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Multivariate Adaptive Regression Spline (MARS) is a statistical modeling method used to represent

a complex system. More recently, a version of MARS was modified to be piecewise linear. This paper

presents a mixed integer linear program, called MARSOPT, that optimizes a non-convex piecewise linear

MARS model subject to constraints that include both linear regression models and piecewise linear MARS

models. MARSOPT is customized for an automotive crash safety system design problem for a major US

automaker and solved using branch and bound. The solutions from MARSOPT are compared with those

from customized genetic algorithms.
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1. Introduction

Global optimization has been applied to a wide variety of science and engineering design prob-

lems. Although numerous global optimization techniques have been developed and studied for

decades, when used for complex systems such as the design of an aircraft or an automobile, the

results are impractical or not completely satisfactory. One of the major challenges is the computa-

tional time required to solve these problems. The majority of design problems require a significant

number of experiments or simulations in order to find a globally best solution. However a single

simulation can take between seconds and days to finish. For example, to quote Wang and Shan

(2007): “it is reported that it takes Ford Motor Company about 36-160 hrs to run one crash simu-
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lation (Gu 2001). For a two-variable optimization problem, assuming on average 50 iterations are

needed by optimization and assuming each iteration needs one crash simulation, the total com-

putation time would be 75 days to 11 months, which is unacceptable in practice.” This example

shows the challenges that many real world problems are still facing, especially when dealing with

large scale problems.

Although the definition of global optimization is well-defined, there exists an extensive variety

of global optimization techniques (Romeijn and Pardalos 1995, Horst et al. 2000) primarily due

to different assumptions about the optimization problem. For example, some global optimization

researchers develop deterministic algorithms for solving non-convex problems that are capable of

guaranteeing convergence. These non-convex optimization problems generally assume some knowl-

edge of the structure of the functions being optimized and typically use branch and bound to find

an optimal solution (Keha et al. 2006, Vielma et al. 2008, Sherali and Tuncbilek 1992, Sherali and

Wang 2001).

Other researchers assume that the functions being optimized are unknown but can be evaluated

with a black box or simulation. Consequently, they develop black-box methods using heuristics, such

as evolutionary algorithms. However, the main drawback of methods like evolutionary algorithms

and population-based strategies, such as extensively applied genetic algorithms, is that even though

they are able to provide some feasible solutions, there is no certainty that the solution found is a

globally optimal solution (Mohamed et al. 2012, Peremezhney et al. 2014).

Surrogate optimization approaches, such as response surface methodology and design and anal-

ysis of computer experiments, iteratively optimize a surrogate statistical meta-model where the

assumption is that the computer experiments or the evaluation of the functions being optimized

is extremely expensive. Like other heuristic methods, these techniques only attempt to find good

solutions, but they are not provably globally optimal. In addition, the studies presented on sur-

rogate optimization methods, (Emmerich et al. 2002, Willmes et al. 2003, Regis and Shoemaker

2007), among others, do not even globally optimize the surrogate model.
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This research addresses two gaps in the surrogate optimization literature (e.g., Emmerich et al.

2002, Willmes et al. 2003, Regis and Shoemaker 2007). One using branch and bound, this paper

describes a surrogate optimization method that globally optimizes its surrogate model. Two, unlike

other global optimization methods, the developed method assumes a static or fixed set of data; that

is, there is no certainty that additional data can be gathered. This inability to collect additional

data can occur in real-world problems such as crash simulations or medical treatments, in which

experimentation is unavailable. More specifically, this paper describes a non-dominating method

to evaluate the quality and the robustness of solutions.

1.1. Literature Review

1.1.1. Non-Convex Piecewise Linear Optimization. Problems involving non-convex

piecewise linear functions frequently use branch and bound, which is a widely used deterministic

algorithm for solving numerous optimization problems. Keha et al. (2006) proposed a branch-and-

cut algorithm without auxiliary binary variables for solving non-convex separable piecewise linear

optimization problems that uses cuts and applies SOS2 branching. Vielma et al. (2008) studied

an extension of the branch-and-cut algorithm for solving linear problems with continuous sepa-

rable piecewise linear cost functions developed by Keha et al. (2004) in the case where the cost

function is only lower semi-continuous. Sherali and Tuncbilek (1992) proposed a generic branch-

and-bound algorithm for globally optimizing continuous polynomial programming problems, which

employs constructed linear bounding problems using a reformulation linearization technique (RLT)

in concert with a suitable partitioning strategy that guarantees the convergence of the overall

algorithm. Sherali and Wang (2001) presented a global optimization approach for solving non-

convex factorable programming problems. The approach involves a branch-and-bound procedure

with a suitable partitioning scheme and two levels of relaxations, ensuring convergence to a global

optimum.

1.1.2. Heuristics. Other optimization techniques incorporate intelligent exploration and

exploitation search procedures, such as the well-known group of evolutionary algorithms. Evolu-

tionary techniques are meta-heuristic models that base their algorithms on biological processes.
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Examples from the heuristics literature are hill climbing (Rich and Knight 1991), simulated anneal-

ing (Kirkpatrick et al. 1983), tabu search (Glover 1977), and genetic algorithms (Holland 1975,

Goldberg 1989). More recently, Mohamed et al. (2012) proposed an alternative differential evo-

lution (ADE) algorithm for solving unconstrained global optimization problems, which improves

the local search ability and increases the convergence rate. The ADE was tested on a set of well-

known high-dimensional unconstrained continuous functions and compared with other differential

evolution algorithms, performing better with respect to the search process efficiency, convergence

rate, and final solution quality. Peremezhney et al. (2014) proposed a sequential procedure based

on a combined application of Gaussian processes, mutual information, and a genetic algorithm to

find an approximation to the optimal solution of multi-target optimization of expensive to evaluate

functions. The optimal solutions in the Pareto set is selected using the conducted surrogate model’s

predictions and is evaluated comparing the real system. The proposed approach was compared

with a surrogate-based online evolutionary algorithm to show the performance of multi-objective

active leaner algorithm using the hypervolume indicator.

1.1.3. Surrogate Optimization A significant number of approaches optimize surrogate

approximation models. A surrogate model mimics the original model with a reduced number of

simulations and has statistical properties that help develop patterns. Some of the meta-models

used in surrogate optimization are: polynomial regression, radial basis functions, Kriging, and mul-

tivariate adaptive regression splines, which is the surrogate model used in this study. The following

are examples from surrogate optimization literature that involve the use of meta-models. Jones

et al. (1998) developed a method called Effcient Global Optimization (EGO) using Kriging as

the approximation model, which is especially good at modeling non-linear multimodal functions.

