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Online Seizure Prediction Using An Adaptive
Learning Approach

Shouyi Wang, Wanpracha Art Chaovalitwongse, Stephen Wong

Abstract—Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures. Being able to
predict impending seizures could greatly improve the life of patients with epilepsy. In this study, we propose a new adaptive
learning approach for online seizure prediction based on analysis of electroencephalogram (EEG) recordings. For each individual
patient, we construct baseline patterns of normal and pre-seizure EEG samples, continuously monitor sliding windows of EEG
recordings, and classify each window to normal or pre-seizure using a K-nearest-neighbor (KNN) method. A new reinforcement
learning algorithm is proposed to continuously update both normal and pre-seizure baseline patterns based on the feedback from
prediction result of each window. The proposed approach was evaluated on EEG data from 10 patients with epilepsy. For each
one of the 10 patients, the adaptive approach was trained using the recordings containing the first half of seizure occurrences,
and tested prospectively on the subsequent recordings. Using a 150-minute prediction horizon, our approach achieved 73%
sensitivity and 67% specificity on average over 10 patients. This result is shown to be far better than those of a non-update
prediction scheme and two native prediction schemes.

Index Terms—adaptive online seizure prediction, reinforcement learning, time series pattern recognition
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1 INTRODUCTION

Epilepsy is one of the most common neurological
disorders, affecting approximately 1% of the world’s
population [15]. Epileptic seizure onset is often con-
sidered as an abrupt, unpredictable phenomenon. The
unpredictability of seizures represents a significant
source of morbidity in patients with epilepsy. Patients
with epilepsy frequently suffer from seizure-related
injuries due to loss of motor control, loss of con-
sciousness or delayed reactivity during seizures [37].
Current technology has yet to reach a point where
epileptic patients can be warned by an automated
system to predict seizure onsets. One crucial question
in seizure prediction is whether an identifiable, spe-
cific, pre-seizure state exists. Over the recent years,
there has been accumulating evidence indicating that
a transitional pre-seizure state does exist prior to
seizure onsets [20], [29], [41], [35], [30], [5], [7]. The
majority of the quantitative evidence supporting the
existence of a pre-seizure state is derived from EEG
analyses. In the literature, seizure prediction algo-
rithms are generally designed to capture some spe-
cific EEG features to analyze precursors of imminent
epileptic seizures. Examples of published features in-
clude dynamical entrainment [23], [17], correlation di-
mension [28], dynamic similarity index [41], accumu-
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lated energy [32], phase synchronization [34], wavelet
and median filtering [36]. Iasemidis et al. [20] noted
premonitory pre-seizure changes based on the anal-
ysis of dynamical entrainment. Lehnertz and Elger
[29] showed that the correlation dimension decreases
prior to seizures. Le van Quyen et al. [41] reported
a reduction in the dynamical similarity index before
seizure occurrence. Mormann et al. [35] observed that
there was a relative decrease of signal power in the
delta band of the EEG up to hours prior to seizure
onsets. They also demonstrated statistically significant
discrimination between pre-seizure and normal brain
states. In our previous study, Chaovalitwongse et al.
[5] investigated the EEG characteristics of pre-seizure
transition and found that the probability of detecting
pre-seizure transition was as high as 83% using the
optimized critical EEG channels. In a later study, we
built a network-based approach to study the evolution
of epileptic seizures by investigating the EEG syn-
chronization among different brain areas. The evolu-
tional changes of the network structure hours prior to
seizure onsets indicated that the seizures may slowly
develop by an evolutional epileptogenic process in-
stead of an abrupt change [7]. Recently, Feldwisch-
Drentrup et al. [16] investigated the possibility of
combining different seizure prediction algorithms and
different EEG features to improve prediction accuracy.
Using Boolean operations, they showed the different
prediction methods with different EEG features can
be combined and can generate significant better per-
formance than each individual method. In particular,
they found that sensitivity can be markedly improved
by combining dynamic similarity index [41] and phase
synchronization [34], given a fixed maximum false
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prediction rate (FPR).
Although there have been extensive studies that

develop the state-of-the-art seizure prediction algo-
rithms to support the existence of the pre-seizure state
[23], [28], [41], [32], [10], [34], [36], prospective seizure
prediction from EEG remains a challenging problem.
Computational analyses of most studies in the liter-
ature are focused on retrospective analyses of EEG
recordings, which in turn only address the predictabil-
ity of epileptic seizures rather than the prediction.
A significant challenge of seizure prediction is the
high intra-individual variability of epileptic seizures
with a variable degree of success [22]. Although many
nonadaptive methods for retrospective analyses have
achieved promising results, this variability makes it
difficult to develop a universal robust predictor to
accurately predict seizures for a wide range of patients
with different seizures. This variability also highlights
the emerging need for an automated adaptive ap-
proach for epileptic seizure prediction. A number
of adaptive seizure prediction algorithms have been
proposed to account for the high inter- and intra-
individual variability of epileptic seizures [22], [23],
[45], [42], [8]. Iasemidis et al. [22], [23] and Sackellares
et al. [45] developed optimization-based prediction
algorithms which, based on dynamical synchroniza-
tion in the human epileptic brain, adaptively selects a
group of critical EEG electrodes to predict impend-
ing seizures. More recently, Iasemidis’s group pub-
lished similar results, with high sensitivity and speci-
ficity, and long warning times prior to seizures on
prospective seizure prediction in rodents with chronic
epilepsy [17]. Rajdev et al. [42] also proposed an
adaptive prediction algorithm based on a Wiener im-
plementation of autoregressive (AR) modeling, which
was tested on rats. A warning was issued if the
prediction errors over a moving window exceeded a
threshold. The threshold was continuously updated
online, and it was optimized to maximize the sensi-
tivity and latency, while minimizing the FPR.

The above-mentioned adaptive seizure prediction
approaches are generally based on an adaptively-
optimized set of EEG channels [22], [23], [45] or an
adaptive threshold [42]. In principle, these approaches
employed the prediction settings optimized by one or
several recently occurred seizures to predict the next
seizure. Due to the high intra-individual variability
of epileptic seizures, the characteristics of the EEG
patterns of the next seizure may become quite dif-
ferent from those of its preceding ones. The current
adaptive approaches actually do not make full use
of the whole monitored EEG recordings, and thus
have problems to deal with the challenging prob-
lems of high intra-individual variability of seizures
in prediction. Therefore, it is extremely important for
a prediction system to accumulate more and more
knowledge of predictive patterns over time instead
of only holding ‘short-term memories’. In this study,

we develop an automated adaptive learning approach
for online seizure prediction. The approach is based
on quantitative EEG analysis, time series classifica-
tion, and reinforcement learning. For each individual
patient, after the first seizure in the EEG recording,
the approach will construct baseline EEG patterns
from normal period and pre-seizure period. Then
our approach continuously monitors and classifies
sliding windows of EEG recordings as normal or pre-
seizure based on a K-nearest-neighbor (KNN) rule to
classify each EEG window to the most similar baseline
patterns. Our approach in turn uses a gradient-based
reinforcement learning algorithm to continuously up-
date both normal and pre-seizure baseline patterns
based on the feedback of true or false prediction.
This study is among the first to investigate the use
of adaptive learning in seizure prediction [22], [45],
[18], [42]. Its framework can be applied to other on-
line monitoring problems such as network intrusion
detection and production process control.

