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Abstract 
 
Dynamic programming (DP) is a mathematical programming approach for optimizing a system which changes over 
time, and is applied to solve multi-stage optimization problems in environmental engineering, manufacturing 
systems and many other areas. However, exact solutions are only possible for problems with low dimensions or 
under very limiting circumstances. Given recent advances in computational power, approximate DP (ADP) methods 
are developed; however, they are still subject to the “curse of dimensionality”, which render DP problem 
computationally intractable in high-dimensions, with few exceptions. In addition, an approximate solution through 
discretization of the state space is required for most continuous-state problems. By incorporating a design and 
analysis of computer experiments (DACE) approach, computationally-tractable ADP methods for continuous-state 
problems are possible. However, ideal experimental designs need to be orthogonal, and ideal experimental designs 
will not appropriately represent the state space when the state variables are correlated. Data mining methods are 
applied in this study for two purposes: (1) to reduce the dimensionality of a DP problem and (2) to orthogonalize a 
DP state space and enable the use of ideal experimental designs. Results are presented by employing the proposed 
approach into an Atlanta ozone pollution problem. 
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 1. Introduction  
Dynamic programming (DP) problems with a high dimension are known to be difficult to solve. Exact solutions are 
only possible for small DP problems or under very limiting circumstances (linear dynamics, Gaussian random 
variables, quadratic cost). Consequently, many approximate DP (ADP) methods are developed to address this issue 
(Barto et al. (2004). In this research, ADP methods for solving stochastic DP (SDP) problems, with continuous (or 
near-continuous) state variables, are studied. The objective of this SDP is to minimize expected cost (E[ct(.)]) over T 
discrete stages and subject to certain restrictions (t), where the expected value is taken over a random vector (t), with a known probability distribution that forms the stochasticity in the system. For a given current stage (t), the 
initial state of the system is represented by x1 and the state variables (xt) specify the state of the system at the 
beginning of stage t. The transition of the state variables from the current stage (xt) to the next stage (xt+1) is defined 
by the state transition function (ft(.)). For an ozone pollution problem, the state variables consist of concentrations of 
ozone and its precursor gases, such as nitrogen oxide. The decision (or control) variables (ut) in each stage are 
chosen in order to achieve the minimum expected cost. For ozone pollution, the decisions are the reductions in 
precursor gas emissions at specific times and locations. In each stage, there is a cost function ct(·), and the decision 
variables will be chosen to minimize current plus future expected costs. Finally, the optimal value function (Vt(xt)) is 
defined for stage t as the minimum expected cost, so as to operate the system from stage t forward to the end of the 
time horizon. Given the state xt of the system at any stage t, optimal value function can be resolved recursively using 
equation (1), and the optimal policy obtained from solving (1) will be employed to control the system at stage t. 
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All possible values for Vt(xt) can be acquired if there are a finite number of states. However, when the state space is 
continuous, as it is for ozone pollution, it is impossible to get all the possible values. Most continuous-state 
problems require an estimation of the optimal value function and a discretization of the state space. Typically, an 
approach for approximating the solution in a continuous-state ADP is to firstly form a finite grid of discretization 
points and then approximate the optimal value function among grid points. However, in high-dimensional problems, 
a grid of points will grow exponentially when the number of state variables increases. This is one form of the “curse 
of dimensionality”, which makes DP problems computationally intractable. Chen et al. (1999) recognized that state 
space discretization can profit from design of experiments (DOE), and then an orthogonal array experimental design 
is used in place of the full factorial design to create a computationally tractable solution method. This is an approach 
named as design and analysis of computer experiments (DACE), where the computer experiment is the optimization 
that occurs in each stage of the DP. To approximate the continuous optimal value function, Chen et al. (1999) made 
use of a regression splines method. 
 
 

1. For each stage t: Use DOE to sample N points from the state space  N
tjt 1x .   

2. In each stage t = T − 1, . . . , 1: 
   (a) For each sampled state point xjt, j = 1, . . . , N, solve the minimization problem (1), where t < T − 1,     
        the future value function )(1 tV is estimated by )(ˆ 1 tV . 
   (b) Construct the estimated )(ˆ tV  via a statistical model using the data from step 2(a). 

 
Algorithm 1: DACE-ADP algorithm for optimizing a multi-dimensional, T-stage, continuous-state problem (Chen et 

al. 1999) 
 
The DACE-based ADP solution method from Chen et al. (1999) is introduced in Algorithm 1. In each DP stage t,              
an experimental design is applied to specify values of the state variables. The computer experiment is resolved for 
these design state values to achieve the optimized objective, which is the response variable. Then a statistical model 
is used to fit this data in order to approximate the future value function. 
 
