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Abstract— In order to support the increasing penetration of 
plug-in electric vehicle (PEV) users, a novel regional PEV 
charging station system with DC level 3 fast charging is proposed 
in this paper. To promote sustainable energy, the proposed 
system is designed to be equipped with a distributed energy 
storage system charged by wind generation, solar PV generation, 
and electricity from the power grid, which can simultaneously 
charge multiple PEVs. The objective of the proposed system is to 
minimize operational cost. Wind/solar PV generation and 
electricity market price are input state variables in this problem 
and are predicted by support vector regression (SVR). The 
uncertainties of the SVR models are analyzed using a Martingale 
Model Forecast Evolution (MMFE). Finally, bounds of the 
optimal operational cost in this problem are evaluated with two 
stochastic measures, which can be solved using the expected value 
problem and the wait-and-see solution. Bounds from experiments 
simulating models of the Dallas-Fort Worth metroplex show that 
the largest uncertainty in the system occurs during weekdays in 
the summer. 
 

Index Terms—PEV Charging infrastructure, DC fast 
charging, Expected value problem, Wait-and-see solution. 

I. INTRODUCTION 
ndustrialization, modernization, and population growth have 
created an increased demand for energy and environmental 

concerns over greenhouse gas (GHG) emissions, global 
warming, and climate change. Considering increased demand 
and environmental concerns, considerable attention has been 
paid to investigating solutions for these two critical issues in 
many end-use sectors. 

As an evolving remedy for both energy supply and 
environmental problems, a fundamental transformation in the 
transportation sector from conventional oil-based vehicles to 
electrical powered ones has been proposed and is being 
implemented. The Plug-in Electric Vehicle (PEV), one type of 
electric vehicle, is currently being promoted in the United 
States, and the number of PEVs is expected to be more than 

one million vehicles in the U.S. by 2017 based on the 
projection from the ISO/RTO Council (IRC) [1].  

To encourage the acceptance and increase penetration of 
PEVs, PEV users must be able to drive their cars without 
suffering from range anxiety. A well-planned charging 
infrastructure plays a critical role in serving this purpose. Over 
the past few years, charging infrastructure development has 
been studied in various research areas.  

In the existing literature, optimal PEV charging profiles 
have been widely proposed. For example, they have been 
presented in [2-5] considering charging behavior from 
demographical statistical data, cost minimization for PEV 
customers, and a stochastic algorithm from vehicle usage data.  
In addition to optimal PEV charging profiles, minimizing 
power losses and maximizing main grid load factor in 
residential distribution systems, where PEV charging stations 
are presented, have been studied in [6]. A study in [2] has 
indicated that a well-developed charging infrastructure helps 
reduce stress on the residential distribution system.  

Furthermore, many researchers have developed  models for 
coordinated PEV charging systems for different purposes, 
such as improving power utilization, avoiding overload in the 
utility grid, smoothing real-time power fluctuation in a 
regulation services, and using them with a decentralized 
system [7-10]. In order to improve sustainable energy in 
charging station systems, wind or solar PV generation has 
been used as one type of important energy resources in 
charging stations [11-13].    

Although, these studies have proposed various effective 
approaches for developing PEV charging infrastructure, these 
proposed PEV charging stations are designed with level 1 or 
level 2 charging systems, which are not suitable for a public 
charging station. In addition, multiple renewable energy 
resources, which can simultaneously supply PEV demand, 
have not been considered in these PEV charging stations.  
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Therefore, this paper presents a novel regional PEV 
charging station system to serve PEV demand with DC level 3 
fast charging, which can fully charge a vehicle in minutes. 
Electricity resources of this charging station system can be 
simultaneously supplied by wind, solar power, and the utility 
grid. To control the proposed regional PEV charging station 
system efficiently, this paper studies the bounds of optimal 
charge control for maximizing profit of this charging system. 
To determine these control bounds, a stochastic simulation is 
developed using forecasting models [14] with a Martingale 
Model of Forecast Evolution [15].  

The remainder of this paper is organized as follows. 
Background and contributions of this study are presented in 
section II. Then, details of a novel regional PEV charging 
station system, and the problem formulation for maximizing 
its profit are proposed in sections III and IV, respectively. 
Next, forecasting methods for wind/solar power and electricity 
price for the proposed charging station system are described in 
section V. Section VI describes the stochastic control process 
and calculating objectives bounds. Finally, sections VII and 
VIII describe a case study to illustrate the proposed approach 
and conclusions, respectively.  