In this method the next evaluation point is chosen to be the one that maximizes the expected

improvement in the objective function value. Gutmann (2001) introduced a global optimization

method based on a general response surface technique. This method uses radial basis functions

as interpolants, and a measure of bumpiness is also available. The method was tested in a few
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numerical examples, showing favorable results in comparison to other global optimization meth-

ods. Emmerich et al. (2002) presented the use of metamodels based on Kriging techniques in the

context of evolution strategies-based optimization algorithms. Willmes et al. (2003) showed the

optimization performance of three well known test functions using evolution strategies assisted by

meta-models such as Kriging. Regis and Shoemaker (2007) introduced a stochastic response sur-

face (SRS) method for the global optimization of expensive black-box functions that utilizes radial

basis functions. A special case of SRS, called Metric SRS (MSRS), uses a distance criterion when

selecting the function evaluation points. A global optimization and a multistart local optimization

version of MSRS were developed. Crino and Brown (2007) proposed a global optimization proce-

dure by combining multivariate adaptive regression splines with a response surface methodology.

This approach was applied to seven test cases, all of them are low-dimensional examples. Sherali

and Ganesan (2003) presented two pseudo-global optimization approaches for solving formidable

constrained optimization problems such as the containership design model.

1.2. Contributions

This paper presents a deterministic mixed integer linear program, named MARSOPT, for glob-

ally optimizing a modified version of Multivariate Adaptive Regression Splines (MARS) subject to

constraints that include both linear regression models and piecewise linear MARS models.

As discussed earlier, this research addresses two gaps in the surrogate optimization and heuristics

literature. One, using branch and bound, MARSOPT globally optimizes its surrogate MARS model.

Two, this paper presents a non-dominating Pareto evaluation procedure, which validates the quality

and robustness of solutions obtained from MARSOPT or other methods, even though no additional

experimental data is collected.

Solutions from MARSOPT are compared with those from customized genetic algorithms, which

are extensively used in the surrogate optimization literature. The customization of the genetic

algorithms involves a rounding approach to incorporate categorical variables. These solutions are

compared using the aforementioned Pareto evaluation procedure on a static set of real vehicle
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crashworthiness data, from a major U.S. automaker, to optimize safety system design. The results

show that solving MARSOPT with branch and bound yields substantially better solutions than

those from the genetic algorithms, and the CPU time is negligible. Although these experiments use

vehicle crashworthiness data, the methods developed in this paper are general and have potential

for optimizing numerous complex systems.

The remainder of this paper is organized as follows. Section 2 explains original MARS and the

modified piecewise linear version of MARS as the background of this research. Section 3 formulates

the new mixed integer linear program MARSOPT. Section 4 shows results comparing solutions

from MARSOPT and genetic algorithms on the automotive crash safety system design problem

using the Pareto evaluation procedure. Finally, section 5 presents conclusions and future research.

2. Background on Multivariate Adaptive Regression Splines

This section summarizes background research on multivariate adaptive regression splines

(MARS), which was introduced by Friedman (1991), and a piecewise linear version of MARS devel-

oped by Martinez (2013), Martinez et al. (2015), and Shih (2006). Original MARS, by Friedman

(1991), is particularly useful for representing high-dimensional systems involving interactions and

curvature. Fitting a MARS model involves a forward-backward stepwise subset selection procedure

that builds a model using a set of spline basis functions that best fits the data.

Optimizing MARS has been used for large-scale optimization problems (Siddappa et al. 2007,

Pilla et al. 2008). However the MARS models in these cases were assumed to be convex. MARS

has also been used as a surrogate model in different optimization approaches, but literature reports

its applications only on well-known unconstrained optimization test functions and low-dimensional

examples.

The MARS model terms are based on truncated linear functions, where the univariate terms are

piecewise linear, and the interaction terms, which are generated by taking products of univariate

indicator factors, include nonlinearities.

The MARS approximation has the form:
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f̂M(x,β) = β0 +
M
∑

m=1

βmBm(x), (1)

where x is an n-dimensional vector of explanatory variables, β0 is the intercept coefficient, which is

the mean of the response values,M is the maximum number of linearly independent basis functions,

βm is the unknown coefficient for the mth basis function, and Bm(x) is a basis function that utilizes

truncated linear functions. The univariate basis functions are truncated linear functions of the form

b+(x;k) = [x−k]+ or b−(x;k) = [k−x]+, where [q]+ =max{0, q}, x is a single explanatory variable,

and k is the corresponding univariate knot, where the approximation bends. The interaction basis

functions are formed as a product of two or more truncated univariate basis functions and is of

the following form:

Bm(x) =

Lm
∏

l=1

[sml(xv(m,l) − kml)]+, (2)

where Lm is the number of interaction terms in the mth basis function, xv(m,l) is the explanatory

variable corresponding to the lth truncated linear function in the mth basis function, and kml is

the knot value corresponding to xv(m,l). The value sml is the direction that the truncated linear

basis function can take, either +1 or -1.

As mentioned, the univariate terms are piecewise linear, but the interaction terms are not.

Therefore to enable use of mixed integer linear programming methods, the interaction terms of a

MARS model are transformed to piecewise linear forms, enabling a much easier and faster search

of a global optima (Martinez 2013, Martinez et al. 2015, Shih 2006).

As developed in Martinez (2013), Martinez et al. (2015), and Shih (2006), the nonlinearities

generated by interaction terms can be modified to a new-one dimensional variable by using the

following transformation term zm:

zm = am0 +

Lm
∑

l=1

amlxv(m,l), (3)

where

am0 =

Lm
∑

l=1

smlkml

smlkml − 1
aml =

sml

1− smlkml

(4)
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Using the transformation in equations (3) and (4), the general form of a piecewise linear interaction

basis function is then defined as, Bm(x) = [φmzm]+, where φm is either +1 or -1 representing the

direction of the linear combination of variables.

3. Formulation of MARSOPT

In this section, we develop the MARSOPT mixed integer linear programming formulation for

optimizing a non-convex piecewise linear MARS function, subject to a system of piecewise linear

MARS function constraints and linear regression constraints.

Consider the following sets, parameters, and variables for MARSOPT. Let C be a set of contin-

uous explanatory variables. For each j ∈C, let decision variable xj be the value of the continuous

explanatory variable j. For each j ∈ C, let parameters lj and uj be lower and upper bounds of

variable xj. Let I be a set of categorical explanatory variables. For each categorical explanatory

variables p ∈ I, let Kp be the set of levels of categorical variable p minus a single reference level.

For each p∈ I, ℓ∈Kp, let decision variable xpℓ a binary such that

xpℓ =

{

1 if categorical variable p is set to level ℓ,

0 otherwise.
(5)

Let J =C
⋃

p∈I
Kp be the set of all continuous and binary explanatory variables.