Due to the fact that for ideal experimental designs, orthogonality in the experimental design space is a required 
assumption (Chen et al. 2006), DOE will not be able to properly represent the state space when the state variables 
are correlated. Another issue due to the multicollinearity in a state space, is that the collinear variables contain the 
related or almost the same information corresponding to the dependent variable, which means they are redundant. A 
principal danger of this data redundancy is that it will result in an overfitting of the regressed model. In statistics, 
even though the multicollinearity issue does not decrease the predictive power of the model within the sample data 
set, at least the small changes in the data or the model may change the coefficient estimates of the regression model 
erratically, which indicates that the created regression model is not robust. Therefore, considering these conditions, 
this paper presents a preliminary study that uses data mining (DM) to address multicollinearity in a DP state space. 
DM methods are applied in this study for two reasons: (1) to reduce the dimensionality of a DP problem, (2) to 
orthogonalize a DP state space, so as to enable the use of ideal experimental designs to build a robust metamodel.  
The next section will introduce how data mining techniques can be used to reduce the dimension of a DP problem 
and deal with multicollinearity issues. In section 3, an Atlanta ozone pollution case study is conducted with a 
comparison of different DM modeling scenarios. Finally, the conclusion is given in the last section. 
 2. Data mining techniques used in this research  
In extremely high-dimensional problems with over 100 state variables, directly conducting DACE-based ADP 
would require a particularly large experimental design, under the assumption that all these state variables are 
important. However, not all of them are vital in practice, and it is not known in advance which ones should be 
deleted and which ones should be maintained. Hence, DM feature selection methods with small exploratory 
experimental designs are able to provide important dimension reductions to decrease computations. Figure 1 is an 
example from the Atlanta ozone pollution problem. It very clearly identifies that the state variable "ykm3p1" has 
strong correlation with the state variable "ykm3p2" and the state variable "ykm3p2" also has strong correlation with  



 
"ykm3p3". However, when transforming these four state variables from the current state space to the Z space, the 
relationship between these four variables is orthogonalized as shown in Figure 2. 
Therefore, for the state variables in Figure 1, it is difficult to conduct an appropriate experimental design to 
represent them, since DOE only renders ideal designs that are “square” (or circular), as shown in Figure 2. To 
handle this multicollinearity issue, the state space should be orthogonalized by using DM tools before implementing 
DACE. The DM techniques used in this study can be divided into two types, feature selection and feature extraction. 
Both tools are combined to generate an efficient and orthogonal DP state space. 
 
 

  
Figure 1. The relationship between state variables in X-state space 

 

 Figure 2. The relationship of state variables in Z-state space 
 2.1 Feature selection 
 



 
Feature (variable) selection DM techniques are used to shrink the size of a DP problem by identifying the vital 
subset of the original features. The feature selection techniques used in this study are comprised of stepwise 
regression, classification and regression trees (Breiman et al. 1984), and a multiple testing procedure based on the 
false discovery rate (FDR) (Benjamini and Hochberg, 1995). These techniques have already been studied by Shih et 
al. (2006), who found out that FDR performed well for the Atlanta ozone pollution problem from Yang et al. (2009). 
 
2.1.1 Stepwise regression 
 
Stepwise regression is an automatic variable selection procedure that uses forward selection and backward 
elimination processes. In the forward selection process, variables are added one by one to the model if they are 
statistically significant. Where as in the backward selection process, all of the variables already included in the 
model are evaluated, and insignificant variables will be deleted. These two processes, forward selection and 
backward elimination, are repeated until none of the variables outside of the model are significant. In this study, the 
significance level threshold for a variable to enter or to remain in the model was specified at 0.05. 
 
2.1.2 Classification and regression trees 
 
Classification and regression trees (CART) developed by Breiman et al. (1984) have become a very popular data 
mining tool for supervised learning. The CART forward algorithm uses binary recursive partitioning to separate the 
variable space into rectangular regions based on the similarity of the response values. In this research, regression 
trees are conducted using CART software from Salford Systems (www.salfordsystems.com). For variable selection, 
this software provides “variable importance scores.” The variable that receives a 100 score indicates the most 
influential variable for prediction, followed by other variables based on their relative importance to the most 
important variable. However, there are some different options for calculating the scores, and selecting the threshold 
of the scores to identify important variables may be subjective. 
 
