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Abstract

Sprawl has a detrimental effect on quality of life and the environment. With dwindling resources and

increasing populations, we must manage sprawl. Ewing et al. [1] defined factors to measure sprawl in the

present urban structure. The measures are divided into four broad categories, which are density factors,

mixed use factors, street factors, and center factors, and can be used in future planning of metro areas.

In this research, we develop a mixed integer programming model to optimize land usage subject to sprawl

constraints, which are based upon the aforementioned sprawl measures. Due to the large size of the problem,

we describe a combination of heuristics and Benders’ decomposition to provide an urban planner with suitable

land use assignments. We show examples demonstrating how the planner can use this approach to analyze

how various factors that affect land use and sprawl measures. Finally, we discuss topics of future research.
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1. Introduction1

With the industrial revolution, raw materials and finished products were needed to be delivered to the2

factories and to market areas. Thus, the cities needed streets, railways, shipping lanes without which the3

industrial revolution would have been impossible. Increased commerce and manufacturing led to congestion,4

new safety hazards, and air and water pollution. As the central areas became more crowded, the wealthy5

began moving into the suburbs. The invention of the automobile only served to hasten and promote this6

migration. This phenomenon was marked as an early form of urban sprawl.7

1.1. Overview of Urban Planning and Methods8

According to Catanese and Snyder [2], the earliest known examples of urban planning were by the9

Sumerians of Assyria. Their cities included fortresses and marketplaces for populations of 3000-5000 people10

that lived in them. The common characteristic among all of the ancient cities was that they were all built11

along great rivers, which afforded various advantages with regards to transportation and defense.12
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The first example of zoning in cities was in the first century A.D. in Rome when Augustus established13

a 70-foot height limit. Rome struggled with the problems of overcrowding and transportation when its14

estimated population grew from 250,000 to 2,000,000 residents. To mitigate these problems, Romans started15

building roads and military cities. All of these developments in the ancient world established a pattern in16

which cities are now built. There are four layers in the pattern. The first one is a physical base, which is the17

visible form of the city, like the roads, buildings, and parks. This was illustrated by the rectangular pattern18

of the street systems. The second layer is the political base. For example, ancient cities were built around19

fortresses where the rulers of the land resided. The third layer is the economic base, where the planner20

locates various centers of commerce in the city, such as the marketplaces. The fourth layer is the social base,21

where the planner allows for open spaces or centers where the residents may assemble and socialize.22

According to Catanese and Snyder [2], the major components for the urban planning process are problem23

diagnosis, goal articulation, prediction and projection, alternative development, feasibility analysis, evalua-24

tion, and implementation. In problem diagnosis, a planner must identify which problems afflict the present25

city, and then, define them in specific terms. However, the problem diagnosis depends on the individual26

planner’s perspective on definitions of various norms, ideologies, and standards. Descriptive statistics is27

used extensively to describe a problem, such as means, medians, ranges, and ratios. An important source of28

information at this stage for the planner is the U.S. Bureau of Census. If the data needed by the planner are29

unavailable, then he/she must use survey research methods to generate specific information. After identify-30

ing the problems, specific goals must be set as to what extent the problem has to be resolved. The challenge31

lies in translating the verbal goals into operational objectives. The planner must determine the time span32

of the project. Future projections of the population growth and trade are required, since they have a direct33

effect on the services in the city.34

After that the planner develops alternatives to the original plans. If the situation is simple, the planner35

has already been given a location and does not have many competing factors. But if the situation is complex36

and involves many different aspects, then the planner must develop multiple options. Even though the model37

inherently accounts for constraints, such as the size and availability of land and finance, the planner must38

also ask whether the alternatives are feasible on other vague constraints, such as organizational or political39

acceptability. As early as 1912, planners drew maps by hands of various topographical features of the land.40

These maps were then combined together to recommend changes in land use. This posed a problem since41

there was a limit to what may be feasible by hand.42

One of the first places to use computers to help draw overlay maps was in Harvard in 1963. The trend43

continued to surge as computers became more powerful and the techniques to draw the maps became more44

sophisticated. The spatial data, which describe the various attributes of the land in quantifiable terms,45

were used as an input to optimization models. Since there are conflicting objectives when planning a city,46

researchers introduced decision making models where multiple criteria were evaluated. Moreno and Seigel [3]47

provides an application of multiple criteria evaluation via an impact analysis for the building of a highway48
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corridor in Colorado. We examine land-use suitability analysis, which is a tool that identifies the most49

suitable places for locating future land uses [4].50

1.2. Overview of Sprawl51

As we have seen from the history of urban planning, the rise of sprawl as an issue has its roots in the52

Industrial Revolution. There is no consensus in the literature as to the definition of sprawl. It goes to53

show how difficult it is to try to measure sprawl quantitatively. There are some characteristics that are54

common among the many attempts to define sprawl in the literature. Those are unplanned and scattered55

development, low population density, high reliance on automobiles, and locations outside of the metro area.56

In this paper, we primarily concentrate on sprawl in the context of the United States. Delafons [5] attributes57

the U.S. system of urban planning to be influenced by “prairie psychology”. Traditionally, development in58

the U.S. assumes a virtually unlimited supply of land, that land is accessible to everyone and the rights of59

ownership are protected by the U.S. Constitution, market driven growth is not intervened, planners do not60

question the need for development, and an inherent distrust towards the government and minimal public61

review of the policies that are already in place.62

All of these social and institutional factors combined to aid urban sprawl. There are many reasons why63

sprawl is a cause of concern. The pace of development in the U.S. has not been proportional to the rate64

of population growth. For example, in the metropolitan area of Cleveland, the amount of developed area65

increased whereas the population decreased [6]. Loss of open space is a major contributor in prime farmland66

being lost to development. Low density and discontinuous development make automobile use mandatory,67

which results in increased usage of vehicles degrading air quality, and drivers spending on average 51 hours68

per year stuck in traffic [7]. Clearing land for highways, residential areas, and service areas due to sprawl69

lead to the destruction of green cover, which causes climate change. Sprawl leads to the destruction of the70

wetlands and forests, and hence, it impedes nature’s ability to provide clean water.71

With all of the issues surrounding sprawl, there have been past attempts to estimate the costs associated72

with it. One of the more significant studies done on the costs of sprawl was by Robert Burchell et al. [8, 9].73

