figure, the predicted %∆SUVpeak values are highly

correlated with the measured values. These testing prediction results confirmed that

the prediction model with 6 variables was sufficient to prospectively predict SUVpeak

changes due to use of gating.

For a set of ideal prediction variable, the measured regression coefficients are

expected to be robust in different cross validation runs. Thus, the robustness of

the regression coefficients across leave-N-out cross validation runs was evaluated.

The regression coefficients and their standard deviations cross validation runs are

shown in Table 5. The variation ratio between standard deviation and the absolute

value of the regression coefficients were employed to assess the model stability. The

coefficient variation ratios were increasing slightly from leave-one-out to leave-three-out

experiments. In the leave-three-out experiment, the variation ratios of all regression

coefficients were less or equal than 0.20 except X4 which reached as high as a variation

ratio of 0.28. Overall, the regression coefficient variations were small compared to their

amplitudes. This outcome indicated that the selected six prediction variables were a

robust subset of features to predict PET imaging quality improvements in terms of

%∆SUVpeak.

4. Discussion

This work investigated a high dimensional space of respiratory motion pattern features

with the aim of predicting improvements in respiratory-gated PET/CT imaging

metrics relative to free-breathing static PET/CT. By using only respiratory pattern

characteristics, a model of 6 variables (features) was developed to predict PET image

quality improvements due to gating in terms of relative change in SUVpeak, %∆SUVpeak,

which would allow for individual patient assessment prior to PET/CT acquisition.

The averaged prediction accuracy was higher than 90% over the population of 22

patients when using the leave-one-patient-out cross validation. While other investigators

have built predictive models of respiratory motion patterns (McCall & Jeraj 2007, Ren
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et al. 2007, Riaz et al. 2009), particularly for application to respiratory-gated radiation

therapy, none have explicitly linked them to changes in quantitative molecular imaging

with PET/CT. Our prediction model would enable clinicians to efficiently and accurately

evaluate uncertainties due to respiratory motion prior to PET/CT acquisition, which

may have an impact on patient care strategies. For example, the following patient-

specific workflow could be enacted:

• With patient lying on PET/CT scanner bed, acquire representative sample

respiratory trace (e.g., < 5 minutes).

• Calculate respiratory features and predict changes in SUVpeak metric due to motion.

• Determine whether quantitative changes exceed predefined threshold (e.g., 10%

change in SUVpeak ± 95% confidence interval of model prediction).

• If prediction exceeds threshold, patient would likely to benefit from respiratory-

gated PET/CT and one could proceed with the image acquisition under free-

breathing conditions.

• If predicted change in image metric is not significant, patient is not likely to benefit

from respiratory-gated PET/CT due to the respiratory pattern. Instead, one

could implement more invasive motion management strategies such as abdominal

compression or active breathing control prior to image acquisition.

Interestingly, this workflow relied only on respiratory pattern parameters to make

a prediction on changes in PET quantification. When prior CT images were available

for review, the model could in principle incorporate additional factors such as lesion

location. However, the gains in predictive power when including prior CT factors were

not observed to be significant and were therefore omitted from the final model. This may

be due in part to sufficient correlation between the external abdominal displacement

and the internal tumor motion, which does vary between patients. Nevertheless, the

preliminary model validation was robust for this cohort of patients with thoracic and

abdominal lesions of differing location, meaning that respiratory patterns alone appeared

to account for a large percentage of the variance in observed PET image parameters.

A crucial component of the prediction model was its construction from generalized

statistical regression methods. Since it was independent of both the respiratory pattern

measuring device and PET/CT scanner, the analysis could be replicated at other clinical

and academic centers. Specifically, a different set of prediction model coefficients could

be derived when using a different combination of PET/CT system and respiratory

measurement device. The extracted respiratory pattern features would potentially vary

for predicting imaging changes generated by different respiratory gating algorithms,

as quantitative improvements in phase-gated PET images may depend on measures

of phase shifts due to variable breathing cycle durations while improvements in fixed

amplitude-gated PET images may depend on measures of baseline displacement drifts.

However, the sensitivity of such models to accurately predict changes in individual

patients would likely remain highest during the end-exhale portion of the breathing cycle

at times of lower residual motion and lowest during fast phase transitions to peak inhale
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at times of high residual motion. Different SUV metrics, such as SUVmax or SUVmean,

could also be chosen to fit an alternate statistical model. For example, an SUVmax

model would tend to have high inter-patient variability in the prediction accuracy due

to the influence of noise on image parameter changes. On the other hand, an SUVmean

model would yield lower correlation between respiratory pattern parameters and image

parameters as the influence of motion on SUVmean is dependent upon the region-of-

interest that defines the lesion. The SUVpeak prediction model balances the impact of

noise with sufficient sensitivity to respiratory motion. Ultimately, the flexibility afforded

with this approach enabled the individualization of patient management for respiratory-

gated PET/CT that over time could be cross-calibrated between scanners, respiratory

motion surrogates, and gating methods in multi-institution trials.

The study was limited primarily by a small patient sample size of only 22 patients.

Future work includes a completely independent validation of the prediction model on

a second test cohort of patients. This would enable the application of the model as a

decision tool, whereby sample respiratory traces for a given a patient could inform the

manner by which respiratory motion should be managed during PET/CT acquisition.

Alternatively, the tool may be used after a PET/CT acquisition to assess whether

a free-breathing static or respiratory-gated image should be reconstructed, as some

patient images may not benefit from any form of motion management. Furthermore,

the predicted changes in SUV metrics between respiratory-gated acquisition and free-

breathing static acquisition may relate an estimate of the expected quantitative

uncertainty when assessing routine clinical PET images. For instance, the reported

SUV in a region of interest could carry a confidence interval over which clinicians could

reliably interpret the findings.

5. Conclusion

The results of the prediction model supported the need for improved patient-specific

management of respiratory motion during PET/CT acquisition. This work addressed

such a need by proposing a comprehensive tool to support clinical decision-making.

Increasingly accurate and robust prediction models may pave the way for efficient patient

classification and motion uncertainty mitigation, which would assist clinicians when

utilizing quantitative PET/CT for therapy target definition and response assessment.
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