2.1.3 Multiple testing procedure based on the false discovery rate (FDR) 
 
Variable selection using FDR usually divides a dataset into c groups based on a categorical response variable. For 
each predictor variable (xi), we test the differences in the c samples, using a t-test or F-test. For an n-dimensional 
problem, a collection of hypothesis tests, that uses the corresponding p-values , where pi is the p-value of 
testing the null hypothesis for variable xi (where a rejected null hypothesis corresponds to a significant variable), are 
conducted. In the literature, it is standard to choose a p-value threshold () and declare the variable xi is significant 
if and only if the corresponding p-value pi  . The FDR is defined as the “expected proportion of false positives 
among all the hypotheses rejected” (Benjamini and Hochberg, 1995). The general FDR-procedure to identify 
significant variables is shown as follows: 
 

1. Choose a fixed , where 0    1. 
2. Find , where   denotes the proportion of true Hi. 

3. If ,  =  {All rejected Hi with pi < p(i)} with FDR()  . 
    If , do not reject any hypothesis since  = . 

In this study,  = 0.05 and   = 1 are pre-specified. 
2.2 Feature extraction 
 
Feature extraction DM techniques try to create new orthogonal features based on transformations of the original 
features that can supply useful information for modeling [8]. The new orthogonal features are linear combinations of 
the originals. Feature extraction can be used for both orthogonalization and dimension reduction. Principal 
component analysis (PCA) and partial least squares (PLS) are the feature extraction tools used in this study. Brief 
descriptions of PCA and PLS are presented in the following section. 
 



 
2.2.1 Principal Component Analysis 
 
PCA can be regarded as a method to compute a new coordinate system formed by principal components (PCs), the 
latent variables or scores, which are orthogonal. Only a small number of the most informative PCs are used. In PCA, 
correlated original variables (X) with p columns (variables) and n rows (samples or observations) are transformed to 
uncorrelated PCs (Z) which are linear combinations of X and are defined in (2). Each consecutive PC is orthogonally 
selected in descending order of the proportion of explained variation in X. 
                                                                          Z = XE                (2)               where E = [E1, E2,…, Ep],  Z = [Z1, Z2,…, Zp].  
The eigenvectors of the covariance matrix of X are E = [E1,E2, …,Ep], with corresponding ordered eigenvalues 
(λ1>λ2>…>λp), where λi indicates the variance of Zi. Thus, the first PC (Z1) clarifies the most variation in the original 
data X. The second PC (Z2) is orthogonal to the first one, and explains the next largest variation in the data, and so 
forth. PCA will produce p PCs, if the original data X has p dimensions.. The PCs illustrate the latent structure of X 
and can be employed as regressors to predict a response in the regression model. 
 
2.2.2 Partial Least Squares  
 
The model structures of PLS and PCA are very similar. The only difference between them is that the new orthogonal 
variables (PLS components, Z) are chosen to maximize the covariance between X (predictors) and Y (responses). 
The PLS can be regarded as a compromised approach between PCA and ordinary least squares. The covariance of X 
and Y  merges high variance of X and high correlation with Y. The PLS components of Z are achieved by exploring 
a weight vector w which maximizes the covariance between the scores of X and Y as shown in (3), then regressing Z 
on X and Y, through (4)-(5), and finally the prediction model Y from original X can be obtained by (6). E and F are 
residual matrices, and P and Q are loading matrices. PLS components of Z can be acquired from many 
algorithms, but in this study, Wold’s PLS (Wold et al. 2001) is applied, where each PLS component Z and weight w, 
are orthogonal (ZiTZj=0, wiTwj=0; i ≠ j). 
 

                                 Z = Xw                            (3) 
    X = ZPT + E                                      (4) 

                                Y = ZQT + F                                      (5) 
          Yhat = ZQT =  Xw QT  =  X Bhat                 (6) 
          where Bhat  =  w QT   

 
In general, PLS performs better for prediction than PCA since the new orthogonal predictors Z are chosen by 
incorporating information in Y. In the following section, combinations of DM scenarios are employed to the Atlanta 
ozone pollution problem from Yang et al. [7]. 3. Atlanta Ozone Pollution Problem Case Study  
One of the main reasons for this research is to enable the use of ideal experimental designs for a DACE based SDP 
solution method when the state variables are highly correlated. The Atlanta ground-level ozone pollution problem 
from Yang et al. (2009) is selected as our case study because ozone state variables at different monitoring stations 
and at different time-periods are highly correlated. In addition, the air quality computer model used in the Atlanta 
ozone problem, called the Atlanta Urban Airshed Model (UAM), is computationally impractical to use directly in 
the SDP implementation. Therefore, more efficient approaches are studied. 
 