Burchell et al. [8, 9] divided the costs into five major categories: public and private capital and operating74

costs, transportation and travel costs, land/natural habitat preservation, quality of life, and social issues.75

All of the negative impacts of sprawl motivate the development of tools assisting urban planners in designing76

cities/downtowns that would be walk-able and transit oriented. In our research, we develop a mixed integer77

linear programming (MILP) model that limits the negative effects of sprawl by managing various parameters78

that were derived from the Transportation Research Board report by Ewing et al. [1].79

The remainder of this paper is organized as follows. In Section 2, we describe related literature and the80

contribution of this research. Section 3 presents the MILP formulation, including a problem description,81

assumptions, sets, variables, and the model justification. In Section 4, we develop a Benders’ decomposition82

algorithm to solve the MILP. In Section 5, we present an experimental set up and results. Finally, in Section83

6, we discuss conclusions and future research.84
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2. Literature Review and Contribution85

In this section, we discuss literature of land use optimization, which includes linear and integer program-86

ming techniques. Afterward, we discuss literature on measurement and optimization of sprawl, decomposition87

methods, and the quadratic assignment problem. Finally, we discuss the contribution of this research.88

2.1. Land Use Optimization89

Most literature on land use optimization models consider at least one aspect that affect sprawl. These90

considerations include managing peak run off, air quality, and travelling costs. The term that is frequently91

associated with sustainable land-use planning is smart growth. Smart growth refers to judicious stewardship92

of natural resources to prevent urban sprawl. To differentiate between the literature of simple land use93

allocation and sprawl, literature that explicitly mentions sprawl or sustainability as an objective are discussed94

in Section 2.2, while other literature on land use allocation are described in this section.95

GIS-based land use suitability analysis has been used to solve an array of problems. For example, it96

has been used in ecological models for defining land suitability (in this case, habitat for animal and plant97

species [10, 11]), geological preference [12], suitability of land for agricultural use [13, 14], environmental98

impact evaluation [3], site selection for facilities location [15, 16], and regional planning [17]. There is also a99

significant part of the literature that is concerned with simultaneous optimization of land use assignment and100

transportation with the focus on minimizing travelling cost [18, 19, 20, 21]. Moore and Gordon [22] extend101

the integration of land use and transportation to include environmental applications as well. Another area of102

research is on optimizing the land use allocation problem with respect to economic activities [18, 23, 24, 25].103

Increasing popularity of sustainability has led to research focusing on sustainable spatial optimization of104

land use allocation [26, 27, 28]. All of the papers cited above account for only some sprawl measures.105

Most literature on land use allocation uses integer programming (IP). The decision variable of these106

IP models determine whether a particular activity should be allotted to a site [29]. Land use suitability107

analysis searches for the best site for an intended land use based on various characteristics of the land. The108

assumption here is that the area is subdivided into a set of basic units of observation [30]. The basic units109

of observation are referred to as land pieces or cells. Then, the sites are assigned a suitability factor for each110

category of land use, which indicates how suitable a land piece is for a particular land use.111

2.1.1. Linear and Integer Programming Techniques112

Implementation of linear programming (LP) models to solve land use suitability problems started with113

Multi-Criteria Decision Making (MCDM) techniques. MCDM involves defining a relationship between the114

input and output maps. The technique combines the geographical information and the planner’s preferences115

to provide alternative decision options. After assigning weights to each objective and combining them into a116

single equation, the problem is solved using standard LP/IP solution approaches [31, 32]. Moore and Gordon117

[18] use an LP model for dividing economic activities over the planning area. They focus on how to assign118
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the activities to a physical site in an iterative manner. Sinha [33] implements a linear optimization method119

and compares the resulting allocation with that of a rule based method.120

2.1.2. Artificial Intelligence and Heuristic Methods121

Because allocation problems are frequently huge, solution methods mostly focus on heuristic algorithms.122

The downside to heuristics is that they do not guarantee optimal solutions, though oftentimes, they yield123

near optimal solutions or sets of solutions [15]. A variety of meta-heuristic techniques, such as simulated124

annealing, genetic algorithms (GAs) [34], artificial neural networks [35], and cellular automata [36] are used125

in combination with GIS for optimization of land use allocation.126

The assumptions of the input data being precise are unrealistic. With the complex factors involved in127

land use suitability analysis, providing accurate numerical data is challenging. Since fuzzy logic techniques128

have sets without clearly defined boundaries, and partial membership of elements is allowed, it works well129

with imprecise input data given. Wang [37] proposes a method of representing fuzzy information in GIS,130

which leads to the formation of a fuzzy suitability rating system. Banai et al. [38] and Jiang et al. [39]131

combine a fuzzy membership function with MCDM to develop GIS-based land use suitability methods.132

A plethora of research test the applicability of artificial neural networks for land use suitability analysis133

techniques [40, 41, 35]. Sui [35] uses and compares a back propagation network to measure the suitability134

of land pieces for development with a traditional overlay map modeling technique.135

Significant papers that use evolutionary algorithms, such as GAs, to optimize multi-objective (linear or136

nonlinear) land use allocation problems include Brookes [42], Fotakis and Sidiropoulos [43], Holzkamper and137

Seppelt [44], Pereira and Duckstein [10], Matthews et al. [45], Matthews et al. [46], Los [19], Manson [47],138

Xiao et al. [48], Gabriel et al. [49], and Zhang and Bian [50] . Zhou and Civco [40] uses a combination139

of neural networks and a GA for solving a land use suitability model. Matthews et al. [45] compares GA140

to traditional deliberative methods. They report that the GA methods are capable of delivering a range of141

options, along with cost benefit analysis for each such option. Literature that explores land use optimization142

with simulated annealing include Bos [51] Riveira et al. [52] and Xiaoli et al. [53]. The aforementioned143

models strive to generate multiple solutions instead of just a single one. Hence, these models depend heavily144

on heuristic techniques.145

2.2. Measurement and Optimization of Sprawl146

In recent years, urban sprawl has been fueled by a combination of rapid economic growth and large147

populations in other countries. A large number of publications focus on sprawl as an issue in countries148

apart from the U. S. [54, 55, 56, 57, 58, 59, 60, 61]. There is a variety of research that chooses one or more149

aspects of sprawl to manage. Urban sprawl is minimized from the standpoint of preservation of forests and150

farmland [43, 44, 45, 51, 52, 53, 62]. Attempts to minimize sprawl by suggesting changes in policies at the151

government level have been made in the past [54, 63, 64, 65]. Gabriel et al. [49] takes a multi-objective152

approach to controlling sprawl in land development by considering objectives from the perspective of the153
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government, planners, environmentalists, conservationists, and land developers. The intention of the authors154

is to balance the trade-off among the different objective functions. The paper employs linear and quadratic155

objective functions, subject to polyhedral and binary constraints, to come up with a Quadratic Mixed156

