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1. Introduction 

Safety represents a major concern in roadway design and management. For the last 20 years, research has considered 
the safety efficacy of lane width, but it has provided little statistical insight. Although AASHTO guidelines 

recommend using standard 12-foot lane widths, previous research has shown both positive and negative safety 

outcomes due to lane width variation, which makes definitive conclusions difficult. Zegeer et al. (1) use variables 

such as type of development, terrain, section length, average daily traffic, speed, horizontal curvature, vertical grade, 
side slope ratio, lane width, shoulder width, and parking to analyze the safety effects of cross-section design. Their 

results show that one foot of lane widening (from 9 feet) reduces accidents by 12%, and it almost doubles for every 

extra foot of widening. Wang et al. (2) build a Poisson Regression model by using functional class, number of lanes, 
road surface width, divided/undivided highway, median width and type, intersection type, access control, and area 

type as independent variables. Harwood et al. (3) and Harkey et al. (4) develop lane width (12 feet as reference) 

crash modification factors for two-lane rural highways, which indicate that widening lanes reduces single-vehicle 
run-off-road crashes, multiple-vehicle head-on, opposite-direction sideswipe, and same-direction sideswipe 

collisions. On the contrary, some studies like NCHRP report 330 (5) states that “narrower lane widths (less than 11 

feet) can be used effectively in urban arterial street improvement projects where the additional space can be used to 

relieve traffic congestion or address specific accident patterns.” Potts et al. (2007) find no safety risk for lane widths 
narrower than 12 feet on urban and suburban arterials (6). Although the impact of narrow lanes on vehicular crash 

rates appears inconclusive, narrower lane widths provide opportunities for other potential safety and operational 

benefits, which include reducing pedestrian crossing distance, auxiliary lanes, bicycle lanes, and buffer areas. 
Furthermore, cities and counties resurface their streets based on assumptions that narrower lane widths increase 

accidents. This paper uses several different statistical approaches to explore the relationship between lane width 

and crash rates, and it is organized into five sections. The second section discusses the given data set and modeling 
approaches. The third section describes the data set and data processing required for analysis. The fourth section 

explains the different modeling approaches with their results. Finally, the fifth section draws conclusions from the 

analysis.  

2. Case Study Description 

This paper assesses the impact of lane width on the safety of arterial roads. The study uses ten years of crash data 

from four cities in Nebraska provided by the Transportation Research Board (TRB). This data set contains midblock 

segment details, such as speed limit (SL), presence of a median (M), presence of a shoulder (S), lane width (LW), 

presence of on-street parking (OSP), indication of a one-way segment (OW), indication of a segment in a central 
business district (CBD), segment length (SGLT), the number of through lanes (NTL), and annual average daily 

traffic per lane (AADTpLn). The data set also includes the segments’ yearly crash frequencies from 2003 to 2012 

for different categories such as gender, age, severity, type, movement, and leading cause. This paper develops three 
different statistical modeling approaches for four response variables. The first approach estimates the relationship 

between the likelihood of a crash with the aforementioned midblock segment variables, while the second approach 

analyses the frequency of crashes. The third approach aggregates the data into five-year observations and then 
determines the relationships between injury and non-injury related crashes with the same independent variables.  

3. Data Description and Processing 

The TRB data set contains 19,600 observations, which is reduced to 18,227 observations due to missing data. 

AADTpLn, SL, NTL, and SGLT are considered continuous or multinomial variables, whereas S, M, OSP, and OW 
are examples of binary variables. LW is considered a 4-level categorical variable (LW9, LW10, LW11) because 

there is no reason to presume a linear or log linear relationship between lane width and crash frequency; the 

researchers selected 12 feet lanes as the reference condition because it is the standard for most highway classes. 
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According to the NHTSA American National Standards (8), an accident is classified by the most serious injury. 

The data set contains crash frequency in six different severity categories, namely non-reportable, property damage, 
visible injury, possible injury, disabling injury, and fatal injury. A continuous dependent variable referred to as non-

injury is the total of the first two variables while injury is the sum of the latter four variables.  

