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ABSTRACT 
A scalar equilibrium (SE) is defined for n-person 
prescriptive games in normal form. When a de-
cision criterion (notion of rationality) is either 
agreed upon by the players or prescribed by an 
external arbiter, the resulting decision process 
is modeled by a suitable scalar transformation 
(utility function). Each n-tuple of von Neu-
mann-Morgenstern utilities is transformed into a 
nonnegative scalar value between 0 and 1. Any 
n-tuple yielding a largest scalar value deter-
mines an SE, which is always a pure strategy 
profile. SEs can be computed much faster than 
Nash equilibria, for example; and the decision 
criterion need not be based on the players’ 
selfishness. To illustrate the SE, we define a 
compromise equilibrium, establish its Pareto 
optimality, and present examples comparing it 
to other solution concepts. 
 
Keywords: Game Theory; Equilibria; Scalar Equi-
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1. INTRODUCTION 
Game theory is the study of strategic interactions 

among agents called players. Ultimately it involves a 
solution concept to describe, predict, or prescribe the 
choices of these players [1]. Modern game theory [2-3] 
is predominantly noncooperative and assumes that any 
joint rational action by the players must necessarily be a 
Nash Equilibrium (NE) [4-5]. In other words, rational 
players are assumed to be selfish. They act in their indi-
vidual self-interest in the sense that each player consid-

ers his best responses to the possible joint actions of the 
other players. The result is that no player can improve 
his expected payoff in an NE by unilaterally changing 
his pure or mixed strategy. Various refinements of the 
NE (see [2-3], for example) have been proposed, yet the 
NE does not suffice for all strategic interactions. Social 
dilemmas [6-7] illustrate that selfish behavior may con-
flict with group interests. For example, in Prisoner’s 
Dilemma each player can do better by cooperating.  

In this paper we consider one-shot, n-person games in 
normal form. A player is considered rational if his strat-
egy choices are consistent with some underlying deci-
sion-making criterion. For example, instead of being 
greedy, a player may be satisfied with a certain level of 
payoff. To provide a theoretical framework for such cas-
es, we define a scalar equilibrium (SE) in which a scalar 
transformation modeling the decision criterion assigns 
scalar values in [0,1] to the outcome of each joint action 
of the players. An SE is a joint action maximizing these 
scalar values. 

SEs address three problematic areas of noncooperative 
game theory.   

(1) SEs do not require that rationality be defined by 
selfish behavior. 

(2) An SE consists of pure strategies for each player, 
as opposed to mixed strategies that are difficult to 
interpret and implement [8]. 

(3) NEs are difficult to compute [9], while SEs can be 
quickly obtained by simply finding the maximum 
of a finite number of scalar values. 

SEs are particularly applicable (a) when all players 
have the same notion of rationality or (b) when an ex-
ternal arbiter (possibly a computer algorithm) dictates 
each player’s strategy according to some predetermined 
decision criteria. In case (a) the SE is descriptive or pre-
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dictive - or possibly normative in the sense that it sug-
gest actions for the players. In case (b), which is empha-
sized here, the SE is prescriptive.  

The paper is organized as follows. In Section 2 we 
formally define the SE. In Section 3 we illustrate SEs 
with the compromise equilibrium (CE) and establish its 
Pareto optimality. In Section 4 we present some exam-
ples of two-person games and compare the CE with oth-
er solution concepts. Finally, in Section 5 we offer con-
clusions and discuss future research.  

2. SCALAR EQUILIBRIUM 
Let , ( ) , ( ) ,

∈ ∈
=Γ i i N i i NN S u A denote an n-person, 

one-shot prescriptive game in normal form, where 
{1,..., }=N n  is the set of players, 

i
S  is the finite set of 

pure strategies for player ,i ( )iu s is the von Neumann - 
Morgenstern (VMN) utility of player i for a pure strategy 

profile 1
1

( ,..., )
=

= ∈ =∏ in

n

i
s s s S S for all players, and 

1
( ) ( ( ), ..., ( )).=

n
u s u s u s  A is an arbiter who assigns strat-
egies for the players in their one-shot.  