Integer Program (QMIP). The authors solve an example with 913 undeveloped and 4837 developed cells157

using XPRESS-MP solver. The measures given in Gabriel et al. [49] do not cover many measures of sprawl,158

such as centering factors. Stewart et al. [66] use a genetic algorithm to solve a multi-objective constrained159

nonlinear combinatorial programming problem. The objective functions are similar to the measures given160

by Ewing et al. [1], but they are generic as far as sprawl is concerned. Zielinska et al. [30, 67] develop an161

optimization model that minimizes perhaps the most accurate model of sprawl in the current literature. The162

authors suggest that having density as an objective function might result in an unsustainable solution. The163

paper employs a Branch-and-Bound method to solve the resulting model. They do not consider the factors164

that affect sprawl like mixed use development, population density, and degrees of centering. These problems165

involve combining the disciplines of urban planning and optimization, and it is challenging for researchers166

to be experts in both areas. Most attempts at optimizing land use allocation models have been made by167

researchers outside of the field of optimization. Zielinska et al.[26] made one of the more significant attempts168

at designing a sustainable land use model for urban planning, and the authors belong to the department of169

geography. Some of the attempts to measure sprawl quantitatively are Ewing et al. [1], Galster et al. [68],170

and Malpezzi [69].171

We find that the current most comprehensive framework to quantify and measure sprawl is constructed172

by Ewing et al. [1]. Hence, we primarily focus on their measures and interpret them in a way that is suited to173

future land use planning. Ewing et al. [1] include 22 measures that are broadly divided into four categories,174

which are residential density, neighborhood mixture of homes, jobs, and services, strength of centers, such175

as business districts, and accessibility to the street network.176

2.3. Decomposition Methods177

Decomposition methods solve large-scale problems by breaking them into several smaller subproblems,178

along with a master problem. Dantzig-Wolfe decomposition for linear programming with angular block179

structure [70, 71] started the trend of decomposition of large optimization problems [72]. Some of the180

decomposition methods are dual methods, primal cutting plane methods, delayed column generation, and181

Benders’ decomposition. Decomposition methods have been used in a wide variety of applications ranging182

from multi-commodity distribution network design [73] to locomotive and car assignment problems [74,183

75, 76]. But according to the literature, decomposition methods have never been used to solve a land-use184

suitability problem.185

2.4. Quadratic Assignment Problem186

Koopmans et al. [24] introduced the concept of Quadratic Assignment Problems (QAPs) to model187

the problem of locating economic activities. The location of the activities depends upon the locations of188
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other facilities in the neighborhood. Afterwards, QAPs were used to model a variety of different problems.189

QAPs have several formulations, such as integer linear programming (IP) formulations, mixed integer linear190

programming (MILP) formulations, and graph formulations [77]. As we observed, the majority of the research191

for QAPs tends to employ heuristic algorithms, which is a similar tendency for land use optimization. All192

of the quadratic formulations in land-use suitability models were solved with meta-heuristics.193

2.5. Contribution194

In this paper, we develop a MILP model for land use optimization. The objective of the model is to195

maximize suitability as well as manage sprawl. The constraints are constructed based upon the measures of196

sprawl given in Ewing et al. [1]. The rationale here is that various features of a metro area, such as population197

centers, business districts, distance to services, etc. are always present. Hence, instead of ignoring some or198

all of these, and maximizing suitability alone, the measures are accounted for and managed at the planning199

level. The contributions of this research include:200

• An investigation of effects of measures on land use suitability: From the literature survey, we concluded201

that no other literature has attempted to study the effects of controlling bounds on various sprawl202

measures on the planning area. Rather, the focus has been on sustainability, which focuses on the larger203

context of the land use problem. We believe it over-complicates the model since destruction of farmland,204

pollution, and discontinuous development is a result of urban sprawl, and not the cause/characteristics.205

Hence, if the effects of the measures like population density are studied and understood, then that would206

enable the planner to make a far more educated decision with regards to future land use planning so207

as to minimize sprawl and still satisfy other conflicting objectives.208

• Restricting the sprawl measures: Most of the research focuses on incorporating the measures in ob-209

jective functions. However, as noted by Zielinska et al. [26], if population density is included as an210

objective function, then either maximizing or minimizing it would counter the principles of sustainable211

development. For example, maximizing population density would lead to overcrowding and minimizing212

population density would lead to sprawl. Hence, our model includes several significant measures of213

sprawl as constraints in the model. This allows the planner to quickly perform sensitivity analysis. It214

also enables the planner to generate a range of solutions based on the manipulation of the parameters.215

• Use of decomposition methods: The literature is completely devoid of research that employs decompo-216

sition methods to solve large QMIPs for land use allocation, even though decomposition methods have217

been used extensively in other areas that involve large-scale problems. We develop a land use model218

with sprawl constraints and customized decomposition methods to solve it.219

3. Mathematical Model220

In this section, we describe measures and develop the MILP for land use.221
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3.1. Measures of Sprawl222

Ewing et al. [1] was funded by Smart Growth America with the objective of characterizing sprawl and223

relating it with a wide set of outcomes. Using principal component analysis, the authors partition various224

sprawl factors into four categories, which are density factors, mix factors, centering factors, and street225

factors. Density factors include seven variables, four of which are measured from data by the U. S. Bureau226

of Census. The assumption is that census tracts that include low population density areas, such as rural227

tracts and deserts, are not included. These factors deal with the population density in the metro areas and228

their distribution. Mix factors are included to ensure a good mix of land uses in a compact area. Sprawl229

is characterized by long commuting time. For example, the principle behind measuring the percentage of230

residents within 1 mile of an elementary school is to minimize traveling. Hence, there should be a good231

mix of services for residences in an area. Metropolitan centers are considered hubs of concentrated activities232

that allow multi-purpose trip making, alternate modes of transport, and a sense of place in a metro area.233