The rest of this paper is organized as follows. In sec-
tion 2, the background and previous related work are
discussed. The data collection, feature extraction, the
adaptive seizure prediction approach, and the evalua-
tion metrics of prediction performance are presented
in section 3. The experimental results are provided
and discussed in Section 4, and we conclude the paper
in Section 5.

2 BACKGROUND AND RELATED WORKS

2.1 Overview of Machine Learning Techniques

With the explosion of computing power in the past
decade, machine learning and pattern recognition
techniques have become important tools in the analy-
sis of various biological problems, such as cancer re-
search [31], cognitive neuroscience [12], and genomics
and proteomics [9]. Machine learning best depicts
the computational methods that allow a system to
evolve behaviors through an automated process of
knowledge acquisition from empirical data. Machine
learning techniques generally fall into three broad
categories: supervised learning, reinforcement learn-
ing and unsupervised learning. A supervised learning
technique usually first finds a mapping between in-
puts and outputs of a training dataset, and then makes
predictions for inputs that it has never seen. A large
number of supervised learning algorithms have been
developed that can be categorized into several major
groups, including neural networks, support vector
machines, locally weighted learning, decision trees,
and Bayesian inference [26]. Reinforcement learning
is another learning paradigm in which an agent is
able to learn a decision policy by ‘trial and error’. A
reinforcement learner receives feedback of its actions
and makes adjustments to its actions accordingly
[50]. Reinforcement learning is a natural framework
for building models to accumulate knowledge from
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previously learned tasks to new tasks with increasing
complexity and variability. Reinforcement learning
techniques have been applied to many complex learn-
ing tasks, such as robot control [14] and traffic net-
work control [44]. Unsupervised learning is inspired
by the brain’s ability to recognize complex patterns of
visual scenes, sounds or odors. It takes root in neu-
roscience/psychology and is established on the basis
of information theory and statistics. An unsupervised
learner usually performs clustering or associative rule
learning to extract the implicit structure of a given
dataset. The established clusters, categories or asso-
ciative networks are then used for decision making,
prediction, or efficient communication [13].

2.2 EEG Analysis for Epileptic Seizures
Most seizure prediction methods are based on quan-
titative analysis of the EEG, and can be broadly
categorized into univariate and multivariate analysis,
respectively.

Univariate analyses focus on the features of each
single channel of EEG. Based on the morphological
characteristics of EEG, Lange et al. [27] reported that
there were consistent changes in EEG spike activity
prior to seizures. With the help of advanced signal
processing methods, more complex univariate EEG
feature extraction techniques have been developed for
seizure prediction. Litt et al. [32] introduced signal
energy variations to seizure prediction, and reported
EEG changes hours before seizure onsets. Autore-
gressive (AR) and autoregressive moving average
(ARMA) models have also been utilized for seizure
prediction. Characteristic changes of AR/ARMA co-
efficients before seizure onsets were reported in [46],
[8]. Nonlinear measures based on chaos theory have
drawn considerable attention in EEG studies of brain
activity. The two well-known nonlinear chaotic mea-
sures that have been applied in seizure prediction
are the Lyapunov exponent and correlation dimen-
sion. Iasemidis et al. [22] monitored the evolution
of Lyapunov exponents extracted from EEG data.
They designed an adaptive prediction scheme that
attempted to select the most informative channels
to predict an impending seizure with optimization
techniques. Channel selection was adjusted after ev-
ery seizure since it was assumed that the pre-seizure
dynamics may change from seizure to seizure over
time. Lehnertz et al. [28] investigated the feasibility of
seizure prediction based on transitions of correlation
dimension, a feature that is considered as an index of
neuronal complexity.

Multivariate analyses take more than one chan-
nel of EEG into account simultaneously rather than
only looking at each channel individually. The most
influential multivariate analysis methods in seizure
prediction are phase synchronization and dynamical
entrainment. Le Van Quyen et al. [40] used phase
synchronization to distinguish pre-seizure features

from normal state. They compared the normal syn-
chronization patterns taken from 3-10 hours before
seizures with the pre-seizure patterns taken from 30
minutes before seizures. The variables that achieved
best discriminating performance were chosen for each
individual patient. Mormann et al. [34] designed a
seizure prediction scheme based on their finding that
the degree of synchronization may decrease up to
hours prior to seizure onsets. Iasemidis et al. [23] ex-
plored the effectiveness of a method called dynamical
entrainment, which estimated the difference of the
largest Lyapunov exponents from any two observed
time series of EEG. A progressive convergence of
the dynamical entrainment was considered as sign of
transition from normal to pre-seizure states.

Our group has made extensive EEG studies to
investigate the classifiability of the brain’s pre-seizure
and normal states [6], [2], [3], [4]. Our classification
model achieved a a testing accuracy of over 70% on
average. The experimental results indicate that it may
be possible to design and develop seizure warning
algorithms for diagnostic and therapeutic purposes.

2.3 Related Work in Seizure Prediction and Chal-
lenges
In the 1970s, accumulating evidence from clinical
practice suggested that epileptic seizures might be
predicable. Viglione and Walsh started a project to
investigate the predictability of seizures based on EEG
data [52]. Iasemidis et al. pioneering work started in
the 1980s [24], [25], [21]. Since then, many studies have
been carried out aiming to predict epileptic seizures.

Most current seizure prediction methods involve
two steps. First, univariate or multivariate EEG fea-
tures are extracted from a sliding window. Then each
EEG epoch in the moving window is classified as
either pre-seizure or normal based on an optimized
threshold level. Whenever a windowed EEG epoch
is classified as pre-seizure, a warning alarm is trig-
gered indicating that an impending seizure may occur
within a pre-defined prediction horizon. Although
some methods have shown promising results for se-
lected patients, the reliability and repeatability of the
results have been questioned when tested on other
EEG datasets. Many of the earlier optimistic findings
were irreproducible or achieved poor performance in
extended EEG datasets [1]. This is not surprising since
the optimal threshold obtained from a limited number
of patients may not be generalizable. Manually tuning
a threshold level for each individual patient is a sub-
jective procedure and would pose a significant burden
on physicians and patients. The inability to apply
these techniques to a wide spectrum of epileptic pa-
tients with a variety of types of epileptic seizures may
represent the greatest limitation of current seizure
prediction methods.

Given our accumulated knowledge regarding
seizure prediction, we conjecture that a promising
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approach may be the one that processes adaptive
learning ability and is capable of achieving personal-
ized seizure prediction autonomously. The flowchart
of a prospective adaptive seizure prediction system is
illustrated in Figure 1. In this study, we attempted
to construct an adaptive prediction system using
machine learning algorithms. We developed a novel
adaptive learning approach, which combines rein-
forcement learning, online monitoring, and feedback
control theory into an online seizure prediction sys-
tem. The proposed adaptive seizure prediction ap-
proach can be readily integrated to any clinical EEG
system. With the attractive adaptive learning abil-
ity, the proposed approach is capable of achieving
a personalized seizure prediction through baseline-
updating as it monitors more and more EEG record-
ings from a patient.
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Fig. 1. A prospective adaptive seizure prediction sys-
tem, which can be adjusted to each individual patient
automatically based on feedbacks.