Four data sets are derived from the 18,227 observations. Using the 18,277 observations, 3,645 observations 

(20%) are randomly selected for model validation and are referred to as the Annual Test Data. The Annual Training 
Data uses the remaining 14,582 observations for model development. The selection of these data sets appears 

unbiased based on the distributions of age and gender within the crash data. In addition, five years of crash data are 

aggregated into single observations and are referred to as the 5-Year Data, which includes 3,734 observations. 
Similarly, the 5-Year Data is split into 5-Year Testing Data (746 observations) and 5-Year Training Data (2,988 

observations). The crash frequency distributions of the 5-Year Testing and Training Data for LW10 (16% to 22%) 

and LW11 (36% to 29%) are a little different; however, the chi-squared tests conducted on the injury and non-injury 
crashes with 95% confidence do not reject the hypotheses that the subsets are similar. 

4. Modeling and Analysis 

This section describes five statistical models that use Classification and Regression Trees (CART). CART, 

developed by Breiman et al. in the early 1980’s (9), is a decision tree tool to construct a predictive model; it starts 
from a root node and splits the data set into two branches based on least squares and cross validation. The splitting 

process continues until reaching terminal nodes. Each observation falls into exactly one terminal node based upon 

the tree logic (10). In addition, CART yields variable importance scores that rank the importance of each dependent 

predictor variable. 
This research develops a pure CART model and four treed regression models. The pure CART model 

predicts whether a crash occurs in the Annual Training Data and is constructed using Salford Systems software. 

The model has no restriction on the required number of observations in the terminal nodes, and some of the resulting 
terminal nodes have as few as two observations, which suggests that this model overfits the data. Nonetheless, six 

variables (SGLT, AADTpLn, SL, NTL, S, and NFRC) have greater importance than any lane width variable. The 

study removes NFRC from further analysis because its definition appears subjective. 
The four treed regression models use CART to build an initial tree based on the training data. Each training 

data set is split within each terminal node of these CART models, and stepwise logistic and linear regression models 

using all of the predictor variables are estimated for the appropriate response variables. The CART models 

combined with the stepwise regression models are considered treed regression models. The study uses the Annual 
Training Data to build a logistic treed regression model to predict the likelihood of a crash and another treed 

regression model to predict the number of crashes. To control for the five most important variables, these models 

include them as the only predictor variables and require at least 500 observations per terminal node. Two other treed 
regression models predict the number of injury and non-injury crashes from the 5-Year Data. The CART model for 

the logistic treed regression model has 22 terminal nodes, an R2 value of 0.13, a root node of AADTpLn (at the 

value 4383), and a variable importance score ranking of AADT, SGLT, SL, NTL, and S, which is similar to the 

pure CART model. Similarly, the CART model for the treed regression CART model has 21 terminal nodes with 
an R2 value of 0.16, a root node split on AADTpLn (at 7482), and the same ranking in the variable importance 

scores. The non-injury and injury CART models (Figure 1) are constructed using R-studio software. Although these 

CART models consider all predictor variables, only SL, NTL, AADTpLn and SGLT appear in the trees, and the 
root node splits on AADTpLn, which is consistent with the previous CART models. The non-injury and injury 

CART models have training R2 values of 0.18 and 0.16. Stepwise regression is conducted within each terminal node 

of each tree. Within each terminal node, the logistic treed regression model uses the statistical software SAS; the 
PROC LOGISTIC function includes a stepwise selection where a significance level of 0.30 is required for variable 

entry into the model, and 0.35 is required to retain a variable. Within each terminal node, the treed regression model 

fits a step-wise linear regression model where all variables are statistically significant at the 5% level to predict the 

annual number of crashes. The 5-year models also build stepwise linear regression models for each terminal node. 
A significance level of 0.30 is required for variable entry, and a level of 0.35 is required for variable retention. The 

R2 values for the treed regression models are larger than those of the CART models, suggesting that the stepwise 

regression in the terminal nodes improves these models’ predictive power. The logistic treed regression model R2 



 
 

and Tjur R2 are both 0.18, while the CART R2 is 0.13. For the treed regression model, the R2 value is 0.27 compared 

to only 0.16 for the CART model. R2 values for the non-injury and injury models are 0.36 and 0.30, which are 0.18 
and 0.14 higher than those of the CART models. Moreover, testing data is used to validate the treed regression 

models; all have training and testing R2 values within 0.02 of each other, suggesting that the treed regression models 

do not appear overfit.  

 

Figure 1. CART models for injury and non-injury treed regression models. 