II. BACKGROUND AND CONTRIBUTIONS 
In this section, the bounds for the optimal control problem 

are briefly described. Next, the background of the optimal 
bounds in various applications is explained in the literature 
review. Finally, the paper contributions corresponding to the 
optimal bounds in regional PEV charging stations are 
discussed.   

A.   Bounds for Optimal Control 
Lower and upper bounds for the stochastic control problem 

can be obtained by solving the expected value problem, and 
the wait-and-see solution as described in [16]. In this paper, 
the difference between these two bounds for the optimization 
problem is defined as the stochastic gap. 

Below is a summary of the expected value problem and the 
wait-and-see solution. Given a stochastic optimization 
problem as shown in (1), the expected value problem (EV) or 
the mean value problem is given by replacing all random 
variables  ([ ) with the expected value )([[ E  as shown in 
(2). Using an optimal solution )([x  to the expected value 
problem, the expected result of the expected value problem 
(EEV) is given in (3). EEV is an upper bound on the objective 
value of (1).  

)),((min [[ xzE
x

         (1) 

),(min [xzEV
x

           (2) 

))ξ),(,(( [[ xzEEEV          (3) 
In addition, the wait-and-see solution can be used to find a 

lower bound on the stochastic optimization problem in (1). In 
the wait-and-see solution, the decision maker can wait until 
the uncertainty is resolved. Specifically, the objective value 

ξ)ξ),((xz  is computed based on solutions with perfect 

information ξ)(x , so the wait-and-see solution (WS) can be 
calculated by (4).   

ξ))ξ),((xzEWS [        (4) 
The stochastic gap (SG) is defined as the difference between 

the bounds EEV and WS for an optimal control problem, 
which can be calculated by (5). 

WSEEVSG �         (5) 

B.   Literature Review 
Stochastic optimization has been adopted to solve many 

problems. Wait-and see solutions have been studied to obtain 
lower bounds in cost minimizing problems such as economic 
load dispatching with a system of wind and thermal turbines, 
generation and transmission expansion under risk, and two-
stage adjustable optimization for unit commitment under 
uncertainty [17-19]. However, these studies have not yet 
focused on optimal bounds for their applications.  

Optimal bounds have been evaluated by confidence level 
percentages for transmission planning models and integration 
of wind power into unit commitment with dependent loads and 
wind forecasts considering prediction uncertainties [20, 21]. 
Although optimal bounds can be verified by the confidence 
levels in these two studies, these bounds depend on adjustable 
confidence levels based on experiential consideration. 

Both the expected value problem and the wait-and-see 
solution have been proposed to evaluate optimal bounds as a 
simple implementable paradigm [22]. To analyze the optimal 
bounds corresponding to uncertainties, cost minimization 
including investment, expected operation, and reactive load 
shedding costs for reactive power planning under 
contingencies has been studied [23]. The expected value 
problem and wait-and-see solutions have been used as optimal 
bounds for the minimum operational cost of power scheduling 
in a micro-grid [24]. However, this is the first paper to study 
optimal bounds for controlling a regional PEV charging 
station system. The bounds provide maximum and minimum 
operational costs in various scenarios, which PEV charging 
station operators can consider in their financial planning.        

C.   Contributions 
The contributions of this paper are highlighted below.  

1) Forecasts for electricity market price and solar radiation 
were presented in [14] and [32], respectively. However, this 
research develops SVR models for both wind and solar PV 
energy. In addition, a Martingale Model Forecast Evolution 
(MMFE), is adopted to model the uncertainty of these 
forecasting models.  

2) A stochastic optimization formulation for optimal control                   
of a PEV charging station system was presented in [25]. In 
this research, an optimal decision making process based upon 
this formulation and the aforementioned SVR and MMFE 
models is developed and simulated.  

3) Bounds and the stochastic gap for the aforementioned 
proposed optimal control process are presented using the 
expected value problem and the wait-and-see solution. 

4) Experiments analyzing the stochastic gap in the Dallas-
Fort Worth metroplex (DFW) are presented. The results show 
that the largest gaps occur during summer weekdays when 
errors in market price forecasts are highest. 