Natural ozone that stays in the upper atmosphere is good for our earth. This ozone protects the earth from harmful 
ultraviolet (UV) rays. However, ozone is a harmful pollutant when it is generated at ground-level because ground-
level ozone irritates the human nose and eyes and also damages vegetation. Ground-level ozone is not emitted 
directly but is formed by the chemical reactions of nitrogen oxides (NOx) and volatile organic compounds (VOCs) in 
sunlight. Hence, ozone falls at night but rises during the day. Therefore, in order to control ground-level ozone, it is 
required to control emissions of NOx and VOC. However, Atlanta is “NOx-limited,” which denotes that targeting 
VOC emissions is not effective. Thus, for this case study, we only focus on NOx emissions. To control NOx, we 



 
should have power over the sources of NOx, which are point sources and non-point sources. Power plants and other 
heavy industries are categorized as point sources of NOx emission, while other sources, such as automobiles and 
small industries, are treated as non-point sources. 
 

  
Figure 3. Illustration of the emission sources of the Atlanta ozone problem (Yang et al. 2009) 

 
Figure 3 shows a spatial representation of the Atlanta area using the UAM’s 40 x 40 grid covering a 160 x 160 
kilometer square region of the metropolitan area. Yang et al. (2009) aggregated the 40 x 40 grid into a 5 x 5 grid to 
represent the non-point source emissions for the Atlanta metropolitan area. In this region, there are a total of 102 
point sources. The Ozone level is monitored by four Photochemical Assessment Monitoring Stations (PAMS) 
located at Conyers, S. Dekalb, Tucker, and Yorkville, because only these four stations are monitored. The case they 
studied happened on the dates July 29 – August 1, 1987.   
As to the application of ADP to solve this ozone problem, at time stage t, the known state variables describe the 
status of all the factors at the beginning of SDP stage t that may have an impact on ozone concentrations. A 
sequence of decisions must be made in the four time stages to minimize the total cost to achieve the ozone 
attainment goals. According to the SDP formulation in Eq. (1), state variables (xt) at time t include all historical 
information on ozone concentrations and NOx emissions at various spatial locations across the metropolitan Atlanta 
area. In other words, the initial set of potential state variables for SDP stage t includes information related to ozone 
air chemistry occurring from time periods 0 though t - 1.  Decision variables (ut) are the actions to be chosen in SDP 
stage t to control the amount of emissions at various locations and times over the course of the day in order to 
minimize the reduction of emissions needed to prevent an ozone exceedance. 
 
The objective of the Atlanta ozone pollution problem is to minimize the cost of preventing ozone from exceeding 
the US EPA standard limit, which was 0.12 parts per million in this research (and more recently has been decreased, 



 
see http://www.epa.gov/air/criteria.html). To reduce ozone concentrations, emission controls are applied to specific 
areas and times. Since ozone rises during the daytime when the sun is present, only time periods from 4 a.m. to 7 
p.m. are considered as potential time periods for reducing emissions. For the ozone pollution SDP approach, five 3-
hour time periods are defined: time period 0 is from 4 a.m. to just before 7 a.m, time period 1 is from 7 am to just 
before 10 am, time period 2 is from 10 am to just before 1 pm, time period 3 is from 1 pm to just before 4 pm and 
time period 4 is from 4 p.m. to just before 7 p.m. Time period 0 is an initialization period. The SDP stages are based 
on time periods 1 through 4. 
 
In Yang et al. (2009), the Atlanta UAM model was used as a computer model for generating data on the relevant air 
chemistry. They studied one of the worst cases in ozone history in urban Atlanta, which occurred between July 29th 
and August 1st, 1987, where the episode began on July 31st and peaked on August 1st.  They focused on July 31st 
with the logic that if the first day of the episode could be controlled, then there might be hope for controlling the 
second day.  The UAM includes meteorological conditions and nominal emissions as input for this ozone episode. A 
500-point Latin Hypercube experimental design was used to scale emissions in different grid regions, different point 
sources, and different times, from zero up to the nominal (maximum) level. These runs were input into the UAM, 
and the resulting ozone concentrations across the 40 x 40 UAM’s model grid were collected and then aggregated 
into the 5 x 5 grid. Figure 4 shows the metamodeling process that uses the input emissions from experimental design 
and the ozone output from the UAM to construct statistical models as metamodel surrogates of the UAM.  In 
adaptive DP (ADP), the metamodels are then used to represent the ozone state transition from stage to stage in a 
DACE based SDP implementation. 
 

 Figure 4. Process of developing metamodel (Yang et al. 2009) 
 

Because the development of the state transition function is an integral part of the ADP process, its accuracy of the 
transition function has a direct impact on the achievement of optimal decision making. Therefore, it is important to 
conduct dimension reduction for high-dimensional problems, so as to eliminate the redundancy of states and enable 
better computational efficiency and accuracy.  In this study, the statistical metamodeling approach is studied in the 
presence of a highly correlated state space. In this section, the proposed data mining techniques in section 2, feature 
selection to reduce dimension and feature extraction to handle the multicollinearity, are applied. 
 