Node characteristics for the logistic treed regression model, the treed regression model, and the injury and 
non-injury models are shown in Table 1, Table 2, and Table 3, respectively. Although these models have other 

significant variables, because of the study focus, only estimates for lane widths are shown in the tables. All four 

treed regression models show that in most nodes, either the R2 is quite small or the lane width coefficients or odds 

ratios are either insignificant or small. Only Node 3 in the logistic treed regression model has all four R2 values 
greater than 0.10. In the treed regression model, Nodes 18 and 21 are the only nodes to have R2 values greater than 

0.16 and include lane width coefficients greater than 1 crash per year. Node 3 in the injury model and Nodes 3 and 

4 in the non-injury model exclude the lane width variables. Although Nodes 1 and 2 in the injury model and Node 
2 in the non-injury model include coefficients on lane width variables, their 95% confidence intervals include zero, 

suggesting that impacts may be insignificant. Consequently, in most cases, factors other than lane width account 

for crash likelihood, frequency, and severity; however, narrower lane widths can increase crashes for high volume 
segments. For instance, Node 3 in the treed logistic regression model with the highest R2 (0.16) shows that 9-foot 

lane widths triple the probability of a crash, while 10-foot lane widths and 11-foot lane widths increase the 

probability by 73% and 53%, respectively, when compared to 12-foot lane width sections. Node 21 in the treed 

regression model is defined by higher AADT per lane, speed limits, and longer segments, and in it, 10-foot lane 
widths and 11-foot lane widths increase the number of crashes by 3.74 and 1.81, respectively. Since 9-foot lane 

widths only appear in 5% of the observations, they do not register a significant effect. Node 18 similarly has higher 

AADT per lane but only 30-35 mph speed limits and shorter segments. For these sections, both 10-foot lane widths 
and 9-foot lane widths but the 10-foot lane width’s increase (2.44) appears greater than 9-foot lane width’s increase 

(1.48). In the injury and non-injury models, all high volume nodes (Nodes 4 and 5 in the injury model and Nodes 5 

and 6 in the non-injury model) show positive significant coefficients for at least one lane width variable. On 

segments with higher volume and high speed limits (Node 4 in injury model), 11-foot lane widths increase the 
number of injury crashes by 0.705 per 5 years. On those with 30-35 mph speed limits (Node 5), 10-foot lane widths 

increase injury crashes by 3.703. On short segments with higher volume (Node 5 in non-injury model), 10-foot lane 

widths increase the number non-injury crashes by 5.76 per 5 years. On long segments (Node 6), 10-foot and 11-
foot lane widths increase non-injury crashes by 14.94 and 5.69, respectively. 

Conclusions 

The purpose of this study is to identify the impact of lane width on safety. Analysis from the four treed regression 
models indicates that lane width has limited impact on safety in most cases. Nonetheless, all four models also show 

that narrower lanes increase the likelihood and the frequency of both injury and non-injury crashes on high-volume 

segments; these results may be used to identify potentially risky volumes. These models are built using data that 
omits potential confounding effects such as weather conditions and visibility. Consequently, more robust data may 

improve the quality of the models and possibly further isolate the effects of lane width on safety. 



 
 

Table 1 Treed regression characteristics and lane width odds ratios from logistic regression analysis  

 

Note: Grey areas show non-occurrence of lane width in the dataset 

 