3 MATERIALS AND METHODS

3.1 Data Collection
In this study, we used a dataset containing long-
term continuous intracranial EEG recordings from 10
epileptic patients with temporal lobe epilepsy. The
placement of the EEG electrodes is shown in Figure 2,
which is a modified image of the inferior transverse
view of the brain from Potter [38]. The EEG recordings
consist of 26 standard channels. Recording durations
ranged from 3 to 13 days. Expert epileptologists an-
notated the EEG recordings to determine the number
of seizures, their onset, and their offset points. The
characteristics of the 10 patients and the EEG data
statistics are outlined in Table 1.

3.2 Data Preprocessing & Feature Extraction
Since EEG signals are highly nonstationary and seem-
ingly chaotic, there has been an increasing interest in
analyzing EEG signals in the context of chaos theory
[43]. Several commonly used chaotic measures in
many recent studies include largest Lyapunov expo-
nent [22], correlation dimension [48], Hurst exponent
[11] and entropy [39]. Among these EEG measures,
the Lyapunov exponent has been shown to be useful
in characterizing a chaotic system [51]. Lyapunov

TABLE 1
Characteristics of EEG data

Patient Gender Number of EEG Length Average Seizure Type
/Age Seizures (hour) Inter-seizure

Interval (hour)
1 F/45 7 85.18 12.17 CP, SC
2 M/60 7 280.86 40.12 CP, GTC, SC
3 F/41 24 212.28 8.85 CP
4 M/19 17 315.23 18.54 CP, SC
5 M/33 17 286.76 16.87 CP, SC
6 M/38 9 74.60 8.29 CP, SC
7 M/44 23 146.15 6.35 CP, SC
8 M/29 19 142.32 7.49 CP, SC
9 F/37 20 276.65 13.83 CP, SC
10 M/37 12 231.61 19.30 CP, GTC

Total 155 2051.63
Seizure types: CP, complex partial; SC, subclinical; GTC, generalized tonic/clonic.

Fig. 2. The interior transverse view of the brain and the
placement of the 26 EEG electrodes.

exponents measure the degree of sensitivity to ini-
tial conditions for a dynamical system. For an n-
dimensional dynamical system, there will be n corre-
sponding Lyapunov exponents that measure the expo-
nential rate of divergence of the different trajectories
in the phase space. If an exponent is positive, it indi-
cates that the corresponding orbits locally defined by
that exponent diverge exponentially. The magnitude
of the exponents indicates the degree of divergence.
The largest Lyapunov exponent in a chaotic system is
usually more reliable and reproducible than the esti-
mation of all the exponents [51], and is an important
indicator to characterize a chaotic system. In our pre-
vious studies, we used an estimation algorithm called
the short-term largest Lyapunov exponent (STLmax)
to quantify EEG dynamics [22]. We employed this
measure in the current study. A detailed calculation of
STLmax as well as parameter selection and variation
of STLmax has been explained by Iasemidis in [19].

3.3 Adaptive Seizure Prediction Approach
The schematic structure of the proposed adaptive
seizure prediction system is illustrated in Figure 3. A
sliding window was applied to monitor continuous
multichannel EEG data. The window size is 10 min-
utes with 50% overlap between two successive win-
dows. Two baselines of normal and pre-seizure states
were constructed and initialized by the beginning part
of the EEG recordings for each patient. The two base-
lines were used to classify the monitored EEG epochs



5

of the sliding moving window using a K-nearest-
neighbor (KNN) method. All the baseline samples
and windowed EEG epochs were represented in terms
of the multichannel time profile of STLmax values.
The two baselines were updated by a reinforcement
learning algorithm based on feedbacks of prediction
actions (true or false). The adaptive seizure prediction
system is discussed in detail in the following.
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Fig. 3. Schematic structure of the adaptive prediction
system.

3.3.1 Baseline Construction & Initialization

To start our prediction system, we first initialize the
pre-seizure and normal baseline samples. The selec-
tion of baseline samples depends on the presumed
time length of pre-seizure period, which is often
considered the prediction horizon in the seizure pre-
diction literature. The pre-seizure duration has been
reported to be between a few minutes and several
hours prior to seizure onset, and remains an open
question in epilepsy research. In this study, we tried
three prediction horizons (30, 90, and 150 minutes).
For convenience, we denote the length of the predic-
tion horizon as H minutes, then the EEG recordings
can be divided into the following three periods:

• Pre-seizure period: 0-H minutes preceding a
seizure onset.

• Post-seizure period: 0-20 minutes after a seizure
onset.

• Normal period: between pre- and post-seizure
periods.

The initial samples of the two baselines were ran-
domly chosen from the normal and pre-seizure pe-
riod preceding the first seizure onset. The length of
the baseline samples is equal to that of the moving
window. Since there are no guidelines available to
determine the number of samples in each baseline,
we tentatively stored a fixed number of 50 samples in
each baseline.

3.3.2 KNN Prediction Procedure
With baselines for normal and pre-seizure states, it is
intuitive to classify a windowed EEG epoch based on
its degree of similarity to the two baselines. For this
purpose, KNN is a reasonable choice because it classi-
fies a new unlabeled sample by comparing the sample
with all the samples in the two baseline sets. For each
EEG epoch in the moving window, the KNN method
finds its K nearest (best matching) samples in each
baseline, and compares the its averaged distances to
the two groups of K-nearest neighbors. The epoch is
classified to a baseline that is ‘closer’ to it. The KNN
prediction procedure is described in the following.

KNN methods use similarity measures to quantify
the closeness between a moving-window EEG and
baseline samples. We employed three frequently-used
time-series similarity measures. If we denote two
time-series of STLmax as X and Y with equal length
of n, then the three types of distances are briefly
described as follows.

• Euclidean distance (EU): measures the degree of
similarity in terms of amplitude of the data. The
EU between X and Y is defined as EDxy =√∑

n
p=1(xp − yp)2.

• T-statistical distance (TS): a statistical distance
measure between two time series derived from
the t-test. It is frequently used to determine if the
mean values of two time series differ from each
other in a significant way under the assumptions
that the paired differences are independent and
identically normally distributed. The TS between
X and Y is calculated by TSxy =

∑n
p=1 |xp −

yp|/
√
nτ|X−Y |, where τ|X−Y | is the sample stan-

dard deviation of the absolute difference between
the time series X and Y .