 

 

3

III.   CONTROL OF THE REGIONAL PEV CHARGING STATION 
SYSTEM  

  The concept of the regional PEV charging station system 
and the stochastic programming formulation were already 
proposed in [25], which can be briefly described as follows.   

A.   Regional PEV Charging Station System 
Current public charging stations rarely consider the 

installation of energy storage systems or the integration of 
renewable energy resources. This is because these charging 
stations are small and local due to the current low PEV 
demand. However, to support the increasing number of PEV 
users and to promote sustainable energy, the proposed PEV 
charging station is designed to be equipped with a distributed 
energy storage system charged by wind/solar PV generation 
and electricity from the power grid, which can simultaneously 
charge multiple PEVs.  

The proposed distributed energy storage system is used as a 
buffer for the charging station to alleviate the load strain due 
to a high number of PEVs charging, which can reduce the 
need for distribution upgrade if the charging stations have an 
insufficient renewable energy supply. In addition, the 
proposed system can be used to mitigate the mismatch 
between renewable energy resources and the PEVs’ demand 
by storing excessive wind/solar energy for future demand 
arriving at the station. Finally and very importantly, these 
proposed systems enable the charging station to participate in 
the deregulated market. 

The participation of a PEV charging station in the 
deregulated market highlights the benefit of wind and solar 
energy as well as distributed energy storage systems with 
optimal operational strategies. However, the way the charging 
station operates should be determined from a regional point of 
view to achieve optimization of the above benefits. In 
addition, one charging station is insufficient to serve all of the 
PEV users throughout a metro area. Hence, the configuration 
of a regional PEV charging station system with n stations is 
proposed as shown in Fig. 1. 

According to Fig. 1, all of the electricity from various 
sources is able to be directly used for charging PEVs, and the 
surplus can be either stored in the battery or sold back to the 
power grid. When a PEV arrives at the station, its demands 
can be served from both the direct charge and the battery 
storage. As proposed in this design, optimization can be 
achieved with optimal operation strategies, which highly 
depend on the available wind/PV energy and the power market 
price at each charging station location 

 The regional PEV charging station system should be 
established in the metro area. DFW, under the jurisdiction of 
the Electric Reliability Council of Texas (ERCOT), is selected 
for the case study in this paper. The charging stations are 
designed to be built near power nodes, which can serve as a 
Point of Interconnection (POI) of DC fast charging to the 
power grid. The power nodes in the DFW area are represented 
by red circles in Fig. 2. There are 26 power nodes in 11 
clusters. The nodal market prices may be different at different 
clusters but are similar inside each cluster.  

Since wind farms do not have to be at charging stations, this 
study uses the term virtual wind farm to describe the 
arrangement of purchasing power from a remote wind farm. 
Though it is located in a different market, a wind farm in 
Oklahoma with a 74.25 MW installation capacity is selected 
for the wind energy resource in this study. The algorithm 
proposed in this research is testable because the necessary 
wind power and wind speed data from this wind farm are 
available.  

 
Fig. 1.  Configuration of PEV charging stations 

 
 

Fig. 2.  Power nodes in DFW area 

Moreover, it is assumed that roof-topped solar PV panels 
are installed on charging stations and supply part of the PEV 
energy demand in this study. As the highest efficiency option 
among all of the available PV technologies, the single 
crystalline PV module is selected for evaluating the PV 
generation. NREL has recorded the solar radiation data for 
several locations in the DFW area [26]. However, the PV 
generation calculated with this solar radiation data from these 
different locations is similar throughout the DFW metroplex. 
Therefore, solar radiation data at only the Dallas Redbird 
airport site are selected to calculate the PV generation with a 
single crystalline silicon panel. The panels have a 180 m2 
installation area (10 charging slots for one charging station) 
and 24.4% conversion efficiency [27], yielding the maximum 
power output profile of 33.82 kW.  

B.   Problem Formulation 
Based on the variation of  electricity price in the deregulated 

market, this regional PEV charging station stochastic 
programming problem can be formulated similar to the load 
control and demand response problems proposed in  [28, 29]. 
The system is defined by a set of state variables that includes 
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the battery (inventory) levels and the uncertain forecasts 
(random variables represented with tildes) for the market price 
of energy, solar production of each station, the total wind 
purchased from a remote wind farm to the system, and the 
total demand of each station. An operational cost is obtained 
when the system makes a decision, and then the system 
experiences a transition to the next stage. Electricity sold back 
to the grid from the battery and direct charge, electricity 
purchased from the grid, demand satisfied by the battery and 
direct charge, battery charging level, and wind allocation 
fraction among charging stations are the decision variables in 
this problem. The stochastic programming formulation can be 
briefly described as follows.  