Centers may be either residential or commercial. Centering factors include density gradient and coefficient234

of variation of population density across census tracts. Street networks in a metro area form a network,235

which may be dense or sparse depending on the geography and planning of the area. There is no information236

available regarding degree of connectedness or curvature of street networks. Hence, the authors use the237

information about block lengths to generate sprawl measures. Street factors include percentage of small238

blocks, average block size in square miles, and percentage of small blocks (< 0.01 square miles).239

3.2. Problem Description and Assumptions240

Given a set of land pieces in all or part of a metro area, the planner must assign a land use to each241

piece. If a land piece has a pre-existing land use, it can simply be removed from consideration or included242

in the model as a hard constraint. The aim of the model is to plan the area in such a way that it naturally243

resists sprawling in the future. To achieve this target, the planner must find a balance between population244

growth and services in the area. If he/she fails to do so, then the sprawl would naturally occur as we have245

observed from history. The planner controls bounds for the sprawl metrics given in the model. By changing246

these limits, the planner gets information about how the model behaves under different conditions. In some247

cases, the bounds also depend upon the demands of the market. In others, the bounds must be controlled248

to manage sprawl.249

In the model, we make the following assumptions:250

• There is a given finite set of land uses. For example, in this research, we consider eight different land251

uses, which are high industrial (HI), high commercial (HC), high industrial residential (HIR), high252

residential (HR), low commercial (LC), low industrial (LI), low industrial residential (LIR), and low253

residential (LR).254

• For each land piece and each land use, the planner has already assigned a suitability value. In this255
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research, suitability values vary from -10 to +10 depending on the fitness of the land pieces towards a256

land use.257

• For each land piece and each land use, the planner has future population projections.258

• For each pair of land pieces, the planner calculates the distances between them. In this research, we259

use the distances between the geographical centers of the land pieces.260

• For each pair of land pieces and potential land uses, the planner calculates a measure of land mix. In261

this research, we assume that the measure of land mix is proportional to the sum of the suitability262

values and an attraction factor of the land uses, but inversely proportional to the distance between the263

two land pieces under consideration.264

• The census tracts are known a priori and partition the set of land pieces. Census tracts are meant to265

be territorial units that are homogeneous with respect to factors like population characteristics, living266

conditions, etc. Consequently, census tracts are developed after the population has settled. However, in267

case of future planning, the planner may rely on clear geographical boundaries that divide the planning268

area into census tracts.269

• The density at the center of the planning area is the density of the census tract, which includes the270

central coordinates of the planning area.271

• For each land piece, the planner determines land pieces in a surrounding area of influence a priori.272

In this research, the area of influence includes land pieces in a 5-by-5 grid in which the center is the273

given land piece. This is based on the assumption that the land pieces that are outside of this area of274

influence have negligible effect on the mixed use factor with the given land piece.275

3.3. Formulation Land Use Model276

The following is a description of the sets used in the model.277

• C = the set of different land uses (indexed by j).278

• N = the set of land pieces in the planning area (indexed by i).279

• CT = the set of census tracts in the planning area (indexed by k).280

• Nk = the set of land pieces in each census tract, k ∈ CT .281

• Ni = the set of land pieces within the area of influence of each land piece i ∈ N .282

The parameters used in the model are as follows:283

• Sij = the suitability factor for each land piece i ∈ N assigned to land use j ∈ C.284

9



• Uj , Lj = the upper and lower bounds of land pieces that can be assigned to each land use j ∈ C.285

• LGPD = the lower bound on gross population density assigned to the planning area.286

• UDG = the upper bound on the density gradient assigned between census tracts.287

• LMix = the lower bound on the land mix assigned to the planning area.288

• ρij = the estimated population for each land piece i ∈ N assigned to land use j ∈ C.289

• Ai = the area of each land piece i ∈ N .290

• AFjĵ = the attraction factor for each pair of land uses j, ĵ ∈ C.291

• dk = the distance between the land piece at the center of the planning area to the land piece at the292

center of census tract k ∈ CT .293

• dîi = the distance between a pair of land pieces i, î ∈ N .294

• i0 = the land piece at the center of the planning area.295

• k0 = the census tract at the center of the planning area.296

• ωijîĵ =
(

(Sij+Sîĵ)AFjĵ

diî

)
= the land mix measure for each pair of land pieces i, î ∈ N assigned to land297

uses j, ĵ ∈ C, respectively.298

The variables of the model are given below.299

• For each land piece i ∈ N and each land use j ∈ C, let the binary variable xij be defined such that

xij =

1, if land piece i ∈ N is assigned land use j ∈ C,

0, otherwise.

• For each land piece i ∈ N , each land piece within the area of influence î ∈ Ni, and each pair land uses

j, ĵ ∈ C, let the binary variable xijîĵ be defined such that

xijîĵ =

1, if land pieces i ∈ N and î ∈ Ni are assigned land uses j, ĵ ∈ C, respectively,

0, otherwise.

The mixed integer linear program (MILP) is given by the following:300
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max zMILP =
∑
i∈N

∑
j∈C

Sijxij (1)

subject to:∑
j∈C

xij = 1 ∀i ∈ N (2)

Uj ≥
∑
i∈N

xij ≥ Lj ∀j ∈ C (3)∑
i∈N

∑
j∈C ρijxij∑

i∈N Ai
≥ LGPD (4)∑

î∈Ni

∑
j∈C

∑
ĵ∈C

ωijîĵxijîĵ ≥ LMix ∀i ∈ N (5)

∑
i∈Nk

∑
j∈C ρijxij∑

i∈Nk
Ai

≤
∑

i∈Nko

∑
j∈C ρijxij∑

i∈Nko
Ai

exp−dkUDG ∀k ∈ CT \ ko (6)

xij ≥ xijîĵ ∀i ∈ N, î ∈ Ni, j, ĵ ∈ C (7)

xîĵ ≥ xijîĵ ∀i ∈ N, î ∈ Ni, j, ĵ ∈ C (8)

xijîĵ ≥ xij + xîĵ − 1 ∀i ∈ N, î ∈ Ni, j, ĵ ∈ C (9)

xij ∈ {0, 1} ∀i ∈ N, j,∈ C (10)

xijîĵ ∈ {0, 1} ∀i ∈ N, î ∈ Ni, j, ĵ ∈ C (11)