• Dynamic time warping (DTW): DTW measures
similarity based on the best possible alignment
or the minimum mapping distance between two
time series. The two time series are ‘warped’
in the time domain to find the optimal pattern
matching between them. DTW is particularly
suited to matching time series patterns indepen-
dent of time variations. A detailed calculation of
DTW can be found in [47].
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Once a similarity measure is chosen, we can obtain
the distance between a baseline sample and an EEG
epoch in the moving window. For a multichannel EEG
epoch, the window-sample distance is calculated as
follows:

dpre,i =
M∑
j=1

distance(Sj
pre,i, S

j
mw) (1)

dint,i =

M∑
j=1

distance(Sj
int,i, S

j
mw) (2)

where M=26 is the number of EEG channels. Sj
pre,i

and Sj
int,i is the jth channel of EEG time series

in the ith pre-seizure and normal baseline sample,
respectively; Sj

mv,i is the jth channel of EEG in the
windowed EEG epoch; dpre,i and dint,i are the dis-
tances between the windowed EEG and the ith sample
in the pre-seizure and normal baseline, respectively.
The term distance in the above formula represents a
time series distance measure, which denotes EU, TS,
or DTW in this paper.

We used four choices of K. They were three, seven,
half, and all of the baseline samples, respectively.
Once K is fixed, the weighted summation of K
smallest window-sample distances in a baseline was
considered as the distance between the windowed
EEG epoch and that baseline. Therefore, we call the
two distances as window-normal distance DK

int and
window-preseizure distance DK

pre, respectively. For
each windowed EEG epoch, its distances to the two
baselines can be calculated by DK

pre =
∑K

k=1 αkdpre,k
and DK

int =
∑K

k=1 βkdint,k. The αk and βk are the
weights of the kth pre-seizure and normal baseline,
respectively. The dpre,k and dint,k are the distances
between the windowed EEG epoch and its kth near-
est neighbor in the pre-seizure and normal baseline,
respectively. Once the two baseline-window distances
are obtained, the prediction decision can be made by:

predictor =

{
1, if DK

pre/D
K
int ≤ R∗ (issue an alarm)

0, otherwise (no warning);

where the threshold R∗ can be used to control the
sensitivity of the prediction system. In this study, we
employed R∗ = 0.99 to make the prediction less
sensitive to noises which would lead to many false
predictions. Note that the impact of this threshold is
also investigated in this study.

3.3.3 Evaluation of a Prediction Result
Baseline updating depends on prediction evaluation
feedback. We define the evaluation metrics of each
prediction outcome by the following. If the predefined
prediction horizon is H minutes, then we can catego-
rize each prediction outcome into one of the following
four subsets:

• True positive (TP): if predictor = 1 and a seizure
occurs within H minutes after the prediction.
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Fig. 4. Schematic structure of the KNN-based predic-
tion rule.

• False positive (FP): if predictor = 1 and no seizure
occurs within H minutes after the prediction.

• True negative (TN): if predictor = 0 and no
seizure occurs within H minutes after the pre-
diction.

• False negative (FN): if predictor = 0 and a seizure
occurs within H minutes after the prediction.
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Fig. 5. The categorization of prediction outcomes.
Each prediction outcome can always be classified into
one of the four subsets (TP, FP, TN, and FN).
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Fig. 6. A demonstration of the evaluation metrics: TP,
FP, TN, and FN.
3.3.4 Baseline Updating Mechanism
The flowchart of the baseline update framework from
delayed prediction feedback is shown in Figure 7. In
medical practice, a physician mentally compares the



7

EEG patterns from an individual with the patterns
from a database of many other patients and healthy
people. The search of the best matching patterns can
be global within the whole database, and can also be
local within a sub-group of the database. We designed
both local and global update rules inspired by this
consideration. In particular, we designed four update
rules including score-based local update (SL), score-
based global update (SG), distance-based local update
(DL), and distance-based global update (DG).
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Fig. 7. Flowchart of the retrospective baseline-
updating framework.

Score-Based Update: In this prediction scheme, we as-
sume that different baseline samples have different
power in decision making. We assigned a score to each
baseline sample to indicate its ‘importance’. The basic
idea of score updating is to reinforce the scores of
the ‘good’ baseline samples when correct predictions
are made, and decrease the scores of ‘bad’ baseline
samples when false predictions are made. The score
of a baseline sample is determined by its window-
sample distances. For example, if a windowed EEG
epoch is mis-classified as pre-seizure via the KNN
evaluation, then the pre-seizure baseline samples that
are closest to, and the normal baseline samples that
are furthest from, this windowed epoch will see their
scores penalized according to their window-sample

distances. The closest pre-seizure baseline sample and
the furthest normal baseline sample receive the high-
est penalties. The mathematical formulations of the
score updating rules are stated in the following.

At the beginning, the initial scores of the baseline
sample are all equal, and are given by:

αi = βi =
1

N
, i = 1, . . . , N, (3)

where αi and βi are the scores of the ith sample
in the pre-seizure and normal baseline, respectively.
N = 50 is the number of samples in each baseline.
Let r ∈ (0, 1) denote the learning rate to control the
update size for the scores, then the score update rule
is represented as follows:

• For feedback of TP or FN (the windowed EEG is
in pre-seizure period), the scores are updated by:

αi = αi(1−
dpre,i − dpre

dpre
)× r, (4)

βi = βi(1 +
dint,i − dint

dint
)× r. (5)

• For feedback of FP or TN (the windowed EEG is
in normal period), the scores are updated by:

αi = αi(1 +
dpre,i − dpre

dpre
)× r, (6)

βi = βi(1−
dint,i − dint

dint
)× r, (7)

where ∀i = 1, 2, . . . , N , dpre =
∑N

i=1 dpre,i/N , and
dint =

∑N
i=1 dint,i/N .

For a windowed EEG epoch, the system makes a
prediction by the KNN method. The feedback of this
prediction is available until either of the following
occurs: 1) the prediction horizon passes, or 2) a seizure
occurs. Once the feedback of this prediction is given,
the score-based retrospective baseline update rules are
as follows:

• For case of FP: replace the lowest-scored sam-
ple in the normal K-nearest neighbors with the
moving-window EEG epoch.

• For case of FN: replace the lowest-scored sample
in the pre-seizure K-nearest neighbors with the
moving-window EEG epoch..

• For cases of TP and TN: keep the current baseline
samples unchanged.

When K equals to N , the above update is a global
update rule that replaces the global lowest-scored
baseline sample. When K is smaller than N , it is a
local update rule which only considers the local K-
nearest neighbors of a windowed EEG epoch. The
score-based local and global update rules are denoted
as ‘SL’ and ‘SG’, respectively, in the remaining part of
this paper.
Distance-based Update: The distance between two EEG
epochs indicates the degree of similarity. Intuitively,
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a shorter distance means a better match, and a larger
distance indicates a worse match. For a windowed
EEG epoch, the goodness of a baseline sample de-
pends on its window-sample distances. For example,
suppose a normal state windowed EEG epoch, via
KNN evaluation, is falsely classified as pre-seizure.
We consider the furthest normal baseline sample as
the ‘bad’ baseline sample, which may be the primary
cause of the false prediction, and we replace it with
the windowed EEG epoch. In summary, for a win-
dowed EEG epoch, the retrospective distance-based
baseline update rules are as follows:

• For feedback of FP: replace the furthest sample
in its K-nearest neighbors of the normal baseline
with the corresponding windowed EEG epoch.

• For feedback of FN: replace the furthest sample in
its K-nearest neighbors of the pre-seizure baseline
with the corresponding windowed EEG epoch.

• For feedback of TP or TN: keep the current
baseline samples unchanged.