3.1 Proposed Data Mining Modeling Approaches 
 
In an evaluation study, 19 modeling approaches are proposed which are shown in Table 1. Most of these approaches 
start with a feature selection procedure to reduce the dimension of the original problem, such as using stepwise 
regression, FDR, or regression trees. Then orthogonalization and dimension reduction are performed using PCA or 
PLS. For example, approach A-3 first uses stepwise regression on the original dataset to select a significant subset of 
state variables, then utilizes PCA on the selected subset to make them orthogonal, and finally conducted stepwise 
regression again, with the respect to the original response on the orthogonal predictors (PCs), to select a final subset 
of significant PCs. However, in Table 1, it is noted that there are two versions of using FDR to conduct the pre-
feature selection: one is FDR with (2) categorized response and the other is FDR with continuous response. For the 
FDR with (2) categorized response, we first employ the median of the response to split the response into two groups 
and then apply the original FDR procedure from Benjamini and Hochberg (1995). In addition, for FDR with 
continuous response, we first apply the ordinary least square to obtain the estimates for all variables, second, the t-
statistics for the estimates are calculated, third, the p-values of all the estimates from t-statistics are obtained, and 
finally, the original FDR procedure from Benjamini and Hochberg (1995) is utilized to select important 
variables by taking advantage of a set of p-values. 
 



 
Table 1. Proposed Data Mining Modeling Approaches 

Approach Pre-Feature Selection Feature Extraction Post-Feature Selection 
A-1 Stepwise Regression   
A-2 Stepwise Regression PCA  
A-3 Stepwise Regression PCA Stepwise Regression 
A-4 Stepwise Regression PLS  
B-1 FDR w / (2)Categorized Response   
B-2 FDR w / (2)Categorized Response PCA  
B-3 FDR w / (2)Categorized Response PCA Stepwise Regression 
B-4 FDR w / (2)Categorized Response PLS  
C-1 FDR w / Continuous Response   
C-2 FDR w / Continuous Response PCA  
C-3 FDR w / Continuous Response PCA Stepwise Regression 
C-4 FDR w / Continuous Response PLS  
D-1 Regression Tree   
D-2 Regression Tree PCA  
D-3 Regression Tree PCA Stepwise Regression 
D-4 Regression Tree PLS  
E-1 - PAM Sites – PCA  Stepwise Regression 
E-2 - PCA  Stepwise Regression 
F - PLS  

 
3.2. Evaluating the metamodel 
 
Each proposed approach is evaluated on the Atlanta ozone data described above (500-Latin Hypercube design points 
with ozone concentrations from the UAM) to predict ozone levels for time stage 1 to time stage 4. Table 2 shows the 
numbers of variables involved in the Atlanta ozone SDP problem after the mining phase in Yang et al. (2009). In 
each stage, the metamodel uses both state and decision variables as initial predictors. It should be noted that the 
original dimension of the SDP state space, prior to the mining phase, is over 500. 
 
For the Atlanta ozone problem, non-point sources of emissions are controlled separately in the 5 x 5 grid areas. 
These comprise of 25 non-point source decision variables. Initially, there are a total of 102 point sources, but after 
the mining phase in Yang et al. (2009), only 15 were statistically significant; thus, the number of point source 
decision variables maintained in this study is 15. In each time stage, there are 40 potential decision variables that the 
decision-maker must control. These decision variables are kept and considered as state variables in the next time 
stage. Past monitored ozone level information from the four PAMS sites, are additional state variables, so the 
number of potential state variables occurring in each time period is 44. For example, in time stage 4, the state 
variables entering this stage include all previous ozone levels at all stations and all previous NOx emissions, i.e., 
ozone levels and emissions from time periods 0, 1, 2, and 3 yield 176 state variables. The 40 decision variables are 
the reductions in NOx emissions for each grid region (5 x 5 = 25) and 15 point sources in time period 4.  
 

Table 2. Number of Predictors for the Atlanta Ozone Problem. 

 State Space (xt) (Past 
Ozone & NOx) 

Decision Space (ut) 
(NOx emission) Total # Predictors 

Stage-1 44 (40 + 4) 40 (5 x 5 + 15) 84 
Stage-2   88 (44 x 2) 40 128 
Stage-3 132 (44 x 3) 40 172 
Stage-4 176 (44 x 4) 40 216 

 



 
In the evaluation study, all of the proposed metamodels, using the initial dataset shown in Table 2, were constructed 
separately by time stage to predict only the ozone level at the Conyers monitoring station, which is circled in Fig. 3, 
Each modeling approach was evaluated using the following performance measures;  
 

(1) Model R2 measures how well the model fits to the data. 
(2) Number of variables left in the model represents ability to reduce dimension. 
(3) Variance Inflation Factor (VIF) indicates degree of multicollinearity. 
(4) Percent of prediction error (%Error) measures model prediction accuracy. 
 