3.4. Model Justification301

Objective (1) maximizes the overall suitability value for assigning land uses to land pieces. Constraint302

set (2) ensures that each land piece is assigned exactly one land use. Constraint set (3) provides the upper303

and lower bounds for the total number of land pieces that may have a particular land use. These equations304

alone represent a classical linear programming approach to optimizing a land use suitability problem [33].305

Now, we add constraints to manage sprawl.306

As described in Section 3.1, Ewing et al. [1] uses principal component analysis (PCA) to extract the307

major factors that affect sprawl and broadly classifies these factors into four major groups, which are degree308

of centering, density, land use mix, and street factors. Each of the variables chosen is a measure for sprawl309

that accounts for the greatest variation in the original dataset. The factor scores derived from the PCA are310

normalized to have a mean of 0 and standard variation of 1 for the sampled metropolitan areas in 2000.311

These values are included in Table 1 as loading factor. The factors with positive loading factor are those312

that decreases sprawl, while factors with negative loading factor increase sprawl.313

Of the four major factors on sprawl in Ewing et al. [1], the MILP constrains degree of centering, density,314

and land use mix. Constraint set (4) allows the planner to control the gross population density of the315

population above a certain bound. According to Ewing et al. [1], gross population density has a loading316
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Table 1: Summary of measures of sprawl and corresponding loading factor

Measures of
sprawl

Ewing et al. [1] Loading
Factor

Center Factors

Coefficient of variation of population density across census tracts 0.21
Density gradient (rate of decline of density with distance from the center of the metro
area)

-0.74

Percentage of population < 3 miles from the central business district (CBD) 0.76
Percentage of population > 10 miles from the CBD -0.76
Percentage of population relating to centers within the same metropolitan statistical area
(MSA)

0.17

Ratio of weighted density of population centers to highest density in the same MSA 0.48

Density Factors

Gross population density in persons per square miles (PSM) 0.89
Percentage of population living at density < 1500 PSM -0.69
Percentage of population living at density > 12500 PSM 0.94
Estimated density at the center of the metro area derived from negative exponential
density function

0.90

Gross population density of urban lands 0.94
Weighted average lot size in square feet for single family dwellings -0.30
Weighted density of all population centers (local density maxima) within a metro area 0.81

Mix Factors

Percentage of residents with businesses within certain blocks of their homes 0.60
Percentage of residents with satisfactory neighbourhood shopping within 1 mile 0.36
Percentage of residents with schools within 1 mile 0.52
Job-Resident balance 0.85
Population-serving job mix 0.87
Population serving job resident balance 0.13

Streets Factors
Approximate average block length in urbanized portion of the metro -0.83
Average block size in square miles (excluding blocks > 1 square mile) -0.86
Percentage of small blocks (< 0.01 square mile) 0.92

factor of 0.89, indicating that as it decreases, sprawl increases.317

For a measure of centering, Ewing et al. [1] estimates the density at the center of the metropolitan area318

and the density gradient after fitting a negative exponential density function to the data points that include319

densities of census tracts versus the distance from the center to those census tracts. The loading factor of320

density gradient is -0.74, so it is limited by an upper bound using constraint set (6).321

The measures for mix factor as given in Ewing et al. [1] are for metro areas that have already been322

developed in which schools, businesses, and shopping centers are already constructed. Because the MILP in323

the paper is intended for planning, we substitute these measures with another model for land mix use that324

is also in the literature [e.g., 67, 78, 79] . Attraction factor AF ij refers to whether it is desirable to have325

the land uses closer together or farther apart. In constraint set (5), land mixed use factor is constrained for326

each land piece i ∈ N by a lower bound using linearized quadratic variables from constraints (7)–(9).327

In addition to these three major factors, Ewing et al. [1] found three measures for street factors to be328

significant in the PCA. However, each of them is based upon block length, which is not determined in land329

use planning, so street factors are not considered in the MILP.330

4. Algorithm331

The data-set used in the experiments was provided by the Urban Planning Department at the University332

of Texas at Arlington and is for the city of Leander, Texas. It has 7632 land pieces, each with a size333

of 150 feet by 150 feet, which are partitioned into 5 census tracts. The suitability factors for each land334
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piece were provided for eight different categories. Considering only the assignment constraints (2), this335

results in a total of 87632 possible land use assignments. In general, the number of variables in the MILP is336

|N | × |C|+
∑

i∈N |Ni| × |C|2. For a 7632 land piece problem with 8 land use categories and 5 census tracts,337

the number of variables is roughly 4 million, and the number of constraints exceeds 12 million. Due to the338

large number of quadratic variable constraints, a Benders’ decomposition method was chosen to solve this339

assignment problem.340

4.1. Benders’ Decomposition applied to the MILP341

The MILP rapidly becomes too large for CPLEX to handle as the number of land pieces increases342

primarily due to the variables and constraints associated with land mixed use (5) and (7)-(9). For each343

neighbor of a land piece i with assigned land use j, we have a corresponding quadratic variable for each344

neighboring land piece î with assigned land use ĵ. Hence, for each neighboring land piece, we have 64345

quadratic variables, and each quadratic variable has 3 constraints linking xijîĵ , xij , and xîĵ .346

Because of the large number of land mixed use variables and constraints, we revise the formulation of347

the MILP to penalize assignments that violate the land mixed use constraints (5), instead of maintaining348

them as hard constraints as in the MILP. Let λ be a positive constant penalty, and for each i ∈ N , let si be349

the violation of the lower bound LMix for the associate constraint in set (5). This penalized reformulation350

(MILP-p) is as follows:351

max zMILP−p =
∑
i∈N

∑
j∈C

Sijxij − λ
∑
i∈N

si (12)

subject to: (2)− (4), (6)− (11)

−si −
∑
j∈C

∑
î∈Ni

∑
ĵ∈C

ωijîĵxijîĵ ≤ −LMix ∀i ∈ N (13)

si ≥ 0 ∀i ∈ N (14)