Similar to ‘SL’ and ‘SG’, the distance-based update can
also be local and global depending on the value of K.
The distance-based local and global update rules are
denoted as ‘DL’ and ‘DG’, respectively.

The overall computational complexity of our algo-
rithm can be analyzed as follows. For the complexity
of KNN, suppose each sliding window epoch has n
points and each baseline has N samples. The Eu-
clidean distance calculation takes O(2nN). Finding
the K nearest neighbors involves sorting, which takes
additional O(2N2) steps. Finally, the summation of
K distances of each baseline and the KNN decision-
making process take O(2K) steps. In summary, the
KNN-based classification takes O(2nN + 2N2 + 2K).
For the score-based updating rule, according to Equa-
tions (4)-(7), the score update of a single baseline
sample runs O(1) steps, thus the score update of 2N
baseline samples takes O(2N) steps. The scores of
baseline samples are updated at every sliding window
step. If a wrong prediction is made, a baseline with the
lowest score will be replaced, which takes O(N) steps.
For the distance-based updating rule, two baselines
are only updated when a wrong prediction is made.
It takes O(1) steps to find the baseline sample to
be replaced, since the distances have already been
computed and sorted in the KNN step.

3.4 Evaluation of Prediction Performance

To evaluate a prediction model, the most commonly
used performance measures are specificity and sen-
sitivity. In seizure prediction studies, sensitivity is
usually defined as the number of correctly predicted
seizures divided by the total number of seizures.
A seizure is considered to be correctly predicted if
there is at least one warning within its preceding
prediction horizon. In this study, we also employed
this definition of sensitivity, denoted as senblk. To

estimate the prediction specificity, most studies cal-
culated a false prediction rate, which is defined by
the number of false predictions per hour (or unit
time). However, false prediction rate does not provide
enough information to infer the effect of prediction
horizon on the prediction performance. For example,
a patient has to wait until the end of prediction
horizon to determine if a warning is false. Given the
same false prediction rate, an algorithm with a 3-hour
prediction horizon will give a patient much longer
false awaiting time than the one with a 10-minute
prediction horizon. To overcome this bias, Mormann
et al. [33] suggested that a prediction specificity can be
estimated by quantifying the portion of time during
the normal period that is not considered to be false
awaiting time. We herein employed this specificity
measure, denoted as speblk. A demonstration of the
senblk and speblk quantification is shown in Figure 8.
In turn, we also define the overall prediction perfor-
mance (OPP) as an average of senblk and speblk, i.e.,
OPP = (senblk+speblk)/2. The OPP values can range
from [0.0, 1.0]. An accurate prediction model should
have an OPP close to 1, and a random model should
have an OPP around 0.5. The closer the OPP value
to one, the better the prediction performance.�������� H
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Fig. 8. A demonstration of the prediction procedure
based on the distance ratio DK

pre/D
K
int. The definition

of sensitivity (senblk), specificity (speblk), false alarms,
and false seizure awaiting periods are also illustrated.

Receiver Operating Characteristic (ROC) Analysis:
In any prediction algorithm, one can always make

a trade-off between sensitivity and specificity, such
as increasing sensitivity at the expense of a lower
specificity. A common way to compare different pre-
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diction models is to construct a ROC curve that plots
sensitivity versus (1-specificity) whereas the decision
boundary of the prediction model is varied through-
out its range. The area under the ROC curve (AUC)
is commonly used to access the overall prediction
power of a prediction model. AUC values are usually
between 0.5 and 1. A perfect prediction model has an
AUC value of 1 while a random chance model has an
AUC of around 0.5.

4 RESULTS

4.1 Computational Settings
The proposed prediction approach was tested on EEG
recordings of 10 patients with epilepsy using three
prediction horizons, four baseline-update rules, four
settings of KNN, and three types of similarity mea-
sures. The summary of the parameter settings of the
prediction system is shown in Table 2.

TABLE 2
Summary of the settings of the prediction system.

Parameter Setting Values or Choices

Moving Window 10 minutes length with 50% overlap each step

Prediction Horizon 30 minutes, 90minutes, 150minutes

Similarity Measure EU, TS, DTW

The value of K 3, 7, half, all
1. Non-update (No update to the initial baselines)
2. SL (score-based local update)

Update Scheme 3. SG (score-based global update)
4. DL (distance-based local update)
5. DG (distance-based global update)

4.2 Random Predication Models
There has been no definite conclusion whether
prospective algorithms can predict seizures based
on EEG analysis. Before applying it to any clinical
application, it is necessary to evaluate if the de-
signed prediction model is indeed able to perform
better than a chance model. Therefore, we compared
the performance of the proposed adaptive prediction
model with two random prediction schemes: periodic
prediction scheme and Poisson prediction scheme.
The periodic prediction scheme gives warnings at a
fixed time interval T . The Poisson prediction scheme
issues a warning according to an exponential dis-
tributed random time interval with a fixed mean λ.
We performed the periodic prediction scheme and
the Poisson prediction scheme for each patient. The
values of λ and T were determined according to
the average length of inter-seizure intervals for each
patient as shown in Table 1. For example, for patient
1, the averaged inter-seizure interval is 12.17 hours,
we set λ = T = 12.17 hours. This is the best value
setting of T and λ the one could obtain.

4.3 Prediction Performance of senblk and speblk

For each patient, the EEG recordings were divided
into training and testing dataset. The training dataset

is the EEG recordings that contain the first half of
seizure occurrences. It is used to train our approach
to find the best parameter setting. The testing dataset
is the EEG recordings that contain the second half of
seizure occurrences. It is used to test our prediction
approach prospectively using the best parameter set-
ting found from the training data. The best parameter
setting is defined as one with the highest OPP value.
In addition, to find the most appropriate trade-off
between sensitivity and specificity, we also added a
constraint that the senblk must be greater than 0.6,
and the speblk must be greater than 0.4. If none of the
settings meet this constraint, we simply selected the
one with the highest OPP value.

Table 3 summarizes the performance characteristics
of the adaptive learning prediction scheme in the
training and testing dataset. To determine the im-
portance and effectiveness of the proposed baseline-
update rule, we also summarizes the performance
characteristics of the non-update prediction scheme
in Table 3. The non-update prediction scheme em-
ployed the same initial baselines as the adaptive ones
for each patient, and kept the baseline unchanged
throughout the prediction process. Table 3 clearly
shows that the training and testing OPP values of the
adaptive learning approach are considerably higher
than those of non-update prediction scheme in all the
three prediction horizons. To compare with random
predictions, the prediction results of the periodic and
Poisson prediction schemes are also shown in Table
3. The adaptive learning approach performed much
better than the two random prediction schemes in
terms of the overall OPP values.

