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 

Abstract—This research studies dynamic control of a system of 

plug-in hybrid electric vehicle (PHEV) charging stations. A finite 
horizon dynamic problem is presented. Based upon the 15-

minute updated period of the electricity market price, the 

objective function is to maximize profit, which is the revenue 

benefit from selling back to the grid and the charging of the 

vehicles minus the cost of buying electricity from the grid. The 

state variables in each 15-minute time period consist of the total 

wind purchased by the system, solar power generation at each 

charging station, total demand at each station, and nodal market 

price at station locations.  As an initial solution analysis, the 

mean value problem is formulated as a deterministic linear 

program and solved.  Potential policies are presented to provide 

insight into the behavior of the system.   

 

Index Terms— PHEV Charging Station, Mean value problem, 

Dynamic control 

 

I. INTRODUCTION 

lobal demand for energy has been increasing steadily 

as a result of industrial development and population 

growth. According to a report from the Energy 

Information Administration, oil provides 93% of the energy 

used in transportation. The report also notes that the 

transportation sector is responsible for up to 34% of total 

energy-related carbon dioxide emissions in 2012 Error! 

Reference source not found.-[22]. Today, oil production and 

the price of gasoline influence energy security, politics, and 

economic concerns. The availability of petroleum in the future 

is expected to decline as production begins to peak globally. 

Reserves shall appreciate in value, making further utilization 

of alternative energy production an attractive choice. 

Sustainable energy development, or renewable energy, such 

as wind, solar, and biomass, has been increasing in an effort to 

offset both greenhouse gas emissions and the declining 

production of oil. Domestic electric power includes coal, 

petroleum liquids, petroleum coke, natural and other gas, 

nuclear, hydroelectric conventional and renewable sources 
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(such as wind, landfill gas, solar thermal, and biomass) [9]. 

Compared to oil production, some consider electricity 

production more predictable. While the sources of alternative 

energy (e.g. wind, solar) are considered by some as 

intermittent and uncontrollable, systems utilized in the capture 

of alternative energy can minimize production of electricity 

from other connected systems (e.g. natural gas, nuclear) on the 

power grid and thereby minimize expense. This may result in 

a relatively stable average price of electricity. 

With today's existing technologies, the electric vehicle has 

great potential to replace the traditional gasoline based 

vehicle. A Plug-in Hybrid Electric Vehicle is one of the best 

solutions to reduce the consumption of oil significantly and 

improve national energy security and fuel economy. The 

number of consumers who purchase a PHEV has been 

growing by 80% each year since 2000 [5], and 10% of new 

vehicle sales in 2015 are expected to be PHEVs. In 

metropolitans, the overall PHEV charging demand could reach 

up to hundreds of MW in extreme situations [10]. However, 

there still exist some obstacles to the proliferation of PHEV 

use [16]. One of the key barriers to achieving the spread of 

PHEVs is providing enough reliable access to rapid charging 

infrastructure [15]. They need to satisfy power demand and to 

offer a reasonable quality of service to customers [4]. 

This paper mainly focuses on the dynamic system control 

for the integration of a level 3 PHEV DC fast charging station, 

renewable energy resources, and an energy trading strategy 

with a power grid. PHEV charging station configuration and 

historical data of wind and solar power generation, and 

electricity market price, as well as the lists of battery storage 

technologies are discussed in section II. The formulation for 

the dynamic control problem of plug-in hybrid electric vehicle 

charging stations is presented in section III. Results from the 

mean value problem are shown in section IV. Section V is on 

future work and conclusions. 

II. PHEV CHARGING STATION CONFIGURATION 

The goal of design is to build a set of fast charging stations 

that uses solar energy, wind energy, and electricity from a 

power grid to simultaneously serve multiple vehicles in the 

same way as the current gas stations serve customers. All the 

electricity produced from various sources together is called 

direct charge, and the surplus from the direct charge can be 

stored in the battery or sold back to the utility grid. The battery 

is able to store the electricity within a pre-defined range. 

When demand arrives at the station, the system control makes 

a decision to serve the demands both from direct charge and 

the battery storage depending on the energy market price. An 
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operation diagram of the proposed charging station is shown 

in Figure 1.  