As shown in (6), the objective is to minimize operational 
cost, which is the cost of buying from the grid minus the 
revenue from selling back to the grid and charging the PEV 
both from the battery and the direct charge across all the 
stations. 

� �¦¦
� �

�� ���
Tt Jj

tjttjtjttjt DrRgPgP ~)(~~min      (6) 

where 
tP~ is the market buying/selling price of energy in time 

period t, �
tjg  is the electricity bought from the grid by station j 

in time period t, �
tjg  is the electricity sold back to the grid from 

the direct charge of station j in time period t, Rtj is the 
electricity sold back to the grid from the battery of station j in 
time period t, and tjD~ is the total demand in time period t at 
charging station j. Although the total demand is modeled in 
this stochastic optimization formulation as a random variable, 
this study assumes it is deterministic, since it is usually 
considerably less uncertain than market price and wind/PV 
generation due to the volatile price scenarios in deregulated 
market and the intermittence characteristics of Wind/PV 
generation.  

The set of energy balance constraints include the battery 
level transition as (7), the energy balance for the battery 
charge as (8), and the total demand in charging stations as (9). 

TtJj
e
D

e
R

BCII
j

tj

j

tj
tjjtjt ������� � ,

2

),1(,   (7) 

TtJjDggSWWBC tjtjtjtjtjttj �������� �� ,~~ 1    (8) 

TtJjDDD tjtjtj ����� ,~ 21   (9) 

where Itj is the battery level of station j at the beginning of 
time period t, BCtj is the battery charge of station j in time 
period t, 2

tjD  is the demand satisfied by the battery of station j 
in time period t, and ej is the storage efficiency of station j. In 
the computational experiments in section VI, the energy 
storage system efficiency ej is assumed to be 79.8%. Wtj is the 
fraction of wind allocated to station j in time period t, tW~  is 

the total wind purchased in time period t, tjS~ is the solar 

production of station j in time period t, 1
tjD  is the demand 

satisfied by the direct charge of station j in time period t.  
The set of battery constraints consists of energy storage 

efficiency corresponding to discharge rate dc, the upper limit 

of battery charge (cr), and the battery level boundary between 
the minimum battery level (lj) and the battery capacity (uj) for 
each station, as (10), (11), and (12), respectively. 

TtJjedcDR jtjtj ����d� ,*2      (10) 

TtJjcrBCtj ����d ,      (11) 

TtJjuIl jtjj ����dd ,      (12) 
 The constraints in (13) are formulated to ensure the fraction 

of wind allocation among the stations sums to one. Finally, 
equation (14) provides the set of nonnegative constraints. 

TtW
Jj

tj �� ¦
�

1        (13) 

TtJjDDRBCggWI tjtjtjtjtjtjtjtj ����t�� ,0,,,,,,, 21 (14) 

IV.   FORECASTING METHODS AND FORECAST UNCERTAINTY 
ANALYSIS   

To represent the uncertainty of the system, it is simulated 
using forecasting models of wind/PV generation and power 
market prices, where the forecast errors are evolved using 
MMFE. These are among the critical input state variables 
discussed in the previous section. With more accurate 
predictions, the system control can efficiently optimize the 
operation of the proposed system of regional PEV charging 
stations. Due to the 15-minute settlement interval in the 
ERCOT deregulated market, all of the predictions are 
performed in the 15-minute ahead time period. The wind/PV 
generation and market price forecasting used in this paper are 
discussed as below. For a detailed description of the 
forecasting of these state variables, see the author’s Ph.D. 
dissertation  [30].  

A. Wind Generation Forecasting 
In order to accurately forecast wind generation, support 

vector regression (SVR) is used in this study. Wind 
generation, wind speed, and potential weather parameters 
including gusty wind, wind direction, and temperature are 
taken into consideration as the input parameters of the 
proposed SVR model. Wind power and wind speed data are 
from a wind farm website, and potential weather data are from 
the National Climate Data Center (NCDC) website [31]. 