The adaptive prediction approach achieved the best
overall performance using the prediction horizon of
150 minutes. An example of the prediction outcomes
of the adaptive prediction system is also shown in
Figure 9. In general, the averaged testing OPP over
the 10 patients of the adaptive prediction approach is
0.70, which is 14%, 25%, and 27% higher than that
of non-update prediction scheme, the Poisson pre-
diction scheme, and the periodic prediction scheme,
respectively. Starting from the initial (less representa-
tive) baseline samples, the adaptive system increased
the prediction performance considerably by baseline-
updating for each individual patient. The experi-
mental results confirmed our goal that it is possible
to achieve personalized prediction through adaptive
learning approaches. In addition, one can observe an
increasing trend of the averaged OPP values for both
adaptive and non-update prediction schemes when
the prediction horizon increases from 30 minutes to
150 minutes. This may indicate that the prediction
horizon of 150 minutes is a better estimate of the real
length of pre-seizure periods. The length of prediction
horizon is very crucial since a better estimate of pre-
seizure periods will give better reinforcement feed-
backs to the adaptive learning system, and thus will
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Fig. 9. An example of the prediction outcomes of the adaptive prediction system for patient 6 using the prediction
horizon of 150 minutes. Other experimental settings are SG, K =all, and DTW. The vertical black lines are the
recorded seizures in this patient, and the dashed horizontal line is the threshold of distance ratio. A warning is
issued if the distance ratio falls below the threshold.

TABLE 3
The training and testing performance characteristics of the adaptive prediction approach and the non-update

prediction scheme. The performance characteristics of the two random prediction schemes (periodic and
Poisson) are also reported using T = λ = averaged length of inter-seizure intervals for each patient.

Adaptive Scheme Non-Update Scheme Possion Periodic
Training Testing Training Testing Predictor Predictor

Horizon Patient Setting senblk speblk senblk speblk Setting senblk speblk senblk speblk senblk speblk senblk speblk
1 SG-3-DTW 1.00 0.77 0.33 0.55 3-EU 0.67 0.82 0.33 0.48 0.00 0.53 0.00 0.53
2 SG-all-TS 0.67 0.87 1.00 0.62 all-DTW 0.67 0.65 1.00 0.24 0.00 0.35 0.00 0.35
3 DL-half-DTW 0.54 0.79 0.50 0.69 half-TS 0.69 0.43 0.20 0.75 0.17 0.52 0.17 0.52
4 SG-3-TS 0.38 0.95 0.00 0.97 3-TS 0.13 0.93 0.14 0.91 0.00 0.72 0.07 0.72
5 SG-3-DTW 0.63 0.60 0.25 0.74 3-DTW 0.88 0.25 1.00 0.31 0.00 0.39 0.00 0.39

30minutes 6 DG-half-DTW 1.00 0.73 0.75 0.86 all-EU 1.00 0.48 0.50 0.41 0.13 0.34 0.00 0.34
7 SL-7-DTW 0.70 0.71 0.44 0.73 all-TS 0.70 0.63 0.56 0.55 0.05 0.52 0.00 0.52
8 SL-7-EU 0.80 0.91 0.00 0.88 half-EU 0.20 0.90 0.00 1.00 0.06 0.77 0.12 0.77
9 SG-3-DTW 0.22 0.97 0.30 0.94 3-TS 0.67 0.46 0.80 0.36 0.05 0.95 0.05 0.95

10 SL-half-DTW 0.80 0.62 0.00 1.00 7-DTW 1.00 0.43 1.00 0.62 0.00 0.70 0.09 0.70
Ave. 0.62 0.79 0.31 0.80 0.62 0.59 0.54 0.50 0.06 0.96 0.06 0.96
PA 0.71 0.56 0.61 0.52 0.51 0.51

1 DG-3-DTW 1.00 0.71 1.00 0.30 3-DTW 1.00 0.60 1.00 0.37 0.00 0.47 0.33 0.47
2 DG-3-TS 0.67 0.46 1.00 0.75 3-EU 0.00 1.00 0.67 0.57 0.00 0.17 0.00 0.17
3 SG-7-EU 0.77 0.67 0.60 0.35 7-EU 0.85 0.47 0.30 0.73 0.30 0.15 0.39 0.15
4 SL-7-TS 0.63 0.69 0.71 0.71 half-EU 0.75 0.45 0.43 0.32 0.07 0.39 0.07 0.39
5 SL-7-EU 0.63 0.96 0.00 0.86 3-DTW 1.00 0.12 1.00 0.12 0.00 0.15 0.00 0.15

90minutes 6 DG-3-TS 0.50 0.89 0.75 0.76 3-DTW 1.00 0.23 0.50 0.29 0.25 0.00 0.25 0.00
7 DL-3-DTW 0.80 0.40 0.89 0.34 3-DTW 1.00 0.14 1.00 0.27 0.21 0.22 0.21 0.22
8 DG-7-EU 0.90 0.96 0.71 0.64 3-DTW 0.40 0.82 0.00 0.92 0.18 0.57 0.18 0.57
9 DL-7-TS 0.78 0.57 0.20 0.85 all-DTW 0.67 0.45 0.90 0.36 0.11 0.79 0.16 0.79

10 SL-7-DTW 0.80 0.43 0.67 0.71 half-EU 1.00 0.28 1.00 0.74 0.18 0.24 0.18 0.24
Ave. 0.75 0.68 0.58 0.71 0.78 0.38 0.67 0.43 0.15 0.88 0.19 0.88
PA 0.72 0.65 0.58 0.55 0.52 0.54

1 DL-half-DTW 1.00 0.81 1.00 0.40 all-TS 1.00 0.54 1.00 0.40 0.33 0.56 0.33 0.56
2 DG-7-EU 0.67 0.53 0.67 0.84 3-TS 0.00 1.00 0.67 0.87 0.00 0.10 0.00 0.10
3 DL-half-3 0.92 0.74 0.80 0.45 7-DTW 0.85 0.74 0.60 0.64 0.70 0.25 0.65 0.25
4 DL-3-TS 0.63 0.66 0.43 0.82 3-DTW 1.00 0.18 0.71 0.18 0.13 0.25 0.13 0.25
5 DG-7-EU 0.63 0.86 0.63 0.59 3-TS 1.00 0.15 1.00 0.12 0.13 0.09 0.00 0.09

150minutes 6 SG-all-DTW 0.75 1.00 1.00 0.75 7-DTW 0.75 0.72 1.00 0.84 0.13 0.17 0.13 0.17
7 DG-3-EU 0.60 0.65 0.89 0.58 7-TS 0.60 0.47 0.89 0.25 0.37 0.19 0.37 0.19
8 DL-3-EU 0.90 0.92 0.57 0.65 all-DTW 0.50 0.64 0.00 0.93 0.24 0.47 0.24 0.47
9 DL-3-DTW 0.78 0.54 0.60 0.56 3-DTW 1.00 0.22 1.00 0.13 0.32 0.49 0.26 0.49

10 DL-7-DTW 0.60 0.55 1.00 0.41 3-DTW 1.00 0.14 1.00 0.25 0.09 0.25 0.27 0.25
Ave. 0.75 0.69 0.73 0.67 0.79 0.28 0.78 0.45 0.29 0.82 0.28 0.82
PA 0.72 0.70 0.54 0.62 0.56 0.55

lead to a better prediction performance.