Let P be a set of piecewise linear MARS models, and let piecewise linear MARS model o∈ P be

the objective function. Let Q be a set of linear regression models. For each i ∈Q∪P \ {o}, let bi

be a parameter for constraining the maximum value of model i. For each i ∈ P , let Mi be the set

of basis functions in piecewise linear MARS model i. For each i ∈P , m∈Mi, let decision variable

Bim be the value of basis function m in piecewise linear MARS model i as shown in (1). For each

i ∈ P , m ∈Mi, let parameter βim be the coefficient of basis function m in piecewise linear MARS

model i as shown in (1). Similarly, let βi0 be the intercept coefficient. For each i ∈ P , m ∈Mi, let

decision variable zim be the linear transformation term in (3) for basis function m in piecewise

linear MARS model i. For each i∈ P , m∈Mi, let parameter uim be a known upper bound on the

absolute value of the linear transformation term zim. For each i∈P , m∈Mi, let parameter φim be

either +1 or -1 representing the direction of the linear transformation term zim in basis function
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m in piecewise linear MARS model i. For univariate terms, parameter φm =+1. For each i ∈ P ,

m∈Mi, let decision variable y+
im and y−

im be binaries such that

y+
im =

{

1, if zim ≥ 0

0, otherwise,
y−
im =

{

1, if zim ≤ 0

0, otherwise,
(6)

In addition, we use the notation yφim
im to refer to y+

im whenever φim =+1; otherwise yφim
im refers to

y−
im.

For each i ∈ P , m ∈Mi, j ∈ J , let parameter aimj be the coefficient of explanatory variable j

in the mth basis function in piecewise linear MARS model i as given by (4). Similarly, let aim0

be the intercept. To simplify notation, let aimj = 0 for variables not in the linear transformation.

For univariate basis functions, aimj = sim for the explanatory variable in the basis function, and

aim0 = −simkim; otherwise aimj = 0. For each i ∈ Q, j ∈ J , let parameter βij be the coefficient

of explanatory variable j, and let βi0 be the intercept coefficient in linear regression model i.

MARSOPT is given by the following:

maxβo0 +
∑

m∈Mo

βomBom (7)

s. t. βi0 +
∑

m∈Mi

βimBim ≤ bi ∀i∈ P \ {o}, (8)

βi0 +
∑

j∈J

βijxj ,≤ bi ∀i∈Q (9)

aim0 +
∑

j∈J

aimjximj = zim ∀i∈ P,m∈Mi, (10)

−uimy
−
im ≤ zim ≤ uimy

+
im ∀i∈ P,m∈Mi, (11)

0≤Bim ≤ uimy
φim
im ∀i∈ P,m∈Mi, (12)

φimzim ≤Bim ≤ φimzim +uimy
−φim
im ∀i∈ P,m∈Mi, (13)

y+
im + y−

im =1 ∀i∈ P,m∈Mi, (14)

y+
im, y

−
im ∈ {0,1} ∀i∈ P,m∈Mi, (15)

∑

ℓ∈Kp

xpℓ ≤ 1 ∀p∈ I, (16)

xpℓ ∈ {0,1} ∀p∈ I, ℓ∈Kp, (17)

lj ≤ xj ≤ uj, ∀j ∈C. (18)
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The objective (7) is to maximize a piecewise linear MARS model as developed in Martinez (2013),

Martinez et al. (2015), and Shih (2006). Constraint set (8) restricts a set of piecewise linear MARS

models, while (9) represents a set of linear regression constraints. Constraint set (10) ensures

equation (3) is true for each piecewise linear MARS model. Constraints in (11) , (14), and (15)

link the binary variables with the linear transformation variables and guarantee they are defined

as in (6). Similarly, constraints (12) and (13) guarantee Bm(x) = [φmzm]+ as discussed in Section

2. Constraints (16) and (17) ensure that each categorical variable is assigned to at most one

level; unassigned categorical variables are assumed to be assigned to the reference level. Finally,

constraints in set (18) represent the bounds on the continuous variables.

4. Automotive Crash Safety problem

When an automobile is developed, the safety system design becomes one of the major attributes.

Crashworthiness is the ability of a structure to protect its occupants during an impact in such a

way that the structure of the vehicle can attenuate the crash force when impact occurs. Multiple

crash scenarios need to be analyzed during an automotive crashworthiness study. These scenarios

include full front impact, 50% front offset impact, roof crush impact, and side impact.

4.1. Surrogate Optimization Methods for Crashworthiness

Optimizing design is considered computationally intractable due to the significant number of

simulations required. Therefore different approximation or surrogate models have been examined

for vehicle crashworthiness for occupant safety design. Gu et al. (2001) presented a non-linear

response surface-based safety optimization process applied to the vehicle crash safety design of side

impact. Yang et al. (2005) studied five response surface methods using a real-world frontal impact

design problem as an example. Hamza and Saitou (2005) constructed a new method that utilizes

an ensemble of surrogate models constructed from a different sets of samples of finite element

analyses to estimate crash performance. A multi-scenario co-evolutionary genetic algorithm was

applied to minimize the different aggregates of the outputs of the surrogate models. Liao et al.

(2008) proposed a multi-objective optimization procedure for the design of vehicle crashworthiness
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using simple stepwise regression models. A non-dominated sorting genetic algorithm procedure was

employed for searching Pareto efficient solutions. Wang et al. (2010) established a support vector

regression in a time-based meta-modeling manner proposed for frontal crash design problems,

where the constructed meta-models were optimized using particle swarm optimization (PSO). Song

et al. (2012) compared the performance of response surface, Kriging, support vector regression,

and radial basis functions for a foam-filled tapered thin-walled structure case. Sequential quadratic

programming and PSO were used to search for optimal solutions. More recently, Yin et al. (2014)

presented and compared a crashworthiness optimization technique together with a multi-objective

particle swarm optimization (MOPSO) algorithm by employing a dynamic ensemble meta-modeling

method together with polynomial response surface, radial basis functions, Kriging, and support

vector regression.

4.2. Overview of Problem and Formulation

Stepwise regression methods have been commonly used as meta-models to approximate compu-

tationally expensive complex systems such as safety related functions in automotive crash analysis,

multi-objective optimization for crash safety design of vehicles, frontal impact design problems, and

crash safety design of vehicles (Yang et al. 2000, Gu et al. 2001, Yang et al. 2005, Liao et al. 2008).

In the following case study, MARSOPT is applied to an automotive crash safety system design

example in which the objective is to optimize the crash performance of a vehicle safety system

design function subject to constraints and bounds on design variables. Stepwise linear regression

(SLR) and piecewise linear MARS (PL-MARS) models are used to approximate the system.

The automotive crash safety system design case study consists of 33 input variables, where 23 of

them are continuous, 7 are two-level categorical variables, and 3 are 4-level categorical variables.