After evaluating the prediction accuracy of many possible 
SVR models using the wind power data from the wind farm in 
Oklahoma, the most accurate SVR model includes only three 
predictor variables. These three predictor variables are the 
wind power 15 minutes before the prediction period, the wind 
power 30 minutes before the period, and the wind speed 15 
minutes before the period.   

B. PV Generation Forecasting 
SVR is also adopted to predict PV generation in this study. 

Historical PV generation, humidity, temperature, cloud rating, 
wind speed, and the previous day of sunshine are taken into 
consideration for the predictors [32]. PV generation is 
calculated from solar radiation at Dallas Redbird airport. Other 
potential weather data can be extracted from NREL [26]. 

As with wind generation prediction, many SVR models for 
predicting PV generation were considered. Of these SVR 
models, the most accurate model uses the following three 
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predictor variables: PV generation 15 minutes prior the 
prediction period, PV generation 30 minutes before the period, 
and the previous day of sunshine. 

C. Market Price Forecasting 
This study uses the forecasting model in [14] to predict 

prices in the deregulated market. There are two stages for this 
hybrid market price forecasting model including support 
vector classification for predicting spikes market prices and 
SVR for estimating the magnitude of market prices.  

The model of historical market price and load profile at 15 
and 30 minutes before the prediction time yields the best 
results for spike price occurrence prediction. As for the non-
spike price magnitude prediction, the model with historical 
market price, temperature, and load profile at 15 and 30 
minutes before the prediction time gives the most accurate 
results. The best spike price magnitude prediction 
performance model is the model of historical market price at 
15, 30, and 45 minutes, as well as load profile at 15 and 30 
minutes before the prediction time, respectively. The results 
from the proposed method show significant improvement over 
typical approaches and give similar accuracy results for all 11 
power nodes in the DFW metroplex.      

D. Forecast Uncertainty Analysis 
The aforementioned SVR models for predicting wind/solar 

PV generation and electricity market price include uncertainty, 
which must be considered in the optimal control process. In 
this research, the uncertainties of the forecasts are modeled 
using MMFE. MMFE employs the multivariate normal 
distribution with an empirically derived variance-covariance 
(VCV) matrix.  To calibrate MMFE for this system, actual 
forecast errors were calculated by applying the SVR 
forecasting models to real data.  In theory, a single high-
dimensional MMFE model could be constructed to incorporate 
forecast errors for wind, PV, and market price simultaneously.  
However, a correlation analysis identified little correlation 
between these three types of forecast errors; thus, allowing the 
MMFE models for wind, PV, and market price to be 
separately constructed. 

Principal component analysis is used to obtain eigenvalues, 
1O , …, nO , and eigenvectors, 1v , …, nv , of the VCV matrix of 

the forecast errors to construct diagonal matrix /  and matrix 
V defined by (15)-(16): 

),...,,( 21 nOOO /        (15) 
),...,,( 21 nvvvV          (16) 

Then, the multivariate coefficient matrix ],...,,[ 21 nCCCC   
is calculated by (17), such that CC c  is the VCV matrix: 

],...,,[ 2211
2/1

nnvvvVC OOO /    (17) 
The distribution of the log normal function of these actual 

errors was analyzed using ARENA [33], and the normal 
distribution function was found to fit reasonably well. Hence, 
for each MMFE model, the forecast error vector ε at time 
period t can be characterized using (18). 

tnnt ZCZCZC HPH ���� ...2211     (18) 

where ],...,,[ 21 nCCCC   are from the coefficients from 
(17), ],...,,[ 21 nZZZZ   is a vector of independent standard 

normal random variables, and 
tH

P  is the mean value of tH .   
As an example, the MMFE model for the uncertainty of the 

PV SVR model is briefly described as follows. It is assumed 
that the number of time-ahead forecast predictions is the same 
as the number of 15-minute time lags of the best performing 
predictive model proposed in the previous section. The best 
performing predictive model for PV generation has two-time 
lags, so the corresponding MMFE model will employ two 
time-ahead forecast predictions. Therefore, the dimension of 
the actual forecast error matrix for PV generation prediction is 
2u1. Hence, the V , / , and C matrices for PV generation 
prediction as well as an example generated tH  matrix are 
given by 

»
¼

º
«
¬

ª
 /

016638.00
0004579.0

       
»
¼

º
«
¬

ª
�

��
 

99863.005232.0
05232.099863.0

V  

»
¼

º
«
¬

ª
�

��
 

12881.000354.0
00675.006758.0

C
     

»
¼

º
«
¬

ª
 

05.198.0
04.199.0

tH  

V.   STOCHASTIC CONTROL PROCESS AND STOCHASTIC 
MEASURES 

The stochastic programming formulation (6)-(14) is 
described and the expected value problem (EV) is solved and 
analyzed in [25]. However, [25] does not discuss practical 
implementation of EV or the stochastic control process. In this 
study, the stochastic control process of a regional PEV 
charging station system is developed and shown in Fig. 3. 