MILP-p can also be decomposed using Benders reformulation in which the master problem finds assign-352

ments, and the subproblem determines the land mixed use penalty. Specifically, let x̄ be an assignment353

vector from the master problem. The formulation of the primal subproblem (PS) is given below:354
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max zPS = −
∑
i∈N

si (15)

subject to: (14)

−si −
∑
j∈C

∑
ĵ∈C

 ∑
î∈Ni :̂i>i

ωijîĵxijîĵ +
∑

î∈Ni :̂i<i

ωîĵijxîĵij

 ≤ −LMix ∀i ∈ N (16)

xijîĵ ≤ x̄ij ∀i ∈ N, î ∈ Ni, i < î, j, ĵ ∈ C (17)

xijîĵ ≤ x̄îĵ ∀i ∈ N, î ∈ Ni, i < î, j, ĵ ∈ C (18)

−xijîĵ ≤ 1− x̄ij − x̄îĵ ∀i ∈ N, î ∈ Ni, i < î, j, ĵ ∈ C (19)

xijîĵ ≥ 0 ∀i ∈ N, î ∈ Ni, i < î, j, ĵ ∈ C (20)

Observe that with a solution from the master problem x̄, the primal subproblem yields solutions with355

integer values for x, so constraints in set (11) can be relaxed as in (20). In addition, this formulation of PS356

takes advantage of the fact that only a single quadratic variable is needed for each variable assignment pair,357

instead of two as suggested in MILP and MILP-p.358

To formulate the dual subproblem, let π, µI , µII , and µIII be dual variable vectors corresponding to359

constraints (16), (17), (18), and (19), respectively. The formulation of dual subproblem is given below:360

min zDS = −LMix

∑
i∈N

πi +
∑
i∈N

∑
î∈Ni :̂i>i

∑
j∈C

∑
ĵ∈C

x̄ijµ
I
ijîĵ

+ x̄îĵµ
II
ijîĵ

+ (1− x̄ij − x̄îĵ) · µ
III
ijîĵ

(21)

subject to:

−ωijîĵ(πi + πî) + µI
ijîĵ

+ µII
ijîĵ
− µIII

ijîĵ
≥ 0 ∀i ∈ N, î ∈ Ni, i < î, j, ĵ ∈ C (22)

1 ≥ πi ≥ 0 ∀i ∈ N (23)

µI
ijîĵ

, µII
ijîĵ

, µIII
ijîĵ
≥ 0 ∀i ∈ N, î ∈ Ni, i < î, j, ĵ ∈ C (24)

Let Π be the extreme points of the polyhedron represented by constraints (22)–(24), and for each (π̄, µ̄) ∈361

Π, let z(π̄, µ̄) be the objective value of the primal and dual subproblems. Let θ be an upper bound on the362

subproblem objective function. The master problem is the following:363
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max zRMP =
∑
i∈N

∑
j∈C

Sijxij + λθ (25)

subject to: (2)− (4), (5), (6), (10)

θ ≤ z(π̄, µ̄) +
∑
i∈N

∑
j∈C

∑
ĵ∈C

 ∑
î∈Ni :̂i>i

(µ̄I
ijîĵ
− µ̄III

ijîĵ
) +

∑
î∈Ni :̂i<i

(µ̄II
îĵij
− µ̄III

îĵij
)

xij

 ∀ (π̄, µ̄) ∈ Π (26)

θ is free (27)

In the Benders decomposition algorithm, given by Algorithm 1, a restricted master problem (RMP) is364

iteratively solved over a subset of the dual extreme points Π̄ ⊂ Π.365

Set STOP = FALSE, θ = −∞, Π̄ = ∅;

Solve a relaxed problem (1)–(3), (10) to get land use assignment x̄.;

while STOP = FALSE do

Solve the dual subproblem (21)–(24) to get dual extreme point (π̄, µ̄) and land mix violation

z(π̄, µ̄);

if θ = z(π̄, µ̄) then

STOP = TRUE;

else

Π̄ = Π̄ ∪ (π̄, µ̄);

end

Solve the RMP (2) – (4), (5), (6), (10), (25), (27), over the subset of dual extreme points Π̄ in

constraint (26);

end

Algorithm 1: Benders’ Decomposition Algorithm

366

4.2. Solving the Subproblem367

The quadratic assignment variable xijîĵ is dependent on two binary assignment variables, x̄ij and x̄îĵ ,

from the RMP. There are 4 possible combinations for the two binary variables. Consider the following

primal-dual solution. For each i ∈ N , let dual variable π̄i be such that

π̄i =

1, if LMix >
∑

j∈C
∑

ĵ∈C

(∑
î∈Ni :̂i>i ωijîĵ x̄ij x̄îĵ +

∑
î∈Ni :̂i<i ωîĵij x̄ij x̄îĵ

)
,

0, otherwise.

(28)

The dual variables µ̄I , µ̄II , and µ̄III can be constructed by the following 4 cases:368

Case I: If x̄ij = 0 and x̄îĵ = 0, which implies xijîĵ = 0, then369

µ̄I
ijîĵ

= max(ωijîĵ(π̄i + π̄î), 0), µ̄II
ijîĵ

= 0, µ̄III
ijîĵ

= 0.370
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Case II: If x̄ij = 0 and x̄îĵ = 1, which implies xijîĵ = 0, then371

µ̄I
ijîĵ

= max(ωijîĵ(π̄i + π̄î), 0), µ̄II
ijîĵ

= 0, µ̄III
ijîĵ

= 0.372

Case III: If x̄ij = 1 and x̄îĵ = 0, which implies xijîĵ = 0, then373

µ̄I
ijîĵ

= 0, µ̄II
ijîĵ

= max(ωijîĵ(π̄i + π̄î), 0), µ̄III
ijîĵ

= 0.374

Case IV: If x̄ij = 1 and x̄îĵ = 1, which implies xijîĵ = 1, then375

µ̄I
ijîĵ

= max(ωijîĵ(π̄i + π̄î), 0), µ̄II
ijîĵ

= 0, µ̄III
ijîĵ

= max(−ωijîĵ(π̄i + π̄î), 0)376

Moreover, Proposition 1 shows that the dual solution constructed by (28) and cases I-IV is optimal.377