LW9 LW10 LW11 Crash LW9 LW10 LW11 LW9 LW10 LW11 R2 Tjur R2 R2 Tjur R2

Min 25 1 111 0.03

Max 35 4 3,250 0.15

Min 20 1 150 0.15

Max 35 3 3,255 0.36

Min 20 1 3,258 0.03

Max 35 6 4,378 0.36

Min 40 1 100 0.03

Max 45 3 3,616 0.37

Min 40 1 3,625 0.07

Max 55 4 4,375 0.37

Min 25 1 500 0.37

Max 40 1 4,350 2.01

Min 25 2 453 0.37

Max 40 5 4,375 1.01

Min 45 1 110 0.38

Max 60 4 4,375 3.88

Min 20 1 4,411 0.02

Max 40 2 8,050 0.14

Min 25 1 4,425 0.15

Max 40 2 8,077 0.24

Min 30 1 4,400 0.24

Max 40 2 8,075 0.26

Min 30 1 4,388 0.27

Max 40 2 7,957 0.38

Min 45 1 4,470 0.09

Max 55 2 8,075 0.25

Min 45 1 4,400 0.25

Max 55 2 8,075 0.38

Min 30 1 8,088 0.02

Max 45 2 16,650 0.24

Min 35 1 8,088 0.24

Max 45 2 16,650 0.38

Min 30 3 4,416 0.07

Max 45 5 11,017 0.35

Min 25 1 4,388 0.39

Max 40 3 6,425 2.01

Min 45 1 4,418 0.39

Max 55 3 6,429 3.88

Min 25 1 6,450 0.39

Max 40 3 7,475 1.00

Min 35 1 7,488 0.39

Max 40 3 19,480 1.01

Min 45 1 6,450 0.39

Max 55 3 14,900 1.20
0.09 0.06 0.05 0.06- 1.57 - 0.016

0.01- 0.056 0.280 0.06 0.02 -0.0121 519 50 64 199 457 - 7.26 1.36

20 570 30 49 180 454 0.51 -

22 686 0 15 206 439

0.04 0.05- 0.68 - 0.030 0.08

-0.03 0.010.51 0.151 - 0.004 0.06 0.04

19 568 0 21 258 292

0.06 0.05

0.06

0.05 0.061.65 - - 0.055 - -18 1,079 95 231 353 674

16 512 0 63 159 373 5.91

0.06- - 0.07 0.04 0.0617 510 0 92 146 402 - -

0.05 0.053.88 1.43 0.000 0.056 0.06

0.07 0.111.72 0.001 0.045 0.16 0.11

15 605 0 53 230 355

0.03 0.02

0.04

0.03 0.02- - - -14 635 0 26 268 179

12 803 46 142 299 438 3.99 2.43

0.01- - 0.02 0.01 0.0013 542 0 35 229 212 - -

0.03 0.04- - 0.081 - - 0.06

0.06 0.071.77 0.001 0.001 0.132 0.10 0.07

11 544 34 110 159 346 2.88

0.06 0.05

0.04

-0.02 0.022.14 2.78 - 0.284 <.0001 -10 776 14 86 253 385

8 794 0 36 417 288 -

0.05<.0001 - 0.04 0.03 0.059 793 0 78 221 287 3.28 1.44

0.03 0.051.27 - 0.131 - 0.10

0.00 0.020.71 - 0.031 0.06 0.04

7 823 0 267 254 489

0.13 0.10

0.07

0.03 0.073.33 - 2.81 0.026 - <.00016 647 17 124 298 269

4 605 0 31 165 110 0.27

0.04- 0.065 0.11 0.08 0.005 571 0 8 120 160 - 1.52

0.151.73 1.53 0.028 0.074 0.026 0.16

0.09 0.071.42 0.029 0.138 0.09 0.05

3 601 28 140 283 294 3.01

0.05 0.04

0.12 0.17

0.05- 1.64 - - 0.021 0.072 632 30 196 165 225 -

0.11 0.08 0.10 0.093.03 - 1.53 0.009 - 0.0021 767 32 156 227 195

SGLT
Dummy Variable (=1) Odds Ratio P -value Training Testing

Node # of Obs. Range SL NTL AADTpln



 
 

Table 2 Treed regression characteristics and lane width coefficients from linear regression analysis  

 
Note: Grey areas show non-occurrence of lane width in the dataset; all lane widths are significant at 5 percent level; - represents lane width 
is insignificant at 5 percent level.  