All evaluation results of the proposed metamodeling approach are presented in the following.  
 
3.2.1. Results of various modeling scenarios for the metamodel of Conyers stage 1 
 
The results of 19 modeling scenarios for the metamodel of Conyers at stage 1 are shown in Table 3. From it, it is 
easy to determine that no matter what approaches are used, the metamodel of Conyers at stage 1 has very low R2, 
which denotes that the number of state variables at stage 0 is not enough to represent the whole state space, but more 
state variables are needed. However, feature selection reduces the dimension of variables successfully, and feature 
extraction also helps each approach obtain a very low VIF (the VIF of most approaches is 1), which denotes the state 
variables are orthogonalized to each other. 
 

Table 3. Results of Various Modeling Scenarios for the metamodel of Conyers stage 1 

A-1 Stepwise 0.2646 7 (1.0006 -  1.0137) 1.08925
A-2 Stepwise-PCA 0.2646 7 1 1.08925
A-3 Stepwise-PCA-Stepwise 0.2597 4 1 1.09229A-4 Stepwise-PLS 0.2636 1 1 1.08741B-1 FDR 0.2219 3 (1.003 - 1.008) 1.10580
B-2 FDR_PCA 0.2219 3 1 1.10580
B-3 FDR_PCA_StepwiseReg 0.2208 2 1 1.10352
B-4 FDR_PLS 0.2205 1 1 1.10384C-1 conFDR 0.1894 1 1 1.13779C-2 conFDR_PCA 0.1894 1 1 1.13779C-3 conFDR_PCA_Stepwise 0.1894 1 1 1.13779
C-4 conFDR_PLS 0.1894 1 1 1.13779
D-1 Tree 0.1937 2 1.00061 1.13840D-2 Tree_PCA 0.1937 2 1 1.13840
D-3 Tree_PCA_Stepwise 0.1937 2 1 1.13840
D-4 Tree_PLS 0.1936 1 1 1.13890
E-1 PCA-Stepwise 0.2476 20 1 1.15553
E-2 PAMsSites-PCA-Stepwise 0.2646 7 (1.002 - 1.014) 1.08925F PLS 0.3048 1 1 1.18912

Approaches R2 Vars. left 
in model VIF % Error

  
 
3.2.2. Results of various modeling scenarios for the metamodel of Conyers stage 2 
 
To build up the metamodel of Conyers at stage 2, the state variables from stage 1 are also included in the state space. 
With the help of the metamodel, it is easy to identify that R2 is very high and close to 1 for all approaches and 
percentage of error is low. From Table 4, we can also observe that the variables left in each model are different 
when using different approaches. In Table 5, the results of each criteria are ranked, after removing the approaches 
with VIF >1. From it, it is observed that approach FDR_PLS is able to reduce the dimension the most, 
Stepwise_PCA_stepwise can make the metamodel have lowest error, and PLS is likely to achieve a high R2. 
However, these three methods only perform well under these three criteria. If the four criteria (R2, Vars. left in 
model, VIF, %Error) are considered simultaneously, the general approach would start with stepwise regression to 
conduct the feature selection procedure, followed by PLS. This approach performs better than the other methods 
since, in combination, its R2 is very high (but not the highest), 3 variables are left in the model, VIF is equal to 1 and 



 
the percentage of prediction error is very low (but not the lowest). Moreover, compared to Table 3, the R2 values in 
Table 4 are all more than 0.99, which connotes that the number of state variables at stage 0 and stage 1 are able to 
represent the whole state space.  
 

Table 4. Results of Various Modeling Scenarios for the metamodel of Conyers stage 2 
 