It includes 51 output variables, one that represents the objective function, which is to be min-

imized, and 50 that are limited in constraints. Tables 1 and 2 provide lower and upper bounds

of the explanatory variables, and the right-hand side (RHS) values of the inequality constraints,

respectively.
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Table 1 Information on explanatory variables

Lower Upper Variable
No. Description Bound Bound Type
1 PAB Shape 1 4 4-level categorical
2 PAB Size -0.2 1.0 continuous
3 Buckle pretensioner flag 0 1 2-level categorical
4 Retractor pretensioner flag 0 1 2-level categorical
5 Adaptive belt load limiter flag 0 1 2-level categorical
6 Crash locking tongue flag 0 1 2-level categorical
7 Knee airbag flag 0 1 2-level categorical
8 Passenger airbag adapt vent flag 0 1 2-level categorical
9 Heel stopper flag 0 0 2-level categorical
10 Buckle pretensioner pull in (m) 0.06 0.1 continuous
11 Buckle pretensioner time to fire (s) 0.008 0.013 continuous
12 Retractor pretensioner pull in (m) 0.06 0.1 continuous
13 Retractor pretensioner time to fire (s) 0.008 0.013 continuous
14 Retractor torsion bar force level-1 2000 3000 continuous
15 Retractor torsion bar force level-2 2000 3200 continuous
16 Retractor torsion bar dispalcement interval-05 0.05 0.3 continuous
17 Retractor torsion bar dispalcement interval-50 0.05 0.3 continuous
18 Knee airbag time to fire (s) 0.013 0.2 continuous
19 Knee airbag inflator power 0.75 1.5 continuous
20 Knee airbag vent size (mm) 0 15 continuous
21 Passenger airbag lower tether length (mm) 0.4 0.52 continuous
22 Passenger airbag lower tether location 1 4 4-level categorical
23 Passenger airbag time to fire (s)-u05 0.01 0.013 continuous
24 Passenger airbag Z-Scale 0.8 1.2 continuous
25 Passenger airbag adaptive vent size (mm) 40 120 continuous
26 Passenger airbag time to fire (s)-b05 0.01 0.1 continuous
27 Passenger airbag time to fire (s)-b50 0.01 0.1 continuous
28 Passenger airbag time to fire (s)-u05 0.02 0.1 continuous
29 Passenger airbag time to fire (s)-u50 0.02 0.1 continuous
30 Passenger airbag fixed vent size (mm) 40 80 continuous
31 Passenger airbag inflator power 0.8 1.2 continuous
32 Passenger airbag upper tether length (mm) 0.4 0.52 continuous
33 Passenger airbag upper tether location 1 4 4-level categorical

The case study also includes two sets of data. Data Set 1 contains 200 points and is used to build

the SLR and the PL-MARS system models, while Data Set 2 has 1249 points. To develop the SLR

and the PL-MARS models, the variables were scaled values based on the mid-range and the half-

range of the set of data variable values. For the 10 categorical explanatory variables, a reference level

was selected, and for each of the remaining levels, a binary variable was created. Consequently, the

seven variables with two levels were treated as binary variables, while three binary variables were

used for categorical variable 1 that has four levels. Although categorical variables 22 and 33 also

have four levels, Data Set 1 includes no observations for one of the four levels, so only two binary
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Table 2 Information on the objective function and constraints

Objective
No. Name /RHS No. Name RHS

Obj-pb05-RRS Minimize
1 constr-far50-ChestD ≤ 1 26 constr-pb50-HIC ≤ 1
2 constr-far50-ChestG ≤ 1 27 constr-pb50-Head-IP-min ≥ 1
3 constr-far50-Chest-IP-min ≥ 1 28 constr-pb50-NeckFzMax ≤ 1
4 constr-far50-FemurL ≤ 1 29 constr-pb50-NeckFzMin ≤ 1
5 constr-far50-FemurR ≤ 1 30 constr-pb50-Nij ≤ 1
6 constr-far50-HIC ≤ 1 31 constr-pu05-ChestD ≤ 1
7 constr-far50-Head-IP-min ≥ 1 32 constr-pu05-ChestG ≤ 1
8 constr-far50-NeckFzMax ≤ 1 33 constr-pu05-Chest-IP-min ≥ 1
9 constr-far50-NeckFzMin ≤ 1 34 constr-pu05-FemurL ≤ 1
10 constr-far50-Nij ≤ 1 35 constr-pu05-FemurR ≤ 1
11 constr-pb05-ChestD ≤ 1 36 constr-pu05-HIC ≤ 1
12 constr-pb05-ChestG ≤ 1 37 constr-pu05-Head-IP-min ≥ 1
13 constr-pb05-Chest-IP-min ≥ 1 38 constr-pu05-NeckFzMax ≤ 1
14 constr-pb05-FemurL ≤ 1 39 constr-pu05-NeckFzMin ≤ 1
15 constr-pb05-FemurR ≤ 1 40 constr-pu05-Nij ≤ 1
16 constr-pb05-HIC ≤ 1 41 constr-pu50-ChestD ≤ 1
17 constr-pb05-Head-IP-min ≥ 1 42 constr-pu50-ChestG ≤ 1
18 constr-pb05-NeckFzMax ≤ 1 43 constr-pu50-Chest-IP-min ≥ 1
19 constr-pb05-NeckFzMin ≤ 1 44 constr-pu50-FemurL ≤ 1
20 constr-pb05-Nij ≤ 1 45 constr-pu50-FemurR ≤ 1
21 constr-pb50-ChestD ≤ 1 46 constr-pu50-HIC ≤ 1
22 constr-pb50-ChestG ≤ 1 47 constr-pu50-Head-IP-min ≥ 1
23 constr-pb50-Chest-IP-min ≥ 1 48 constr-pu50-NeckFzMax ≤ 1
24 constr-pb50-FemurL ≤ 1 49 constr-pu50-NeckFzMin ≤ 1
25 constr-pb50-FemurR ≤ 1 50 constr-pu50-Nij ≤ 1

variables were used for them. Incorporating these binary variables, the number of explanatory

variables is 37 in which 14 of them are binary variables. To maintain consistency with the scaling

of the other variables, the binary variables use levels {−1,1}, instead of {0,1}.

The objective function response variable was fit using an SLR model and a PL-MARS model,

resulting in coefficients of determination R2 equal to 0.77 and 0.90, respectively. The higher R2

for the PL-MARS model indicates that the objective fits the PL-MARS model better than the

SLR model. SLR models were also constructed for the output variables of the 50 constraints.

Of these 50 SLR models, 10 either show curvature in residual plots or have R2 less than 0.70,

indicating that the SLR models do not fit the data well for these response variables. Consequently,

PL-MARS approximations were fit for them. The PL-MARS functions were restricted to up to

two-way interaction terms. The number of basis functions for each of the 10 PL-MARS models
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varies from 6 to 10. Additional details on the SLR and PL-MARS models are in Martinez (2013).

Since the underlying function is unknown, two MARSOPT models were formulated, one with

the SLR objective function and one with the PL-MARS objective function. To account for the

{−1,1} scalarization of the binary variables, MARSOPT used a continuous variable x′
pℓ, ∀ℓ∈Kp,

p∈ I and the following set of linking constraints

x′
pℓ = 2xpℓ − 1 ∀ℓ∈Kp, p∈ I. (19)

The variable x′
pℓ was then used in the system models in constraints (9) and (10), while xpℓ was used

in constraint set (16). Furthemore, since the SLR and PL-MARS system models were developed on

scaled data, MARSOPT yields scaled solutions. Consequently, these solutions were unscaled back

to the units of the original data.