LW9 LW10 LW11 LW9 LW10 LW11

Min 111      20 0.03 1

Max 3,600    40 0.25 4

Min 3,608    20 0.03 1

Max 4,411    40 0.25 6

Min 624      25 0.25 1

Max 4,411    40 0.46 3

Min 100      45 0.05 1

Max 4,400    55 0.44 4

Min 500      25 0.47 1

Max 4,400    45 2.01 1

Min 453      25 0.46 2

Max 4,403    40 1.01 5

Min 110      45 0.46 2

Max 4,375    60 3.88 4

Min 4,413    20 0.02 1

Max 7,477    35 0.25 5

Min 4,450    30 0.25 1

Max 7,463    35 0.49 3

Min 4,416    40 0.07 1

Max 5,418    55 0.35 4

Min 5,425    40 0.06 2

Max 7,449    40 0.20 3

Min 5,425    40 0.20 1

Max 7,475    40 0.35 3

Min 5,425    45 0.09 1

Max 7,469    55 0.35 4

Min 4,425    40 0.35 1

Max 7,475    45 0.49 3

Min 4,450    25 0.49 1

Max 7,464    40 2.01 1

Min 4,438    30 0.49 2

Max 7,438    40 1.01 3

Min 4,418    45 0.49 1

Max 7,475    55 3.88 3

Min 7,488    30 0.02 1

Max 14,847  35 0.49 3

Min 7,488    40 0.06 1

Max 8,675    45 0.50 3

Min 8,688    40 0.08 1

Max 16,650  45 0.50 3

Min 7,500    35 0.50 1

Max 19,480  50 1.01 3

NTL
Dummy Variable (=1) Coefficient R

2 

Training

R
2 

Testing 

1 1465 73 329 357

Node # of Obs. Range AADTpln SL SGLT

0.32 - - 0.05 0.06

2 532 0 101 226 - - 0.19 0.19

3 903 51 166 310 0.36 - - 0.14 0.07

4 743 0 17 211 - - 0.03 0.04

5 703 17 141 334 - - 0.37 0.09 0.01

6 624 0 216 187 - - 0.27 0.36

7 571 0 0 309 - 0.04 0.09

8 820 14 138 330 - 0.43 0.48 0.22 0.19

9 600 47 234 107 - - -0.69 0.06 0.11

10 623 0 80 173 - -0.30 0.09 0.12

11 502 0 14 129 1.31 - 0.07 0.06

12 523 0 13 259 - - 0.01 -0.01

13 706 0 56 304 - - 0.05 -0.02

14 600 0 26 221 - - 0.07 0.07

15 552 109 100 234 - - - 0.09 0.06

16 683 0 142 194 - -0.68 0.08 0.08

17 767 0 27 308 - - 0.05 0.00

18 692 31 131 237

0.03

20 571 0 1 161

1.48 2.44 - 0.17 0.11

19 820 0 27 294

21 582 34 64 204

- 0.73 -0.27 0.03

- 3.74 1.81 0.29 0.26

0.92 0.07 0.22



 
 

Table 3 Injury and non-injury treed regression characteristics and lane width linear regression coefficients  
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1 2 3 4 5 1 2 3 4 5 6

Training 1129 940 352 369 198 1431 149 667 167 433 141

Testing 269 252 83 83 59 374 36 141 52 114 29

0.686 1.130 2.051 2.176 4.040 2.502 6.188 4.112 7.090 6.989 11.369

Min 20 20 25 40 30 20 25 25 30 30 35

Max 60 55 55 50 35 55 45 60 55 45 50

Min 0 1 1 1 1 0 3 0 1 1 1

Max 6 5 3 3 3 2 6 5 3 3 3

Min 48 4400 4400 7340 7313 48 48 486 6146 7298 7299

Max 4381 7298 7310 17783 13700 7295 7277 6125 7283 16500 17783

Min 0.028 0.028 0.500 0.063 0.025 0.028 0.065 0.461 0.461 0.025 0.499

Max 3.878 0.499 2.007 1.007 1.013 0.460 0.377 3.878 1.204 0.499 1.013

Non-Injury 

Node

NTL

AADTLn

SGLT

#of Obs.

SL

Avg. crash /node

Injury 

C
ou

nt
LW9 19 24 19 0 13 31 1 17 13 6 7

LW10 192 117 51 9 31 186 41 123 10 27 13

LW11 418 324 124 116 79 475 54 271 62 147 52

C
oe

ff
ic
ie
nt

C
ou

nt

LW9

LW10 0.244 3.703 1.112 1.377 5.67 14.94

LW11 0.119 0.705 5.69

Min -0.043 2.23 0.69 -0.18 2.71 9.485

Max 0.531 5.17 1.53 2.93 8.62 20.405

Min -0.03 0.106 2.097

Max 0.26 1.305 9.287

0.083 0.080 0.091 0.081 0.339 0.155 0.437 0.161 0.249 0.137 0.421

0.106 0.073 0.100 0.091 0.188 0.129 0.721 0.164 0.186 0.132 0.240

LW10 CI

LW11 CI

0.3

C
oe

ff
ic
ie
nt

R
2
 Training

R
2
 Testing

0.36

0.370.33

Global R
2
 Training

Global R
2
 Testing

0.18

0.2

CART R
2
 Training

CART R
2
 Testing

0.16

0.17
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