4.4 Receiver Operating Characteristic Analysis

The effectiveness of the proposed four adaptive pre-
diction schemes was also evaluated by the ROC
analysis. Table 4 summarizes the AUC values of the
four adaptive schemes (SL, SD, DL, and DG), the
non-update scheme, and the two random schemes
(periodic and the Poisson). The four adaptive schemes
and the non-update scheme employed the best param-
eter settings obtained from the training data of each

patient. For each prediction scheme with a selected
setting, the sensitivity and specificity of the entire EEG
recordings of a patient were used to generate ROC
curves. The parameter used to generate ROC curves
is the threshold of the distance ratio R∗, which was
tuned from 0.1 to 10 to make a broad spectrum of
tradeoff between sensitivity and specificity. For the pe-
riodic and Poisson schemes, the sensitivity and speci-
ficity tradeoff is controlled by the parameters T and λ,
respectively. The ROC curves were obtained by tuning
T and λ from 0.1 to 20 hours. We performed 300
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TABLE 4
AUC Comparison of the four adaptive prediction schemes with the non-update and the two random prediction

schemes. The four adaptive prediction schemes and the non-update prediction scheme employed the best
parameter settings using the training data set. Their ROC curves were obtained by tuning the threshold of

distance ratio R∗ from 0.1 to 10 to make a broad spectrum of tradeoff between sensitivity and specificity. For the
periodic and Poisson prediction schemes, the ROC curves were obtained by tuning λ and T from 0.1 to 20

hours for each patient. We performed 300 Monte Carlo simulations for both random prediction schemes, a set
of λ and T were randomly, uniformly selected from [0.1, 20] hours at each experiment. The averaged AUC

values over the 300 experiments are reported in this table.

SL SG DL DG None Poisson Periodic
Horizon Patient Setting AUC Setting AUC Setting AUC Setting AUC Setting AUC AUC AUC

1 all-DTW 0.73 3-DTW 0.8 3-DTW 0.73 all-TS 0.77 3-EU 0.8 0.52 0.51
2 all-TS 0.73 all-TS 0.73 half-DTW 0.71 half-DTW 0.79 all-DTW 0.35 0.51 0.51
3 half-TS 0.66 3-TS 0.59 half-DTW 0.64 3-EU 0.7 half-TS 0.52 0.56 0.54
4 3-TS 0.69 7-DTW 0.61 7-TS 0.61 7-EU 0.64 3-TS 0.59 0.51 0.50
5 7-DTW 0.57 3-DTW 0.57 all-EU 0.59 3-DTW 0.54 3-DTW 0.64 0.52 0.51

30 minutes 6 3-DTW 0.62 half-DTW 0.74 half-DTW 0.68 half-DTW 0.85 all-EU 0.53 0.49 0.52
7 7-DTW 0.7 half-DTW 0.68 half-DTW 0.66 7-EU 0.67 all-TS 0.65 0.53 0.51
8 7-EU 0.78 7-TS 0.75 3-TS 0.81 half-EU 0.82 half-EU 0.61 0.49 0.50
9 all-DTW 0.69 3-DTW 0.73 half-TS 0.73 3-EU 0.63 3-TS 0.6 0.51 0.51

10 half-DTW 0.67 3-DTW 0.63 half-EU 0.7 3-EU 0.74 7-DTW 0.81 0.50 0.52
Ave. 0.68 0.68 0.69 0.72 0.61 0.51 0.51

1 half-TS 0.76 half-EU 0.79 half-TS 0.76 3-DTW 0.84 3-DTW 0.75 0.51 0.54
2 half-DTW 0.37 3-TS 0.66 7-TS 0.52 3-TS 0.7 half-DTW 0.33 0.49 0.48
3 half-DTW 0.6 7-EU 0.66 3-TS 0.66 3-TS 0.64 7-EU 0.61 0.62 0.60
4 7-TS 0.7 3-TS 0.59 3-DTW 0.62 7-DTW 0.53 half-EU 0.59 0.52 0.52
5 7-EU 0.69 3-EU 0.63 half-EU 0.67 3-DTW 0.56 3-DTW 0.55 0.52 0.52

90 minutes 6 half-DTW 0.67 all-TS 0.58 all-TS 0.6 3-TS 0.75 3-DTW 0.65 0.54 0.57
7 7-EU 0.61 3-DTW 0.47 3-DTW 0.6 half-DTW 0.57 3-DTW 0.5 0.57 0.55
8 3-EU 0.59 3-EU 0.64 half-TS 0.78 7-EU 0.89 3-DTW 0.49 0.51 0.50
9 half-DTW 0.57 7-DTW 0.67 7-TS 0.57 7-TS 0.65 all-DTW 0.6 0.50 0.53

10 7-DTW 0.64 all-EU 0.78 7-DTW 0.6 7-DTW 0.58 half-EU 0.52 0.52 0.52
Ave. 0.62 0.65 0.64 0.67 0.56 0.53 0.53

1 half-TS 0.76 7-EU 0.9 half-DTW 0.93 half-TS 0.77 all-TS 0.79 0.56 0.55
2 3-EU 0.77 7-EU 0.59 3-TS 0.66 7-EU 0.77 all-DTW 0.3 0.46 0.45
3 half-EU 0.62 7-DTW 0.73 half-DTW 0.73 all-DTW 0.74 7-DTW 0.79 0.62 0.62
4 7-TS 0.65 7-EU 0.5 3-TS 0.64 3-EU 0.65 3-DTW 0.54 0.54 0.54
5 7-EU 0.62 3-TS 0.62 half-EU 0.69 7-EU 0.71 3-TS 0.56 0.50 0.51

150 minutes 6 all-DTW 0.75 all-DTW 0.75 7-DTW 0.76 half-DTW 0.75 3-DTW 0.84 0.54 0.51
7 7-DTW 0.47 7-DTW 0.49 half-DTW 0.67 3-EU 0.65 7-TS 0.5 0.60 0.59
8 7-TS 0.86 3-EU 0.82 3-EU 0.84 3-EU 0.83 all-DTW 0.49 0.50 0.50
9 7-TS 0.68 3-DTW 0.62 3-DTW 0.61 3-DTW 0.6 3-DTW 0.6 0.54 0.54

10 3-DTW 0.53 3-EU 0.82 7-DTW 0.69 3-EU 0.62 3-DTW 0.52 0.54 0.54
Ave. 0.67 0.68 0.72 0.71 0.59 0.54 0.54

Monte Carlo simulations for both random schemes,
a set of λ and T were randomly, uniformly selected
from [0.1, 20] hours at each experiment. The averaged
AUC values over 300 experiments are reported in
Table 4.

One can clearly observe that the four adaptive
schemes generally have higher AUC values than the
non-update and the two random schemes. When
using the prediction horizons of 150 minutes, the
averaged AUC values of the four adaptive schemes
(SL, SG, DL, and DG) are 0.67, 0.68, 0.72, 0.71, re-
spectively. The averaged AUC values of SL, SG, DL,
and DG are 14%, 15%, 22%, and 20% higher than
the averaged AUC value of the non-update scheme.
This indicates that all the proposed four adaptive
prediction schemes increased the overall prediction
performance of the system through adaptive baseline-
updating. When compared to the random schemes,
the averaged AUC values of SL, SG, DL, and DG are
24%, 26%, 33%, and 31% higher than the averaged
AUC values of the Periodic and Poisson scheme (both
are 0.54). The significant higher AUC values strongly
indicate that the adaptive prediction schemes has a
much higher prediction power than random predic-

tions. Similar results can also be obtained when using
the prediction horizons of 30 minutes and 90 minutes.