4.3. Results and Sensitivity Analysis

The two MARSOPT models described in Section 4.2 were generated by a C-programming code

and solved by branch and bound using IBM CPLEX on a Dual 2.6 GHz Athlon workstation.

The solutions of these models are presented in Appendix A. The CPU times taken to solve the

SLR MILP objective model and the PL-MARS MILP objective model were 0.02 seconds and 0.07

seconds, respectively, indicating that CPU time required to solve MARSOPT was not a concern

for this case study.

In the solutions of these MARSOPT models, some of the output variables in the constraints are

binding; that is, they are equal to their RHS b values. However, the SLR and PL-MARS models in

the constraints are imperfect and include error, so it is possible that the solutions from MARSOPT

violate constraints. Consequently, alternative MARSOPT models in which the RHS b values are

tightened were solved to yield more robust solutions. Tightening constraints by γ indicates that

bi is decreased to (1− γ)bi for all less-than-or-equal-to constraints and increased to bi/(1− γ) for

all greater-than-or-equal-to constraints. Figures 1a and 1b show the objective values, using both

MARSOPT models, when tightening the constraints by γ = 5%, 12.5%, and 20%.
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(a) Sensitivity analysis using SLR model (b) Sensitivity analysis using PL-MARS model

Figure 1 Sensitivity analysis for the objective function

For MARSOPT with the PL-MARS objective, the objective function value depreciates slowly as

the constraints are tightened. No solution to the problem exists when the constraints are tightened

by 25%.

4.4. Genetic Algorithms Comparison

This section develops customized genetic algorithms, which are prevalent optimization tech-

niques for surrogate optimization of vehicle crashworthiness design (Hamza and Saitou 2004, 2005,

D. Aspenberg and Nilsson 2013). A genetic algorithm (GA) is a heuristic search method based on

the principles of life and natural selection. A GA encodes the decision variables in an initial set of

candidate solutions within a population, which are also called genotypes, individuals, members, or

chromosomes. A chromosome is made of genes that hold information and control the inheritance

of certain traits affecting future offspring. In a GA, these chromosomes are represented by a string

of variables that have feature values. Once an initial population is randomly created and evaluated

by a single performance measure called fitness or an evaluation function, the population starts

evolving by iteratively selecting solutions and creating new generations until the process reaches

a defined maximum number of generations (MAXGENS). This selection is based on the fitness

measure of individuals and two genetic operators, crossover and mutation. In addition, GA’s use

other control parameters, such as population and generation size and the encoding of chromosomes.

There are many GA variations with many possible combinations to set parameters. While there
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is no universal best method to set such parameters for any problem, this study is limited to

a particular simple GA, which was built by Denis Cormier (North Carolina State University)

and modified by Sita S. Raghavan (University of North Carolina at Charlotte). This simple GA

assumes there is no distinction between the fitness of an individual and the objective value. It

uses proportional selection, one-point crossover, uniform mutations, and includes a routine called

“elitist,” which ensures that the best chromosomes are retained between generations. This GA code

is available from Michalewicz (1996), and the corresponding pseudo code is presented in Algorithm

1.

Algorithm 1 Genetic Algorithm pseudo code by Cormier and Raghavan Michalewicz (1996)

INITIALIZE: initializes the genes within the variables bounds

EVALUATE: implements the user-defined evaluation function for fitness

KEEP THE BEST: keeps track of the best member of the population

generation = 1

while generation < MAXGENS do

SELECTOR performs standard proportional selection

CROSSOVER: selects two parents for a single point crossover

MUTATE: performs a random uniform mutation

EVALUATE: implements the user-defined evaluation function for fitness

ELITIST: stores the best member of the previous generation

generation = generation + 1

end while

The GA searches for chromosomes within a continuous hypercube, so for the case study, the

chromosomes represent strings of the explanatory variables within a 37-dimensional [−1,1] contin-

uous hypercube. Within the EVALUATE function of Algorithm 1, the fitness of each chromosome

is calculated in two steps. The first step maps the chromosome to a rounded solution that satisfies

the binary restrictions on the 14 binary variables as well as the three constraints in the set (16).
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The second step is to calculate the fitness as the objective value (7) minus a penalty for violations

of constraints in sets (8) and (9).

Specifically, consider a candidate solution in the population xj ∈ [−1,1], for each variable j ∈ J .

In the rounded solution x, xj = xj, ∀j ∈C, and for each ℓ∈Kp, p∈ I, xpℓ is given by (20).

xpℓ =

{

1 if ℓ∈ argmaxℓ̃∈Kp

{

xpℓ̃

}

and xpℓ ≥ 2
|Kp|
√

|Kp|+1
− 1

−1 otherwise
(20)

In the rounded solution x, the constraints in the set (16) are implicit. In addition, it can be shown

that if each xpℓ is randomly sampled from a continuous uniform distribution over the interval [−1,1],

then the probability that the rounded value of xpℓ = 1 is 1/(|Kp|+1). Furthermore, the probability

that xpℓ =−1, ∀ℓ∈Kp, is similarly 1/(|Kp|+1), which implies that selecting the reference level is

equally likely.

Using the rounded solution x, the fitness of the chromosome is calculated as the objective value

minus a user-defined penalty on the violation of constraints. Specifically, for each i ∈ Q ∪ P , let

ĝi(x) be the system model, and let δ be the user-defined penalty. The fitness is calculated as by

(21):

ĝo(x)− δ
∑

i∈Q∪P\{o}

[ĝi(x)− bi]+ . (21)

For the remainder of this paper, the customized GA is now referred to as: PL-MARS-GA.

Using the GA presented in Algorithm 1, the PL-MARS-GA runs were performed using the two

GA parameter settings presented in Table 3.

Table 3 GA parameter settings

Parameters G (Grefenstette 1986) C&R (Michalewicz 1996)
Population size 30 50
Maximum number of generations 300 1000
Probability of crossover 0.9 0.8
Probability of mutation 0.01 0.15

Grefenstette (1986) conducted experiments for searching and determining optimal control param-

eters for a class of global optimization procedures, suggesting the values shown in second column.



Martinez et al.: Global Optimization of Non-convex Piecewise Linear Regression Splines

18 Article submitted to IIE Transactions; manuscript no. (Please, provide the mansucript number!)

The third column shows the set of parameter settings used for the simple GA proposed by Cormier

and Raghaven (C&R), (Michalewicz 1996).