 

Figure 1. PHEV Charging Station Configuration 

A. Energy Resources in PHEV Charging Station 

Two types of renewable energy resources, wind and solar 

power energy, are considered in the designed PHEV charging 

station. Historical weather data and existing forecasting 

models are used to simulate forecasting and actual realizations 

of wind and solar power generation every 15 minutes at 

potential locations of PHEV charging stations. 

1) Wind Farms in Texas  

With more than 10,000 MW in 46 wind farms by 2012, 

Texas has the highest installed capacity of wind farms in the 

United States. It is assumed that the PHEV charging station 

can establish a contract with one of the wind farms. The 15-

minute Texas wind output power data are obtained from the 

Electric Reliability Council of Texas (ERCOT). Figure 2 

depicts the profile of a wind farm generation during January 

2012. 

 

Figure 2. January 2012 wind generation 

2) PV Technology and PV generation profile 

30 years of historical solar radiation data and supplementary 

US meteorology data are provided by the National Solar 

Radiation Data Base (NSRDB) [17]. These data are called 

Typical Meteorological Year (TMY). A PV generation profile 

is simulated along with the temperature and solar irradiance by 

equations (1) and (2). For simplicity, single crystalline is a 

selected PV technology in this problem, since it provides the 

highest efficiency compared to other commercially available 

technologies [3]. The PV generation profiles of 180 m
2
 

installation areas considered as a roof top PV for PHEV 

charging station is depicted in Figure 3. 

   TTp  10 , 
(1) 

 AIP , 
(2) 

where   is an efficiency,    is a PV module efficiency from 

the manufacturer under reference temperature,   is the 

temperature coefficient of solar batteries (0.005),    is an 

actual temperature (K),     is the reference temperature (298 

K),    is the PV generation (W),   is the solar irradiance 

(W/m
2
) and   is a PV installation area (m

2
). 

 
Figure 3.   PV generation at Dallas Redbird Executive Airport between 

January 1st and 7th 2008 

B. Electric Market in the DFW area 

ERCOT was established by Texas Interconnected System 

(TIS) in 1970 and became a deregulated generation market in 

1995 [8]. In this research, Settlement points in ERCOT are 

represented by supernodes for clustering the market prices 

location, which ERCOT updates as real-time settlement point 

prices (SPPs) once every 15 minutes for each supernode 

within its service territory. These supernodes serve electricity 

to all demand in the DFW area except co-ops and municipal 

power systems. As shown in Figure 5, 9 counties in the DFW 

area with the total of 26 supernodes can be aggregated into 11 

clusters of supernodes. January market prices, for instance, for 

all these 26 supernodes are illustrated in Figure 5. 

    

 
 

Figure 4. DFW supernodes 
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Figure 5. January 2012 supernodes market price Error! Reference source 

not found. 

Every 15 minutes, the simulation model will calculate the 

cost of buying from the power grid and revenue from selling 

to the power grid and PHEVs. The net cost will be 

accumulated over a user-specified period of time. The results 

will be used to evaluate the adequacy of the charging station 

location and operation strategies. 

C. Battery Storage Technology 

The potential battery storage technologies that can support 

DC level 3 fast charging consists of Sodium Sulphur (NaS), 

Lead Acid (Pbs), Lithium-ion (Li-ion), and Nickel-Metal 

Hydride (NiMH). The characteristics of batteries are shown 

below [7], [19] (see Table I).  For this research, NaS is selected 

to be the battery for the PHEV charging station because of its 

high efficiency and cycle life.  

 
Table I 

UNITS FOR MAGNETIC PROPERTIES 

Technology Cycle Life at 

80% DOD 

Efficiency Advantage Disadvantage 

NaS 4500 cycles 89%  Good for 
industrial and 

commercial 

sectors 

 High 

efficiency 

Operates 

with high 
temperatures 

Li-ion 3000 cycles 70-85%  High 
density 

 Low self 
discharge rate 

 No 
memory effect 

in positive 

side 

Expensive 

NiMH 2000 cycles 50-80 %  High 
density 

 Good abuse 

tolerance 

Damage may 
occur with 

complete 

discharge 

Lead Acid 

 Flooded 

 VRLA 

 

1500 cycles 
500 cycles 

 

70-80 % 
70-80 % 

Inexpensive Limited 

cycling 
capability 

 

III. DYNAMIC CONTROL PROBLEM FORMULATION  

The controllability module is a dynamic control problem 

because decisions are made in several time stages, and the 

optimization problem becomes dynamic and multi-stage. 