A need not be a person. The arbiter could be a com-
mon decision criterion applied by the n players. The ar-
biter could be a licensing agreement for the licensees of 
a patent, for example. It could be a computer algorithm 
for making real-time decisions on a website where the 
players have agreed to its terms and conditions. In the 
current regulatory spirit, it could also be a policy im-
posed by a national governmental agency on some seg-
ment of the population. In other words, an arbiter is a 
prescriptive agent. 

Regardless, A’s decision criterion for assigning strate-
gies can be represented by ordinal utility function 

( ) 1:AT u S R→ (see [10-11]) that induces a preference 

relation ≤A on ( ).u S For ,′ ′′∈s s S we write 

( ) ( )Au s u s′ ′′< if [ ( )] [ ( )],A AT u s T u s′ ′′< ( ) ( )′ ′′=Au s u s  if 

[ ( )] [ ( )],′ ′′=A AT u s T u s and ( ) ( )′ ′′≤Au s u s  if either  

( ) ( )′ ′′<Au s u s or ( ) ( ).′ ′′=Au s u s  A is said to indiffer-

ent between ′s and ′′s if [ ( )] [ ( )].′ ′′=A AT u s T u s  Thus A 

may be considered rational in the sense that ≤A  is 
complete and transitive.  

Definition 2.1. The pure strategy profile *s is an SE for
Γ if and only if *[ ( )] [ ( )]≤A AT u s T u s for all .∈s S Thus 

*s is an SE if it maximizes the scalar composite function

°AT u over .S  
If Γ has multiple SEs resulting from ties in the 

maximization of Defintion 3.1, it is assumed that A will 
choose one *s from the SEs by some further mechanism.  

3. COMPROMISE EQUILIBRIUM 
The compromise equilibrium CE for Γ is now pre-

sented as an example of an SE. Since iS  is a finite set of 

pure strategies for each player, ( )iu s is bounded. We 

write max ( )
∈

=i i
s S

M u s and min ( )
∈

=i is S
m u s for 1,..., .=i n  

Now for all s S∈ define the  transformation 
( ) 1:AT u S R→ by                            

1
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Note that 0 [ ( )] 1AT u s< ≤ for all .s S∈  The number 1 in 

the numerators of Eq.1 prevents [ ( )]AT u s from being 0 

for an ∈s S for which ( ) =i iu s m for some i, while the 
1 in the denominators prevent a division by 0 for an i for 
which .=i im M  

The intuition behind Eq.1 is explained as follows. If 

we maximize the function 
1

1

...( , , )
=

=∏n

n

i
if z z z over the 

region 0 1, 1, ..., ,< ≤ =
i

z i n  the maximum is given by
* 1, 1,..., .= =iz i n  Similarly, maximizing Eq.1 yields a 

CE *s  for which the terms 
*( )i i

i i

u s m

M m

−

−
are large and 

close in value for those i  for which .>i iM m  Other-

wise *( ) .= =i i iu s M m Thus if an arbiter A applies Eq.1, 

the players with i iM m> will receive payoffs in roughly 
the same percentile of their payoff ranges. If maximizing

[ ( )]AT u s  is the decision criterion for all players (with 
ties broken by some further mechanism), the outcome 
can be construed as an equitable compromise between 
the players’ selfishness and unselfishness. A CE, howev-
er, differs substantially from the Rabin’s fairness equi-
librium [12] for two players and from other notions of 
fairness as presented in [13].    

Any CE is also a Pareto optimum [14] of ( ),u S
which is essential for a solution concept to an n-person 
game [15]. For example, a pure NE not Pareto optimal 
cannot be a joint rational solution since an alternate 
strategy profile can improve some players’ payoffs 
without diminishing anyone’s.  