Ten trials for each of the two objective function system models were performed using the param-

eters shown in Table 3 (5 with G-settings and 5 with C&R-settings). Different penalties (δ) were

applied to each run. These trials were then run tightening the constraints by 0%, 5%, 12.5%, and

20%, respectively. A C-programming code executed on a Dual 2.6 GHz Athlon workstation was

used to generate 130 PL-MARS-GA solutions, and the CPU time for all 130 executions were less

than 2 seconds. However, within the set of PL-MARS-GA solutions, none of them optimized the

PL-MARS model. In general, solutions from PL-MARS-GA in which the penalty δ < 5 had many

violated constraints. The C&R-settings show better results than the G-settings. The PL-MARS-GA

algorithm found only one feasible solution when the constraints were tightened by 20%.

A clear disadvantage of an evolutionary algorithm is that there is no certainty that the solution

found is an optimal solution, which is the case for PL-MARS-GA. The PL-MARS-GA algorithm

using the PL-MARS objective model with δ ≥ 5 found solutions with an average objective value of

0.65964 (3% worse than that of MARSOPT) and a minimum of 0.61651 (2% worse than that of

MARSOPT). Similarly, PL-MARS-GA using the SLR objective model with δ ≥ 5 found solutions

with an average objective value of 0.46433 (55% worse than that of MARSOPT) and a minimum

of 0.38750 (26% worse than that of MARSOPT).

4.5. Evaluation Procedure

In this research, we had no access to a crash simulator to collect addition data. Consequently, we

developed an alternative method to evaluate solutions from different sources. As described earlier,

we generated 8 MARSOPT solutions (Section 4.3), 130 PL-MARS-GA solutions (Section 4.5), and

we had a total of 1449 solutions from the original data sets (200 from Data Set 1 and 1249 from

Data Set 2), for a total of 1587 solutions. The evaluation procedure uses nine methods to evaluate

a solution and construct a Pareto optimal frontier. Six of the evaluators are related to the objective

function values, and the other three consider the feasibility of a solution.
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To construct the evaluators, we first develop 99% confidence bands (ĝli(x), ĝ
u
i (x)) on each system

model i∈Q∪P , including both the SLR and PL-MARS objective models, based upon the Working-

Hotelling method (Kutner 1974). The six objective evaluators include the expected objective value

ĝo(x) and the lower and upper bands on the objective value (ĝlo(x), ĝ
u
o (x)) for both the SLR and

PL-MARS objective models. The intuition is that a solution with a truly good objective value

should perform well on all six of these evaluators. For each constraint i ∈Q∪P \ {o}, we say that

i has no violation if bi ≥ ĝui (x), i has a possible violation if bi < ĝui (x), i has an expected violation if

bi < ĝi(x), and i has a confident violation if bi < ĝli(x). The three feasibility objective evaluators are

the number of possible violations, expected violations, and confident violations in the constraints.

After calculating the evaluators for each of the 1587 solutions, we constructed a Pareto efficient

frontier minimizing them. The solutions on the Pareto efficient frontier are nondominated; that is,

for each solution on the Pareto efficient frontier, there is no solution within the 1587 solutions that

is superior in all nine evaluators.

Table 4 includes the 15 nondominated solutions on the Pareto efficient frontier. Using these

15 solutions, a decision maker could select a single solution based upon personal preferences of

the evaluators. One reasonable decision would be to create a reduced Pareto efficient frontier by

eliminating solutions with at least one confident violation. This reduced Pareto efficient frontier

includes only eight solutions (Solutions 2-6, 11, 14, and 15 on Table 4). Of the seven eliminated

solutions, six of them (Solutions 1, 7, 9, 10, 12, and 13) were found using a genetic algorithm, and

one of them (Solution 8) is the only point on the original Pareto efficient frontier from Data Set 2.

A decision maker who is highly sensitive to potential constraint violations would likely choose a

solution from one of the four solutions (Solutions 3, 4, 11, and 14) on the Pareto efficient frontier

that have no violations. Of these four solutions, two of them (Solutions 3 and 14) were found using

the SLR objective model and 5% tightening on the constraints. Solution 3 though was found using

a genetic algorithm, while Solution 14 was found using MARSOPT. Similarly, Solution 11 was

also found using a genetic algorithm but instead of tightening the constraints by 5%, its algorithm

had δ = 10, which is 100 times larger than δ = 0.1 in the algorithm that found Solution 11. The
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remaining solution with no violations (Solution 4) is from Data Set 1. Of these solutions with no

violations, Solution 4 from Data Set 1 and Solution 14 found using MARSOPT have optimal and

near optimal PL-MARS objective values, respectively.

Two solutions (Solutions 2 and 11) are only superior to other solutions (Solutions 15 and 14,

respectively) in the upper band on the SLR objective model. A decision maker would not likely

consider Solution 2 over Solution 15, due to Solution 2 having an expected violation. Similarly, the

PL-MARS objective of Solution 11 makes it less attractive than Solution 14.

The reduced Pareto efficient frontier includes three of the eight MARSOPT solutions (37.5%),

three of the 130 PL-MARS-GA solutions (less than 3%), two of the 200 solutions (1%) from Data

Set 1, and zero from Data Set 2. Consequently, we conclude that MARSOPT was very efficient at

finding high-quality feasible solutions in the case study. In addition, Table 5 shows how the other

five solutions found using MARSOPT are dominated. Of these five, four of them (Solutions 16-19)

are dominated by Solution 14, and one of them (Solution 20) is dominated by Solution 15, both of

which were found using MARSOPT. In fact, Solution 14 is particularly attractive because it has

no violations, a near optimal PL-MARS objective value, and a very low SLR objective value.
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Table 4 Efficient Pareto frontier points

Solutions Evaluators
Objective Values Constraint Violations

Tight- PL- PL-
Objective ening GA SLR- SLR-MARS- PL- MARS-

Solution Model Algorithm of RHS(Settings,δ) ĝl
o(x) SLR ĝu

o (x) ĝl
o(x) MARS ĝu

o (x) PossibleExpectedConfident
1 SLR PL-MARS-GA 0% (G,0.01) 0.250 0.283 0.316 0.965 0.977 0.989 5 4 3
2 Data Set 1 - (-,-) 0.544 0.569 0.594 0.601 0.604 0.607 1 1 0
3 SLR PL-MARS-GA 5% (C&R,0.1) 0.323 0.353 0.382 0.735 0.74 0.745 0 0 0
4 Data Set 1 - (-,-) 0.547 0.571 0.596 0.601 0.604 0.607 0 0 0
5 SLR MARSOPT 0% (-,-) 0.266 0.299 0.332 0.770 0.777 0.783 5 0 0
6 SLR PL-MARS-GA 0% (C&R,0.2) 0.331 0.359 0.387 0.731 0.736 0.741 3 1 0
7 SLR PL-MARS-GA 0% (C&R,0.05) 0.250 0.281 0.313 0.962 0.974 0.986 6 4 2
8 Data Set 2 - (-,-) 0.516 0.534 0.553 0.601 0.604 0.607 1 1 1
9 SLR PL-MARS-GA 5% (C&R,0.05) 0.225 0.257 0.288 0.953 0.965 0.976 5 5 3
10 SLR PL-MARS-GA 0% (C&R,0.01) 0.225 0.257 0.290 0.977 0.99 1.002 6 4 3
11 SLR PL-MARS-GA 0% (C&R,10) 0.362 0.388 0.413 0.680 0.684 0.688 0 0 0
12 PL-MARSPL-MARS-GA 5% (G,0.05) 0.313 0.344 0.375 0.919 0.929 0.939 4 4 2
13 SLR PL-MARS-GA 5% (C&R,0.01) 0.208 0.239 0.270 0.953 0.966 0.978 5 5 4
14 SLR MARSOPT 5% (-,-) 0.355 0.387 0.419 0.608 0.612 0.615 0 0 0
15 PL-MARS MARSOPT 5% (-,-) 0.525 0.565 0.605 0.601 0.604 0.607 1 0 0