A-1 Stepwise 0.9937 10 (1.009 - 1.260) 0.33001A-2 Stepwise-PCA 0.9937 10 1 0.33001A-3 Stepwise-PCA-Stepwise 0.9937 10 1 0.33001A-4 Stepwise-PLS 0.9934 3 1 0.34289B-1 FDR 0.9894 3 (1.01 - 1.23) 0.45582B-2 FDR_PCA 0.9894 3 1 0.45582B-3 FDR_PCA_Stepwise 0.9894 3 1 0.45582B-4 FDR_PLS 0.9894 1 1 0.45582C-1 conFDR 0.9900 6 ( 1.01302 -  1.24359) 0.45066C-2 conFDR_PCA 0.9900 6 1 0.45066C-3 conFDR_PCA_Stepwise 0.9900 6 1 0.45066C-4 conFDR_PLS 0.9897 3 1 0.45497D-1 Tree 0.9894 4 (1.00064 -  1.23411) 0.45593D-2 Tree_PCA 0.9894 4 1 0.45593
D-3 Tree_PCA_Stepwise 0.9894 4 1 0.45593D-4 Tree_PLS 0.9894 3 1 0.45652E-1 PCA-Stepwise 0.9946 110 1 0.42443E-2 PAMsSites-PCA-Stepwise 0.9935 14 (1.02 - 2.11) 0.34485F PLS 0.9947 10 1 0.43429

Approaches R2 Vars. left 
in model VIF % Error

  Table 5. Ranking Results of the Scenarios for the metamodel of Conyers stage 2 

FDR_PLS 1 Stepwise-PCA-Stepwise 0.33001 PLS 0.9947
Stepwise-PLS 3 Stepwise-PCA 0.33001 PCA-Stepwise 0.9946

FDR_PCA 3 Stepwise-PLS 0.34289 Stepwise-PCA 0.9937FDR_PCA_Stepwise 3 PCA-Stepwise 0.42443 Stepwise-PCA-Stepwise 0.9937
conFDR_PLS 3 PLS 0.43429 Stepwise-PLS 0.9934

Tree_PLS 3 conFDR_PCA 0.45066 conFDR_PCA 0.9900
Tree_PCA 4 conFDR_PCA_Stepwise 0.45066 conFDR_PCA_Stepwise 0.9900

Tree_PCA_Stepwise 4 conFDR_PLS 0.45497 conFDR_PLS 0.9897conFDR_PCA 6 FDR_PCA_Stepwise 0.45582 FDR_PLS 0.9894
conFDR_PCA_Stepwise 6 FDR_PLS 0.45582 Tree_PLS 0.9894

Stepwise-PCA 10 FDR_PCA 0.45582 FDR_PCA 0.9894
Stepwise-PCA-Stepwise 10 Tree_PCA_Stepwise 0.45593 FDR_PCA_Stepwise 0.9894PLS 10 Tree_PCA 0.45593 Tree_PCA 0.9894PCA-Stepwise 110 Tree_PLS 0.45652 Tree_PCA_Stepwise 0.9894

* VIF > 1 are removed.
* Ordered by better to worse

Approaches* Vars. left 
in model Approaches* % Error Approaches* R2

  
3.2.3. Results of various modeling scenarios for the metamodel of Conyers stage 3 
In Conyers stage 3, the state variables used in stage 0, 1 and 2 are also included in the state space. By applying the 
same procedure used in stage 2, after removing the approaches with VIF>1, the results are ordered from better to 
worse for each criteria, except VIF, and shown in Table 6. It is interesting to find out that the FDR_PLS method also 
performs well in the reduction of dimension; Stepwise-PCA can generate the lowest percentage of prediction error; 
and PLS can generate the highest R2. As the same in stage 2, the approach Stepwise_PLS performs better in general 
than the other methods. 
 

Table 6. Ranking Results of the Scenarios for the metamodel of Conyers stage 3 



 

FDR_PLS 1 Stepwise-PCA 0.51086 PLS 0.9879
conFDR_PLS 2 Stepwise-PCA-Stepwise 0.51669 PCA-Stepwise 0.9871

Tree_PLS 2 Stepwise-PLS 0.52170 Stepwise-PCA 0.9847Stepwise-PLS 3 PCA-Stepwise 0.71002 Stepwise-PLS 0.9846
FDR_PCA 3 PLS 0.71337 Stepwise-PCA-Stepwise 0.9846

FDR_PCA_Stepwise 3 conFDR_PLS 0.72316 conFDR_PCA 0.9727
Tree_PCA_Stepwise 3 conFDR_PCA 0.72409 conFDR_PCA_Stepwise 0.9727

Tree_PCA 4 conFDR_PCA_Stepwise 0.72409 conFDR_PLS 0.9727conFDR_PCA 7 Tree_PCA_Stepwise 0.74759 FDR_PCA 0.9659
conFDR_PCA_Stepwise 7 FDR_PCA 0.75258 FDR_PCA_Stepwise 0.9659

PLS 11 FDR_PCA_Stepwise 0.75258 Tree_PCA 0.9659
Stepwise-PCA-Stepwise 20 Tree_PCA 0.75327 Tree_PCA_Stepwise 0.9659Stepwise-PCA 21 Tree_PLS 0.75677 Tree_PLS 0.9659PCA-Stepwise 135 FDR_PLS 0.75727 FDR_PLS 0.9652