According to Fig. 3, the initial storage capacity are set at 
20% of maximum capacity at t=1. Next, three predictions of 
wind/PV generation and market price are calculated from t=1 
until t=T using the proposed prediction methods in section V. 
Then, initial decision variables consisting of *

tjBC , *
tjW , *1

tjD , 
*2

tjD ,  *
tjI , and *

tjR  , as well as initially planned values for  
*�

tjg and *�
tjg that satisfy constraints (7)-(14) in section IV, are 

obtained.  In addition, the energy storage capacities at each 
charging station for the next time period are updated. 

After sampling values for wind/PV generation using SVR 
and MMFE, the control process considers a two-case recourse 
function, which is used to practically adjust optimal decision 
variables, �

tjg and �
tjg  as shown in (19) and (20).   

*

***

**

and

,]~[]~[~~
]~[]~[~~if

��

��

 

���� 

�!�

tt

tjtjtjttjtjtt

tjtjttjtjt

gg

gSEWWEsWwg

SEWWEsWw

   (19) 

*
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��
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tjtjtjttjtjtt

tjtjttjtjt

gg

gsWwSEWWEg
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Fig. 3.  Expected Value Problem process  
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Fig. 4.  Wait-and-See process 

Next, the objective value at t can be calculated with 
adjusted decision values of �

tg and �
tg from the above 

recourse functions and a sample of market price based on 
forecast uncertainty analysis using SVR and MMFE. In this 
study, this process is performed iteratively for t=1… T, where 
T= 96, which is 24 hours in simulation time.  

By implementing this proposed stochastic optimal control 
process, the bound for optimal control by (5) can be calculated 
by two stochastic measures discussed as follows.    

A. Expected Value Problem 
As shown in (1), the expected result of the expected value 

problem (EEV) can be determined by simulating the 
abovementioned stochastic control process as depicted in 

Fig.3 in which initial decisions are made by replacing all 
random variables with the expected values from the forecasts 
at each time period t.  Then, the cost minimization problem 
(6)-(14) can be solved. Simulating the control process using 
the expected value problem to make decisions over multiple 
scenarios and averaging the objective yields an upper bound 
on the objective of the stochastic optimal control process.  

 

Fig. 5.  PEV demand 

However, there is an additional accounting issue when 
comparing EEV to the wait-and-see solution. As mentioned 
previously, the control process is performed iteratively over 96 
15-minutes periods, and the total objective value is calculated 
over these 96 periods. However, decisions are made based 
upon the forecasts of periods 96 to 191. Similarly, the wait-
and-see solution must also consider forecasts of these periods. 
In order to account for the second day of the horizon, an 
additional expected problem for periods t=97 to t=192 is 
added to EEV.  

B. Wait-and-See Solution 
Fig. 4 illustrates how the wait-and-see solution of the 

proposed regional PEV charging station system is estimated. 
First, scenarios of wind/solar PV and market price values are 
determined. Then, the cost minimization problem (6)-(14) is 
solved from t=1 to t=2T to obtain the objective value using 
perfect information of each scenario. These objective values 
are averaged to obtain a wait-see-solution, which is a lower 
bound on the objective of the stochastic optimal control 
process. 

VI.   CASE STUDY AND RESULTS 
To evaluate the proposed methods efficiently, the 

simulation of the EEV and WS are performed with 10 
scenarios in four seasons for both weekday (WD) and 
weekend (WE) data of wind/PV generation and market prices.  
As proposed in [34], this paper uses the projected PEV 
demand in 2015 for 4 preliminary charging locations, which 
are designed to be built in the Fort Worth,  Dallas, Garland, 
and Denton areas. The total PEV demand for 15-minute period 
is shown in Fig. 5. The comparison of averaged objective 
values for all cases, operational cost of regional PEV charging 
stations, for the EEV and WS are reported in Table I.  