Table 5 Dominated MARSOPT Solutions

Solutions Evaluators
Objective Values Constraint Violations

Tight- PL- PL-
Objective ening SLR- SLR-MARS- PL- MARS-

Solution Model Algorithmof RHS ĝl
o(x) SLR ĝu

o (x) ĝl
o(x) MARS ĝu

o (x) PossibleExpectedConfident
Solution:

16 SLR MARSOPT 12.5% 0.422 0.455 0.488 0.766 0.773 0.779 0 0 0
17 SLR MARSOPT 20% 0.521 0.553 0.584 0.983 0.994 1.005 0 0 0
18 PL-MARSMARSOPT 12.5% 0.709 0.745 0.782 0.627 0.63 0.633 0 0 0
19 PL-MARSMARSOPT 20% 0.787 0.824 0.86 0.829 0.834 0.839 0 0 0

Dominated by:
14 SLR MARSOPT 5% 0.355 0.387 0.419 0.608 0.612 0.615 0 0 0

Solution:
20 PL-MARSMARSOPT 0% 0.658 0.7 0.741 0.601 0.604 0.607 3 0 0

Dominated by:
15 PL-MARSMARSOPT 5% 0.525 0.565 0.605 0.601 0.604 0.607 1 0 0
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Like Solution 14 from MARSOPT, Solution 4 from Data Set 1 is also attractive. In addition to

having no violations and an optimal PL-MARS objective value, it had the smallest true objective

value (0.57309) in Data Set 1. Observe its PL-MARS objective value (0.60433) and SLR objective

value (0.57114) are quite close to the true objective value. Unscaled solutions for Solutions 5, 14,

and 15 found using MARSOPT and Solution 4 are given in Table B1 in Appendix B.

Finally, Table 6 shows the safety star ratings based upon the objective Relative Risk Score

(RRS). Of the eight solutions found using MARSOPT, four of them (Solutions 14, 15, 18, and 20)

Table 6 Relative Risk Score Star Rating

RRS ≤ 0.67 5 Stars
0.67≤ RRS < 1.33 4 Stars
1.33≤ RRS < 2.00 3 Stars
2.00≤ RRS < 2.67 2 Stars

RRS > 2.67 1 Star

have 5-star ratings based on the PL-MARS objective model, five of them (Solutions 5, 14, 15, 16,

and 17) have 5-star ratings according to the SLR objective model, and two of them (Solutions 14

and 15), which were both Pareto efficient, have star ratings according to both objective models.

Only one Solution 19 does not have a 5-star rating based upon either objective model. No solution

from MARSOPT had less than a 4-star rating for any objective model.

5. Conclusions

This research presented a new mixed integer linear programming to optimize piecewise linear

functions generated by a modified version of multivariate adaptive regression splines (MARS),

subject to both linear and piecewise linear MARS constraints. The method is computationally

fast and is also capable of handling non-convexity, non-linearity, and allows for continuous and

categorical decision variables.

MARSOPT was applied to a case study problem to optimize the crash performance of a vehicle

safety system design that consisted of 33 design variables and 51 output variables. The method was

able to globally optimize the surrogate models representing the search space of the problem, where

SLR and PL-MARS models were approximated. These meta-models were built from a relatively
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small set of design variables. By tightening the constraints, MARSOPT effectively provided more

robust designs with very small objective deterioration. MARSOPT was compared to customized

genetic algorithms, which used penalties to minimize violations of constraints on the output vari-

ables. Although this evolutionary algorithm was able to provide feasible solutions, it was unable

to optimize the surrogate model.

A Pareto evaluation procedure based on nine evaluators compared solutions found using MAR-

SOPT, the customized genetic algorithms, and solutions from the original data. These nine evalua-

tors included confidence bands over the approximated objective functions and intervals for possible,

expected, and confident violations in the constraints. By eliminating solutions with confident vio-

lations, only eight solutions resulted on the efficient frontier, including three of the eight solutions

found using MARSOPT. A relative risk score, with a 5-star rating as the highest, showed that

all eight solutions from MARSOPT had a 4-star rating or better, and seven of the eight solutions

achieved a 5-star rating based upon at least one model.
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Appendix

Appendix A

Table A1 displays the scaled and unscaled solutions found with MARSOPT using both the SLR

model and the PL-MARS model for the objective function, while Table A2 reports the objective

values and the output variables (left-hand sides of the constraints) for both solutions.

Table A1 Scaled and unscaled solutions obtained from MARSOPT using SLR model and PL-MARS model

SLR model solution PL-MARS model solution
ID Scaled ID Unscaled ID Scaled ID Unscaled
1a -1.000000 1 3.00000 1a -1.000000 1 3.00000
1b -1.000000 1b -1.000000
1c 1.000000 1c 1.000000
2 -1.000000 2 -0.10000 2 -0.200000 2 0.30000
3 -1.000000 3 0.00000 3 -1.000000 3 0.00000
4 1.000000 4 1.00000 4 -1.000000 4 0.00000
5 1.000000 5 1.00000 5 -1.000000 5 0.00000
6 -1.000000 6 0.00000 6 1.000000 6 1.00000
7 1.000000 7 1.00000 7 -1.000000 7 0.00000
8 -1.000000 8 0.00000 8 -1.000000 8 0.00000
9 -1.000000 9 0.00000 9 -1.000000 9 0.00000
10 1.000000 10 0.10000 10 -1.000000 10 0.06000
11 -1.000000 11 0.00800 11 -1.000000 11 0.00800
12 1.000000 12 0.08000 12 -1.000000 12 0.06000
13 1.000000 13 0.01300 13 -0.209814 13 0.00998
14 -1.000000 14 2000.00000 14 -1.00000 14 2000.00000
15 -1.000000 15 2000.00000 15 -1.000000 15 2000.00000
16 1.000000 16 0.20000 16 0.396026 16 0.154702
17 -1.000000 17 0.05000 17 0.600000 17 0.25000
18 -1.000000 18 0.01300 18 1.000000 18 0.20000
19 -1.000000 19 0.75000 19 1.000000 19 1.50000
20 -1.000000 20 0.00000 20 1.000000 20 15.00000
21 1.000000 21 0.52000 21 1.000000 21 0.52000
22a -1.000000 22 3.00000 22a -1.000000 22 4.00000
22c 1.000000 22c -1.000000
23 -1.000000 23 0.01000 23 1.00000 23 0.01300
24 0.677532 24 1.09357 24 0.428571 24 1.05000
25 1.000000 25 120.00000 25 1.000000 25 120.00000
26 -0.226507 26 0.04320 26 1.000000 26 0.08000
27 1.000000 27 0.08000 27 -1.00000 27 0.02000
28 -1.000000 28 0.04000 28 -1.000000 28 0.04000
29 -1.000000 29 0.02000 29 -1.000000 29 0.02000
30 0.410575 30 61.15863 30 -0.333332 30 50.0000
31 1.000000 31 1.20000 31 -1.000000 31 0.80000
32 1.000000 32 0.52000 32 1.000000 32 0.52000
33b 1.000000 33 2.00000 33b -1.000000 33 4.00000
33c -1.000000 33c -1.000000
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Appendix B