Proposition 1. A dual solution (π̄, µ̄) as constructed by (28) and cases I-IV is optimal for the dual sub-378

problem.379

Proof. (π̄, µ̄) satisfy by the dual constraints (22) - (24) by construction. Consider a primal solution (x̃, s̃)380

constructed as follows ∀i ∈ N, î ∈ Ni, i < î, j, ĵ ∈ C , x̃ijîĵ = x̄ij x̄îĵ , and ∀i ∈ N .381

s̃i = max

LMix −
∑
j∈C

∑
ĵ∈C

 ∑
î∈Ni :̂i>i

ωijîĵ x̄ij x̄îĵ +
∑

î∈Ni :̂i<i

ωîĵij x̄ij x̄îĵ

 , 0

 (29)

(x̃, s̃) satisfies the primal constraints (14), (16) - (20) by construction. What remains to be shown is that

(π̄, µ̄) and (x̃, s̃) are complementary optimal solutions. Consider the following complementary slackness

conditions,

π̄i

si +
∑
j∈C

∑
ĵ∈C

 ∑
î∈Ni :̂i>i

ωijîĵ x̄ij x̄îĵ +
∑

î∈Ni :̂i<i

ωîĵij x̄ij x̄îĵ

− LMix

 = 0 ∀i ∈ N (30)

µ̄I
ijîĵ

(x̄ij − x̃ijîĵ) = 0 ∀i ∈ N, î ∈ Ni, i < î, j, ĵ ∈ C (31)

µ̄II
ijîĵ

(x̄îĵ − x̃ijîĵ) = 0 ∀i ∈ N, î ∈ Ni, i < î, j, ĵ ∈ C (32)

µ̄III
ijîĵ

(x̃ijîĵ + 1− x̄ij − x̄îĵ) = 0 ∀i ∈ N, î ∈ Ni, i < î, j, ĵ ∈ C (33)

x̃ijîĵ(−ωijîĵ(π̄i + π̄î) + µ̄I
ijîĵ

+ µ̄II
ijîĵ
− µ̄III

ijîĵ
) = 0 ∀i ∈ N, î ∈ Ni, i < î, j, ĵ ∈ C (34)

s̃i(1− π̄i) = 0 ∀i ∈ N (35)

Conditions (30) and (35) follow from (28) and (29). In cases I, II, and IV, x̄ij = x̃ijîĵ , and µ̄I
ijîĵ

= 0 in case382

III, which implies (31). Similarly, x̄ij = x̃ijîĵ in cases I, III, and IV, and µ̄II
ijîĵ

= 0 for case II, so conditions383

(32) hold. (33) follows from the fact that x̃ijîĵ = x̄ij + x̄îĵ − 1 in case IV, and µ̄III
ijîĵ

= 0 in cases I-III. For384

(34), x̃ijîĵ = 0 in case I-III, and we have two subcases for case IV.385

Sub case a: For ωijîĵ ≥ 0, µ̄I
ijîĵ

= ωijîĵ(π̄i + π̄î), µ̄
II
ijîĵ

= µ̄III
ijîĵ

= 0.386

Sub case b: For ωijîĵ < 0, µ̄III
ijîĵ

= −ωijîĵ(π̄i + π̄î), µ̄
I
ijîĵ

= µ̄II
ijîĵ

= 0.387
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Hence, conditions (30)–(35) are satisfied, so the proof is complete.388

The benefit of this primal-dual solution method is that the coefficients of the Benders cut (26) can be389

calculated without formulating the dual subproblem or even storing the values of µ̄ in memory.390

5. Experimental Setup and Results391

5.1. Experimental Setup392

The goals of the experiment are to create an efficient frontier between land suitability and land mixed393

use violation and to obtain the best possible solution in a limited time. Initially, a relaxed problem, (1)–394

(2), (10), which only maximizes land use suitability while ignoring the explicit sprawl constraints, is solved.395

Once we obtain an optimal solution to the relaxed problem, the gross population density and average density396

gradient are calculated. Based on these values, a central composite design was used to design the experiment397

to show how a planner could decide what the bounds on various constraints should be. Characteristics of398

the experimental setup are discussed below.399

The time limit on the CPLEX optimizer for the master problem is 30 minutes, and the time limit on400

Benders’ algorithm overall is 5 hours. The parameter in CPLEX for MIP emphasis was set to feasibility401

instead of optimality for the master problem. If the gap between subproblem objective value and master402

problem parameter is less than 0.1, the Benders’ decomposition algorithm terminates.403

With a sufficiently large penalty value λ, MILP-p and MILP are equivalent problems. However, from a404

practical urban planning perspective land use and land mix are both objectives that a planner would like to405

consider. Consequently, a planner would likely specify values for λ and LMix based upon his/her preferences406

in practice.407

A 3 – factorial design was used to collect observations. The constraints for land use categories in set408

(3) were relaxed, and the penalty value λ was set to 1. Given the value of gross population density for409

the planning area from solving the relaxed model, the lower bound on the gross population density, LGPD ,410

was increased by 20 people per square mile. The increase in lower bound by 20 people per square mile was411

decided upon by trial and error. If the lower bound on the gross population density is increased by a smaller412

amount, it does not have a significant effect on the solution. If the lower bound is varied by a larger amount,413

it led to infeasibility. Given the average value of the density gradient from solving the relaxed model, the414

upper bounds, UDG , in the experiments were obtained by reducing the relaxed value by 3.5 units successively.415

The decrease in upper bound for density gradient was determined at the same time when searching for the416

variation on lower bound for gross population density.417

5.2. Results418

Table 2 shows the results for the aforementioned problem for Leander, Texas, with 7632 land pieces.419

Table 2 contains 33 + 1 = 28 data points, which is as a result of all possible unique combinations of three420
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Table 2: Results from 7632 land pieces

Sprawl Bounds Solution CPU No. of
Land Land Mixed GPD Avg. Density Time Bender’s

LMix LGPD UDG Suitability Use Penalty (Persons / sq. mile) Gradient (seconds) Cuts