There is at least one transition equation on the problem, which 

means that the next state of the process depends entirely on the 

current state of the process and the current decisions taken 

[1].. 

At each stage, the system is defined by sets of state 

variables, which include the market price of energy, solar 

production of each station, the total wind purchased to the 

system, and the total demand of each station. When a decision 

is made, a cost is obtained, and the system undergoes a 

transition to the next stage. The decision variables in this 

problem are wind allocation fraction among charging stations, 

electricity sold back to the grid from the battery and direct 

charge, electricity purchased from the grid, demand satisfied 

by the battery and direct charge, and battery charging level. 

The objective is to maximize profit or, equivalently, to 

minimize operational cost, which is the cost of buying from 

the grid minus the revenue from selling back to the grid and 

charging the PHEV both from the battery and the direct charge 

across all the stations. Following the timing of the electricity 

market, the system evolves in 15-minute time intervals. We 

consider a 24-hour time period. As a mean value problem, we 

assume that the forecasts are perfect. At each time period, 

each state variable is equal to its estimated value. The 

objective is given by equation (3): 

 
 

 
Tt Jj

tjttjttjtjt DrgCRgB
~~

)(
~

max , (3) 

where 
tC

~
is the market selling price of energy in time period t, 

tB
~

is the market buying price of energy in time period t, 

tjg is 

the electricity bought from the grid of station j in time period t,


tjg  is the electricity sold back to the grid from the direct 

charge of station j in time period t, Rtj is the electricity sold 

back to the grid from the battery of station j in time period t, 

tr  is the retail price of energy in time period t, and 
tjD

~
is the 

total demand in time period t at charging station j. 

The first constraint set (4) includes the battery level 

transition from period t-1 to period t for each station j: 

TtJj
e

D

e

R
BCII

j

tj

j

tj

tjjtjt   ,

2

),1(,
, 

(4) 

where Itj is the battery level of station j at the beginning of 

time period t, BCtj is the battery Charge of station j in time 

period t, 
2

tjD  is the demand satisfied by the battery of station j 

in time period t, and ej is the storage efficiency of station j. In 

our computational results, we assume that the storage 

efficiency ej is 79.8% [11].  

The second constraint set (5) includes the energy balance for 

the battery charge at each station. 

TtJjDggSWWBC tjtjtjtjtjttj   ,
~~ 1

, 
(5) 

where Wtj is the fraction of wind allocated to station j in time 

period t, tW
~

 is the total wind purchased in time period t, 
tjS

~
is 

the solar production of station j in time period t, 
1

tjD  is the 

demand satisfied by the direct charge of station j in time 

period t.  
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The total demand consists of the demand satisfied by direct 

charge and demand satisfied by the battery as shown in 

constraint set (6). 

TtJjDDD tjtjtj  ,
~ 21

 
(6) 

The combination of electricity sold back to the grid from the 

battery and demand satisfied by the battery together is less 

than or equal to the discharge rate (dc) multiplied by the 

storage efficiency, as shown in constraint set (7). 

TtJjedcDR jtjtj  ,*2
 

(7) 

The battery charge must not be greater than the charge rate 

(cr), and the battery level must be constrained in between the 

minimum battery level and the battery capacity for each 

station, as in constraints (8) and (9), respectively. 

TtJjcrBCtj  ,  
(8) 

TtJjsizeUnitMinnit jj  ,_I_U tj
 (9) 

The battery level at the last stage is assumed to be equal to 

the first stage.  

JjII jjT  ,1,  
(10) 

The fraction of wind allocation, constraint in equation (11), 

is constructed to allocate the total wind production to each 

station. Lastly, the set of nonnegative constraints is given in 

(12). 





Jj

tj tW ,...1,01  (11) 

TtJjRBCggWI tjtjtjtjtjtj  ,0,,,,,  
(12) 

As an initial solution analysis, the mean value problem is 

formulated as a deterministic linear program to provide insight 

into the behavior of the system.  