The unscaled solutions for Solutions 5, 14, and 15 found using MARSOPT and Solution 4 from Data Set 1

are displayed in Table B1.

Table B1 Unscaled solutions for selected points

MARSOPT Data Set 1
Variable Solution 5 Solution 14 Solution 15 Solution 4

1 3 3 3 4
2 -0.1 0.332471 0.3 0.1
3 0 0 0 0
4 1 1 0 1
5 1 1 0 1
6 0 0 1 0
7 1 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0.1 0.1 0.1 0.1
11 0.008 0.008 0.013 0.013
12 0.08 0.08 0.08 0.08
13 0.013 0.013 0.008 0.013
14 2000 2000 2000 2000
15 2000 2000 2000 2800
16 0.2 0.2 0.175839 0.15
17 0.05 0.05 0.25 0.25
18 0.013 0.013 0.013 0.013
19 0.75 0.75 0.75 1
20 0 0 0.940278 0
21 0.52 0.52 0.52 0.52
22 3 3 1 3
23 0.01 0.01 0.01 0.01
24 1.0935681 1.05 1.05 1.05
25 120 120 120 60
26 0.04320479 0.08 0.08 0.06
27 0.07999997 0.02 0.08 0.06
28 0.04 0.04 0.04 0.08
29 0.02 0.040026 0.02 0.02
30 61.158625 51.759294 49.999995 50
31 1.2 0.8 0.8 1.2
32 0.52 0.52 0.52 0.52
33 2 2 4 4
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Table A2 Objective value and output values for the constraints

Model Objective SLR PL-MARS
No. Name used /RHS

Obj-pb05-RRS Minimize 0.29872 0.60433
1 constr-far50-ChestD SLR ≤ 1 0.35019 0.15127
2 constr-far50-ChestG SLR ≤ 1 0.55169 0.53030
3 constr-far50-Chest-IP-min PL-MARS ≥ 1 2.52737 2.76537
4 constr-far50-FemurL PL-MARS ≤ 1 0.25288 0.41356
5 constr-far50-FemurR PL-MARS ≤ 1 0.55534 0.44486
6 constr-far50-HIC SLR ≤ 1 0.27121 0.63180
7 constr-far50-Head-IP-min SLR ≥ 1 6.75682 9.12077
8 constr-far50-NeckFzMax PL-MARS ≤ 1 0.44529 0.22826
9 constr-far50-NeckFzMin SLR ≤ 1 0.47635 0.98620
10 constr-far50-Nij PL-MARS ≤ 1 1.00000 0.87613
11 constr-pb05-ChestD SLR ≤ 1 0.34780 0.22531
12 constr-pb05-ChestG SLR ≤ 1 0.64840 0.86639
13 constr-pb05-Chest-IP-min SLR ≥ 1 4.52105 4.11027
14 constr-pb05-FemurL PL-MARS ≤ 1 0.20939 0.03644
15 constr-pb05-FemurR SLR ≤ 1 0.12128 0.05257
16 constr-pb05-HIC PL-MARS ≤ 1 0.66561 0.62946
17 constr-pb05-Head-IP-min SLR ≥ 1 3.72812 3.97494
18 constr-pb05-NeckFzMax SLR ≤ 1 0.34700 0.84054
19 constr-pb05-NeckFzMin SLR ≤ 1 0.03380 0.10829
20 constr-pb05-Nij SLR ≤ 1 0.26884 0.68289
21 constr-pb50-ChestD PL-MARS ≤ 1 0.35458 0.38053
22 constr-pb50-ChestG SLR ≤ 1 0.68464 1.00000
23 constr-pb50-Chest-IP-min SLR ≥ 1 5.11609 4.28510
24 constr-pb50-FemurL SLR ≤ 1 0.10689 0.39837
25 constr-pb50-FemurR SLR ≤ 1 0.09968 0.26965
26 constr-pb50-HIC SLR ≤ 1 0.99885 1.00000
27 constr-pb50-Head-IP-min SLR ≥ 1 4.21463 5.31041
28 constr-pb50-NeckFzMax SLR ≤ 1 0.28652 0.31939
29 constr-pb50-NeckFzMin SLR ≤ 1 0.05337 0.05627
30 constr-pb50-Nij SLR ≤ 1 0.42838 0.31123
31 constr-pu05-ChestD SLR ≤ 1 0.32661 0.42138
32 constr-pu05-ChestG SLR ≤ 1 0.54122 0.67659
33 constr-pu05-Chest-IP-min SLR ≥ 1 1.00000 1.14924
34 constr-pu05-FemurL SLR ≤ 1 0.95823 0.67842
35 constr-pu05-FemurR SLR ≤ 1 0.99617 0.83785
36 constr-pu05-HIC SLR ≤ 1 0.28085 0.38509
37 constr-pu05-Head-IP-min SLR ≥ 1 5.98856 6.76919
38 constr-pu05-NeckFzMax SLR ≤ 1 0.10464 0.19225
39 constr-pu05-NeckFzMin SLR ≤ 1 0.31794 0.45812
40 constr-pu05-Nij SLR ≤ 1 0.86393 0.62704
41 constr-pu50-ChestD PL-MARS ≤ 1 0.34813 0.39099
42 constr-pu50-ChestG SLR ≤ 1 0.74906 0.80456
43 constr-pu50-Chest-IP-min PL-MARS ≥ 1 1.10747 1.62352
44 constr-pu50-FemurL SLR ≤ 1 0.67282 0.91119
45 constr-pu50-FemurR SLR ≤ 1 0.65942 0.92952
46 constr-pu50-HIC SLR ≤ 1 1.00000 0.92596
47 constr-pu50-Head-IP-min SLR ≥ 1 7.52112 8.95609
48 constr-pu50-NeckFzMax SLR ≤ 1 0.12831 0.32739
49 constr-pu50-NeckFzMin SLR ≤ 1 0.40559 0.54765
50 constr-pu50-Nij SLR ≤ 1 0.69390 0.66288