According to Table I, two significant points can be 
observed from the simulation results.  As depicted in Fig. 6, 
the low values of operational costs (high negative values) of 
EEV/WS come from high foreseen market price fluctuations 
which can be calculated by (21).  
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where maxP is a maximum market price during operation 
times.  minP is a minimum market price during operation times. 
Meanwhile, high unforeseen fluctuations (high forecast error) 
create high values of stochastic gaps as shown in Fig. 7. 

TABLE I  
Comparison of Operational Cost for the Projected PEV Demand 

Cases Method Operational 
Cost ($) 

Cases Method Operational 
Cost ($) 

Winter 
WD 

EEV -98,090 Summer 
WD 

EEV -126,338 

WS -109,453 WS -166,776 
Stochastic 

Gap 
11,363 Stochastic 

Gap 
40,438 

Winter 
WE 

EEV -45,313 Summer 
WE 

EEV -147,772 
WS -54,033 WS -151,998 

Stochastic 
Gap 

8720 Stochastic 
Gap 

4226 

Spring 
WD 

EEV -84,913 Fall 
WD 

EEV -106,170 

WS -87,142 WS -117,928 
Stochastic 

Gap 
2229 Stochastic 

Gap 
11,758 

Spring 
WE 

EEV -111,084 Fall  
WE 

EEV -54,037 
WS -119,862 WS -62,234 

Stochastic 
Gap 

8778 Stochastic 
Gap 

8197 

 

In term of operational cost, both EEV and WS give different 
optimal operational costs, which highly depend on foreseen 
market price fluctuation but less influenced by wind/solar PV 
generation. When high foreseen fluctuations occur, the 
operational cost is a very negative; otherwise, its value is high. 
This is due to the fact that predictable changes in market price 
allow operators to profit from purchasing power at low market 
prices and selling back to the power grid when the prices 
increase. It can be seen from Fig. 6 that operational costs of 
WS solutions are significantly lower both in weekdays and 
weekends in summer. This is because the high foreseen 
market price fluctuations always occur in this season. In 
addition, operational costs of winter and fall in weekdays are 
lower than those of weekends since higher foreseen market 
price fluctuations usually happen in weekdays. However, 
operational costs in spring weekends are lower than that of 
spring weekdays because generators often have yearly 
preventive maintenances in spring weekends leading to higher 
foreseen market price fluctuations compared to its variation in 
spring weekdays. 

Stochastic gap is predominantly based upon the accuracy of 
market price predictions. With more accurate market price 
prediction, EEV performs well and obtains near optimal 
operational cost resulting in less difference from WS. On the 
other hand, high unforeseen fluctuations yield high values of 
the stochastic gap. It can be observed from Fig. 7 that the 
highest stochastic gap happens during summer weekdays 
because there are multiple spike prices during this time, which 
the proposed forecasting has more difficulty predicting 
accurately. However, the proposed forecasting method 
achieves more accuracy in summer weekends, giving less 
stochastic gap in this case. In addition, the same situations also 
happen in winter and fall, which the stochastic gaps in 
weekdays are higher than on weekends. However, due to less 
fluctuation of market prices in spring weekdays compared to 
spring weekends, more accurate market price predictions can 

be achieved in spring weekdays, leading to less stochastic gap 
in this case compared to weekends. Although this result may 
seem intuitive, this is the first study to show the strength of the 
relationship between market price forecasting error and 
stochastic gap in the optimal control process.  

 
Fig. 6. Charging station operational cost and market price fluctuation 

 
Fig. 7.  Stochastic gap and market price forecasting error 

VII.   CONCLUSION 
This paper discusses optimal control for a novel regional 

PEV charging station system, which serves its demand by 
wind/solar generation and electricity from the utility grid. The 
optimal control for this system is focused on minimizing its 
operational cost. Two important stochastic measures are 
introduced to determine bounds of operational cost including a 
stochastic gap found by the expected value problem and wait-
and-see solution. The control algorithm of the proposed 
system is tested on weekdays and weekends of four different 
seasons. The results of the proposed algorithm show that the 
stochastic gap is greatest during weekdays in the summer, 
which is similarly when market price forecasting error is 
greatest.  
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