IV. MEAN VALUE PROBLEM RESULTS 

The result from Matlab solving the mean value problem of 

control for 5 PHEV charging stations over 96 15-minute time 

periods are described in this section. PHEV charging demand 

profile in 2012 from [2] is used (including demand in Tarrant, 

Ellis, Dallas (only Garland area), Collin and Denton). In this 

model, we assume that we have a contact with wind farm (e.g. 

30% of wind energy production) and we do not include this 

cost in the objective function. This simulation is based on 

January 2012, and the average retail sale price of electricity in 

the transportation sector in Texas is 10.17 cents per kilowatt-

hour [20]. The maximum and minimum battery capacities are 

3.6 and 0.72 MWh per slot. The charging rate and discharging 

rates are 0.6 and 0.075 MWh per slot. In this simulation, we 

assume that there is only 1 slot per each station. 

 

Figure 6. Battery level 

 

Figure 7. Battery charge 

Figure 6 shows that battery level starts to increase at t =12 

and reach the maximum level at t = 16. After that, it stays 

constant until t = 38, and it starts reducing until it t = 71. Then, 

it reduces again until reaching the minimum at the end of time 

period. All stations have the same battery level. The battery 

charge is close to 0 in all time periods, except time periods 11 

to 16 as shown in Figure 7. Due to a low market price, shown 

in Figure 11, the system increases the battery level even if 

there is a little demand in the system at that time. At t = 14, 

there is a drop due to a little change in market price. All 

stations have the same battery charge.  

 

Figure 8. Total demand 

 

Figure 9.  Demand pulled from the direct charge 
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Figure 10. Demand pulled from the battery 

 

 

Figure 11. Energy market price 

In this system, there are two ways to serve the total demand. 

The first way is by the direct charge, as shown in Figure 9. 
The other way is by the battery, which is shown in Figure 10. 

Since the beginning of time period, the demand is satisfied by 

direct charge until timer period t = 38. At that time, the market 

price is increased. Thus, the system takes advantage by 

serving the demand by some energy stored in the battery. At 

time period t = 52, the market price is reduced and the demand 

is supplied by the direct charge again. At time period t = 71, 

the peak market price occurs. Thus, the system decides to 

serve the demand by energy stored in the battery as much as it 

can. However, due to the limit on charging rate and the 

amount of electricity in the battery, the system still needs to 

serve some demand through direct charge. The total demands 

at each station are 17.8, 0.871, 9.166, 5.566 and 4.398 MWh, 

respectively. 

 

 

Figure 12. Total wind purchase to the system 

 

Figure 13. Solar generation 

 

Figure 14. Wind fractional allocation 

From Figure 13, solar generation has little impact on the 

system. The electricity sold is mainly generated by wind 

power, see Figure 12. Figure 14 shows the allocation of wind 

generation to each station. The system mainly allocated wind 

energy to station 1 where the highest demand occurs. 
 

 

Figure 15. The electricity sold from direct charge 

 

 

Figure 16. The electricity sold from battery 
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Figure 17. The electricity bought from the power grid 

The electricity sold back to the grid from direct charge is 

similar to the total wind energy purchased to the system, 

except in time periods between 11 and 16 when the low 

market price occurs, Figure 15. The system decides to sell 

some energy from the battery back to the grid when the market 

price is high. However, the demand must be satisfied first. 

Thus, sometime when we have some demand in the system but 

the direct charge energy is not enough, it is necessary to 

purchase some energy from the grid even if the market price is 

not low, Figure 17.  

 

 

Figure 19. The objective function output 

The objective function is calculated by equation (3) with 5 

stations and 96 time periods. The maximum profit over the 96 

time periods is $4933.7   

V. CONCLUSIONS AND FUTURE WORK 

The mean value problem is formulated as a deterministic 

linear program and solved for solution analysis.  The potential 

policies are presented to provide understanding into the 

behavior of the system.  Results suggest that the system takes 

advantage of the low market price in the morning and uses 

direct charge from the wind and the grid to store energy in the 

battery before peak demand occurs.  Once the system has 

satisfied all demand for the day, the remaining stored 

electricity is sold back to the grid at the peak market price. It 

is beneficial to use the direct charge from the wind, the utility 

grid, and solar to supply demand. 

In future work, this problem will be formulated as an 

infinite-horizon stochastic dynamic programming considering 

many time periods. 
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