Definition 3.1. The pure strategy profile ′′ ∈s S  
dominates ′ ∈s S if and only if ( ) ( )i iu s u s′ ′′≤ for 



1, ...,i n= and ( ) ( )j ju s u s′ ′′< for some .j A pure strat-

egy profile *s S∈ is Pareto optimal for Γ if *s is not 
dominated by any .s S∈   
Lemma 3.2. For any , ,′ ′′∈s Ss  if ′′s dominates ,′s
then [ ( )] [ ( )].<′ ′′

A AT u T sus  

Proof. Let , ,′ ′′∈s Ss and suppose that ′′s dominates 
.′s  From Definition 3. 1 it follows that 1 2( ) ( )≤i iu s u s

for all 1,...,=i n  and 1 2( ) ( )<j ju s u s for some index j. 
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Together Eq.2 and Eq.3 give 
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Theorem 3.3. If *s is a CE for ,Γ then *s is Pareto 
optimal for .Γ  
Proof. Let *s be a CE for .Γ We prove the contrapositive. 

If *s is not Pareto optimal,  there exists ** ∈s S  that 

dominates *.s  From Lemma 3.2 it follows that 

*[ ( )] [ ( )],< ′
A AsT u T su  so *s is not is a CE for .Γ ■ 

4. EXAMPLES 
We now present two examples for 2=n to illustrate 

the CE. For 2,>n calculations using Eq.1 are similar. In 
the examples, we compare the CE to any pure NE, where 
each player’s action selfishly maximizes his payoff for 
the action of the other player. We also compare CEs to 
any mutual-max outcome [12], where each player un-
selfishly maximizes the payoff for other player’s action. 
Finally, we compare CEs to maximin outcomes [2] in 
which each player’s action maximizes his minimum 
payoff resulting from the actions of the other players.  

Example 4.1. Consider the Prisoner’s Dilemma (PD) 
payoff matrix of Figure 1, where D denotes the action 
“Defect” and C denotes “Cooperate”. The pure NE is 
(D,D), the mutual-max outcome is C,C), and the maxi-
min outcome is (D,D). The matrix of values calculated 
from Eq.1 is shown in Figure 2, from which the Pareto 
optimum (C,C) is the unique CE. Note that the mutu-

al-max outcome and the CE are the same.  
  Example 4.2. Consider now the discoordination game 
with payoff matrix given by Figure 3. Players 1 and 2 
approach each other. Player 1’s incentive is to veer right 
(R) or left (L) in the opposite direction from Player 2’s 
move. However, Player 2’s incentive is to encounter 
Player 1. There is no pure NE or mutual-max outcome 
for this game. The maximin outcome is (R,R). The CE 
scalar values are shown in Figure 4, with unique CE 
being the Pareto optimum (R,R). The maximin outcome 
is the same as the CE.   
 

                   Player 2 
 
    

       Player 1              
 
 

             Figure 1. PD payoff matrix.  
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           Figure 2. Scalar values for Figure 1.  
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           Figure 3. Discoordination game.  
 

                   Player 2 
 
    

       Player 1              
 
 

           Figure 4. Scalar values for Figure 3. 

5. CONCLUSIONS 
In this paper the general notion of a scalar equilibrium 

SE is defined for an n-person, one-shot game in normal 
form. The advantages of an SE include flexibility in the 
decision criteria for decision makers, the selection of 
pure strategies for the players, and the speed of compu-
ting an SE. An SE is most applicable when the games 
are prescriptive, i.e., when an arbiter A assigns the play-
ers’ actions for their one shot.  

 The compromise equilibrium CE is presented here as 

  D  C 
D (1,1) (5,0) 
C (0,5) (3,3) 

  D  C 
D 0.111 0.167) 
C 0.167 0.667 

  R  L 
R (6,4) (5,5) 
L (4,6) (6,2) 

  R  L 
R 0.600 0.533 
L 0.333 0.200 



a special case of an SE. Significantly, a CE is also a Pa-
reto optimal pure strategy profile for the VNM utilities. 
It may be interpreted as a reasonable tradeoff of payoffs 
imposed on the players by the arbiter A. Future research 
should explore other SEs. For example, one might define 
a transformation [ ( )]AT u s to obtain an SE approximating 
a pure NE when one does not exist and thus avoid the 
complexity of computing mixed NEs.     
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