* VIF > 1 are removed.
* Ordered by better to worse

Approaches* Vars. left 
in model Approaches* % Error Approaches* R2

  3.2.4. Results of various modeling scenarios for the metamodel of Conyers stage 4 
During stage 4, there are 176 state variables including all previous ozone levels at all stations and all previous NOx emissions with 40 decision variables. Therefore, there are 216 predictor variables in total. By making use of the 
above methods, after eliminating the approaches with VIF>1 and ranking the rest, it is determined from Table 7 that 
conFDR_PLS performs best in reducing the dimensions with 4 variables left. In this case, FDR_PLS also can be 
ranked as the second best because it can decrease dimensions to 7. As same as in section 3.2.2 and 3.2.3, 
Stepwise_PCA approach has the lowest percentage of prediction error and PLS method has the highest R2. In 
general, Stepwise_PLS approach performs better than the other methods. 

 
Table 7. Ranking Results of the Scenarios for the metamodel of Conyers stage 4 (Ariyajunya et al. 2010) 

conFDR_PLS 4 Stepwise-PCA 0.76287 PLS 0.9877
FDR_PLS 7 Stepwise-PLS 0.76289 PCA-Stepwise 0.9864

PLS 7 Stepwise-PCA-Stepwise 0.76405 Stepwise-PCA 0.9841
FDR_PCA_Stepwise 8 Tree_PCA 1.03436 Stepwise-PCA-Stepwise 0.9841

Stepwise-PLS 9 Tree_PLS 1.03437 Stepwise-PLS 0.9841
FDR_PCA 9 PCA-Stepwise 1.03480 Tree_PCA 0.9676

conFDR_PCA 9 Tree_PCA_Stepwise 1.03789 Tree_PLS 0.9676
conFDR_PCA_Stepwise 9 FDR_PCA_Stepwise 1.08940 Tree_PCA_Stepwise 0.9675

Tree_PLS 9 FDR_PLS 1.09064 FDR_PCA 0.9628
Tree_PCA_Stepwise 11 FDR_PCA 1.09164 FDR_PLS 0.9627

Tree_PCA 12 PLS 1.09891 FDR_PCA_Stepwise 0.9627
Stepwise-PCA-Stepwise 25 conFDR_PCA 1.25593 conFDR_PCA 0.9548

Stepwise-PCA 26 conFDR_PCA_Stepwise 1.25593 conFDR_PCA_Stepwise 0.9548
PCA-Stepwise 167 conFDR_PLS 1.25641 conFDR_PLS 0.9548

* VIF > 1 are removed.
* Ordered by better to worse

Approaches* Vars. left 
in model Approaches* % Error Approaches* R2

  
After conducting these experiments, we can conclude that the number of state variables is very important. If the 
quantity of state variables is not sufficient, R2 will be very low, as shown in Table 3. When the state variables are 
able to represent the whole state space accurately, as the results shown in 3.2.2, 3.2.3 and 3.2.4, R2 is very high. In 
addition, based on the four criteria, FDR_PLS only performs well in the dimension reduction, Stepwise_PCA only 
performs well in achieving the lowest percentage of prediction error and PLS can only reach the highest R2. 
However, in practice, an approach that can satisfy every criterion is expected, which is identified in the 
Stepwise_PLS approach. Thus, in order to acquire the metamodel of Conyers at stage 2, 3 and 4, Stepwise_PLS 
approach is recommended.  
 



 
 4. Conclusions  
In conclusion, this paper addresses the multicollinearity issue in DP state space using DM techniques (PCA and 
PLS). Moreover, these DM techniques also achieve significant reduction in dimensions, as shown from Table 3 to 
Table 8. Furthermore, by applying different combinations of DM techniques, it is identified that not all approaches 
behave well and some combinations only perform well under certain criteria. The results demonstrate that 
approaches starting with stepwise regression have higher R2 and lower prediction error, but they are not the best in 
term of dimension reduction and VIF value. The combination of FDR and regression trees is very good for 
dimension reduction, but they are less accurate. The approaches that incorporate feature extraction methods, 
including PCA and PLS, are able to handle multicollinearity indicated by VIFs equal to 1, which denotes that the 
method provides an uncorrelated state space. Therefore, before employing DM tools into DP problems, it is 
necessary to select the best one among all approaches. In this study, the Stepwise_PLS method can achieve all our 
goals to enable a more computationally-efficient DP solution. Based on this preliminary experiment, it is necessary 
to apply DM techniques to DP metamodel building procedures, including the metamodel of unknown transition 
function, in future research. 
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