To make a solid statistical comparison, it is also
interesting to investigate the performance of the four
adaptive schemes as well as the non-update scheme
on all the parameter settings over the 10 patients.
For each scheme (adaptive and non-update), there
are 36 settings including four choices of K, three
choices of distance measures, and three choices of
prediction horizons. Figure 10 shows the boxplots
of the averaged AUC values over 10 patients for
the entire 36 settings of each scheme. The AUC
values of the two random schemes obtained from
300 Monte Carlo simulations are shown in Figure 10
for comparison. The boxplot clearly shows that the
AUC values of the four proposed adaptive prediction
schemes have significantly different distributions with
those of the non-update and random schemes. We
used the AUC values of the non-update scheme as
the baseline group, and performed paired t-test for
the AUC values of the four adaptive schemes and
the two random schemes. As shown in the Figure
10, the p-value of each paired t-test is smaller than
0.001. This outcome indicates that the four adaptive
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Fig. 10. Box-plot of the AUC values of the four adaptive
schemes, the non-update scheme, and the two random
schemes. The AUC values of the adaptive and non-
update schemes are the averaged AUC values over
10 patients for all possible parameter settings (=36)
of each scheme. The AUC values of the two random
schemes are obtained from 300 Monte Carlo simu-
lations, in each of which a set of values of lambda
and T are randomly and uniformly varied from 0.1 to
20 hours. Each box shows the median, interquartile
range, minimum and maximum of the AUC values
of each prediction scheme. Using AUC values of the
nondicated-update scheme as the baseline group, the
p-values of the paired t-tests for the AUC values of
other prediction scheme are indicated in the plot. The
four adaptive schemes performed significantly better
than the non-update scheme with all p-values smaller
than 0.001. While the non-update scheme performed
significantly better than the two random schemes with
both p-values smaller than 0.001.

prediction schemes all performed significantly better
than the non-update scheme. While the non-update
scheme performed significantly better than the two
random schemes. This is not unexpected, since the
initial baseline samples employed by the non-update
scheme already contained some useful information
of the preseizure and normal EEG patterns. It thus
worked better than random predictions.

When we compare among the four proposed adap-
tive schemes, we found that the two distance-based
update schemes (DL and DG) performed better than
the two score-based update schemes with p-values
smaller than 0.001. This outcome implies that the
distance-based update rule did a better job in the
online baseline-updating than the score-based rule.
In addition, the AUC values of the two score-based
update schemes SL and SG are comparable with a p-
value of 0.15; and DG worked a little better than DL
with a p-value of 0.02.

4.5 Comparisons to Other Seizure Prediction
Methods

Although over the past decade there have been sev-
eral studies in seizure prediction, almost all of them
are focused on retrospective analyses of prediction,
which is to show that there are detectable changes
in EEG signals prior to a seizure. Those studies of-
ten used short-term EEG recordings sampled 45 to
90 minutes before a seizure. Very few studies in-
vestigate online seizure prediction algorithms using
prospective analysis of continuous long-term EEG
recordings [45], [49]. Because the nature of prospective
and retrospective analyses, it is extremely hard to
compare the real prediction performances between
these algorithms. According to a seminal review pa-
per in seizure prediction [33], more transformable
and unambiguous performance measures such as the
portion of false awaiting time are suggested. Here
we compare our prediction results with the studies
by Sackellares et al. (2006) and Snyder et al. (2008)
[45], [49] that report the sensitivity and the portion
of false awaiting time of their prospective analyses.
Sackellares et al. [45] evaluated an adaptive seizure
prediction approach on 10 patients. Given a prediction
horizon of 150 minutes and a sensitivity of 80%, the
portion of false awaiting time is 37% (corresponding
to our specificity of 63%) on average over the 10
patients. Snyder et al. [49] performed a prospective
seizure prediction on 4 patients using a prediction
horizon of 120 minutes. The averaged sensitivity is
82.3% and the portion of false awaiting time is 30.5%
(corresponding to our specificity of 69.5%). The OPP
values of the two studies are 0.72 and 0.76, respec-
tively. It was not clearly indicated in both papers if
the reported OPP values were based on the training
set, the testing set or the entire dataset. Thus, we base
our comparison on the performance on an entire EEG
recording of each patient using the best parameter
setting obtained from our previous analysis. With
a prediction horizon of 150 minutes, our adaptive
learning approach achieved a sensitivity of 77% and
a specificity of 73% on average over the 10 patients.
The OPP value of our approach is 0.75, which is
comparable to those in the two seminal studies. We
must note that the comparison might not provide a
conclusive result as it is based on different datasets
with different population sizes, and the data charac-
teristics vary greatly. A large public EEG database
for seizure prediction is on the way and a proper
comparison remains to be further investigated in our
future study.

5 CONCLUSIONS AND DISCUSSION

This study investigated the challenging problem of
epileptic seizure prediction. We introduced an adap-
tive learning approach, which combine reinforcement
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learning, online monitoring and adaptive control the-
ory to achieve a personalized seizure prediction. Us-
ing EEG recordings from 10 patients with epilepsy,
we demonstrated that the adaptive learning algorithm
was effective in increasing prediction performance
of the system through adaptive baseline-updating.
The best prediction performance was achieved using
the prediction horizon of 150 minutes, in which the
averaged sensitivity was 73% and the averaged speci-
ficity was 67%. The ROC analysis demonstrated that
the adaptive prediction schemes indeed performed
much better than the non-update scheme and the two
chance models.

The experimental results of this study are quite
encouraging, and they suggest that the proposed
adaptive approach performed better than random
predictors [33]. An autonomous learning framework
like the one proposed here was shown capable of
self-adjusting the baseline samples for each individual
patient without a tedious parameter tuning process.
With this attractive online learning ability, the pro-
posed adaptive learning prediction system is expected
to be able to further improve the prediction perfor-
mance when more EEG recordings are available for
each patient. It is important to remark that in this
study the online prediction algorithm was evaluated
based on a perfect seizure detection (i.e., actual seizure
timing is provided after our algorithm makes predic-
tion). This study did not, however, investigate the in-
tegration of our online prediction algorithm with any
existing seizure detection algorithms. The reason is
that although there exist a number of seizure detection
algorithms embedded in clinical EEG systems, most
detection algorithms still suffer from an extremely
high false detection rate. Thus, the impact of false
detections from seizure detection systems on the per-
formance of our seizure prediction algorithm is be-
yond the scope of this study and remains to be further
investigated in our future work. If one wants to test
a fully automated framework, our seizure prediction
algorithm can be readily integrated to any clinical
EEG system, and it can be fully automated by relying
on existing automated seizure detection algorithms
in the EEG system. In practice, a prospective seizure
prediction system must have both high sensitivity
and specificity for clinical use. If such a seizure-
warning device is to become a reality, we envision that
adaptive learning techniques will definitely play an
important role in handling the great variety of brain-
wave patterns among different patients.
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