N/A N/A N/A 24 733 0 31.125 1.994 0 0
0.005 49.57 −0.37 24 652 −0.041 49.621 −4.91 0 0
0.01 49.57 −0.37 24 652 −0.445 49.621 −4.91 0 1
0.015 49.57 −0.37 24 652 −1.713 49.612 −4.698 420 70
0.005 49.57 −3.87 24 495 −0.046 49.585 −8.342 0 0
0.01 49.57 −3.87 24 495 −0.402 49.585 −8.342 0 2
0.015 49.57 −3.87 24 495 −1.857 49.585 −8.342 >18 000 406
0.005 49.57 −7.37 24 354 −0.059 49.596 −13.183 0 0
0.01 49.57 −7.37 24 354 −0.521 49.596 −13.183 0 5
0.015 49.57 −7.37 24 354 −1.964 49.596 −13.183 >18 000 399
0.005 69.57 −0.37 24 113 −0.081 69.596 −0.865 0 0
0.01 69.57 −0.37 24 114 −0.425 69.57 −0.929 60 13
0.015 69.57 −0.37 24 114 −1.899 69.578 −0.862 13 260 442
0.005 69.57 −3.87 23 885 −0.096 69.587 −4.951 0 0
0.01 69.57 −3.87 23 886 −0.508 69.569 −4.96 60 11
0.015 69.57 −3.87 23 885 −1.831 69.587 −5.001 >18 000 417
0.005 69.57 −7.37 23 699 −0.037 69.593 −15.225 0 2
0.01 69.57 −7.37 23 699 −0.488 69.593 −15.224 60 14
0.015 69.57 −7.37 23 699 −1.984 69.593 −15.205 >18 000 376
0.005 89.57 −0.37 23 458 −0.038 89.593 −2.48 0 2
0.01 89.57 −0.37 23 459 −0.593 89.575 −2.496 180 38
0.015 89.57 −0.37 23 458 −2.351 89.593 −2.502 >18 000 322
0.005 89.57 −3.87 23 230 −0.038 89.583 −6.784 0 2
0.01 89.57 −3.87 23 230 −0.58 89.583 −6.773 >18 000 486
0.015 89.57 −3.87 23 230 −2.793 89.583 −6.76 >18 000 310
0.005 89.57 −7.37 22 997 −0.219 89.587 −13.021 0 2
0.01 89.57 −7.37 22 997 −1.091 89.587 −13.021 360 66
0.015 89.57 −7.37 22 997 −3.681 89.587 −13.021 >18 000 486

factors at three different levels, and the first experiment is the results from solving the relaxed problem used421

to find a maximum land use suitability value. The table shows how values of the factors from their respective422

default values change. In addition to the results displayed in Table 2, we conducted experiments using a423

solution pool when solving the RMP, generating multiple Benders’ cuts per iteration. However, the solutions424

from using multiple Benders’ cuts did not improve the solutions, and CPU times were typically larger than425

those presented here.426

From Table 2, we can see, the CPU time is highly dependent upon the lower bound of the land mixed427

use. In most cases in which the lower bound is tightened to 0.015, the 5-hour time limit elapses prior to428

finding a provably optimal land use assignment. This is primarily because the bound on the land mixed429

use constraints increases the number of cuts generated from the subproblem. The average density gradients430

are rarely at their upper bounds. This is primarily due to the differences of the density gradients across431

the census tracts. Tightening the bounds on gross population density and density gradient increases the432

urban areas and population within them, which decreases sprawl but also reduces land suitability. However,433

tightening bounds on land mix use has only small changes in planning solutions.434

Figure 1 shows scatter plots for land suitability versus gross population density, land suitability versus435

average density gradient, and average density gradient versus gross population density. From figure 1a, we436

can see that a decrease in gross population density results in an increase in land suitability. However, Table437

2 shows that an increase in gross population density slightly worsens land mixed use. This behavior leads us438

to conclude that gross population density has a very clear linear inverse relationship with land suitability,439
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(a) Land Suitability vs. Gross Population Density (b) Land Suitability vs. Density Gradient

(c) Density Gradient vs. Gross Population Density

Figure 1: Scatter Plot

while having a minimal effect on land mixed use. In figure 1b, we observe that decreases in average density440

gradient result in decreases in the land suitability. In addition, Table 2 shows that, unlike gross population441

density, decreases in density gradient increase land mixed use violations. Finally, figure 1c shows that gross442

population density and density gradient are only slightly positively correlated.443

6. Conclusions and Future Research444

Urban sprawl is a genuine problem in all the major cities of the world. Controlling urban sprawl would445

make the cities sustainable and pleasant places to live. Given the various sprawl factors defined by Ewing et446

al. [1], we formulated a mixed integer linear programming (MILP) model for urban land use assignment with447

the focus on controlling urban sprawl. The MILP model was then solved using Benders’ decomposition. The448

subproblem was solved using a deterministic method that employed properties from duality theory instead449

of solving it using a commercial solver. Since the problem has a number of factors affecting urban sprawl,450

the sprawl constraints were introduced as bounds instead of putting them in the objective function. We451

then created scatter plots comparing these factors and land suitability. Such a scatter plot allows a planner452
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to analyze the effects of various factors on land suitability. This would assist the planner in determining the453

best land use assignment for a given area.454

There are a number of factors that affect sprawl. Even using 3 factors over 3 different levels yields 27455

different planning problems. Hence, as the number of factors increases, the number of planning problems456

increases exponentially. Thus, given the amount of time it takes to solve the MILP, there is a limit on the457

number of factors that can be incorporated into an experiment.458

In our experiments, the time taken to solve the master problem was negligible, whereas the time to459

generate Benders’ cuts was very large, consuming most of the CPU time. The reason for the large time460

consumption is that while solving the subproblem, we generate the violations in land mixed use, create the461

dual subproblem objective coefficients, and then recombine them to form a Benders’ cut. In all of these steps,462

the index for the variables depend on four dimensions, which are land piece i, land piece î, land use category463

j and land use category ĵ. The time taken to search over these four dimensions is very long. One solution is464

to form a sparse four- dimensional matrix but that would be very expensive memory-wise. Hence, the goal465

is to find a way to calculate the values which is efficient with respect to both computations and memory. It466

would reduce the time to generate the Benders’ cuts. This would also enable the inclusion of more quadratic467

variables. Hence, in future research, various constraints are being studied to isolate quasi-independent factors468

that can then be used in the orthogonal design.469
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