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We study the routing of Unmanned Aerial Vehicles (UAVs) in the presence of the risk of enemy threats. The main 

goal is to find optimal routes that consider targets visited, threat exposure, and travel time. We formulate a mixed integer 

linear program that maximizes the total number of visited targets for multiple UAVs, while limiting both the route travel time 

for each UAV and the total threat exposure level for all UAVs to predetermined constant parameters. The formulation 

considers a set covering vehicle routing problem where the risk of threat exposure and the travel time are modeled for each 

edge in a vehicle routing network. To reduce threat exposure, waypoints are generated within the network so routes can avoid 

high-risk edges. We propose several waypoint generation methods. Using the candidate waypoints, the UAV routes are 

optimized with branch-and-cut-and-price (BCP) methodology. Minimum dependent set constraints and a simple path 

heuristic are used to improve the computational efficiency of the BCP algorithm. Computational results are presented, which 

show that the BCP algorithm performs best when the number of waypoints generated a priori is about half the number of 

targets.  

Key words: routing; UAVs with threat risk; branch and cut and price; minimum dependent set constraints; waypoint 

generation 

1. INTRODUCTION 

The importance of Unmanned Aerial Vehicles (UAVs) has increased recently in both military and civilian 

operations. An important advantage of using UAVs, especially in dangerous activities, is not jeopardizing the lives of 

humans, since there is no pilot or crew on board. A UAV can be used for various purposes and reach places and areas where 

human survival is risky or impossible. For example, in military applications, UAVs can be used in reconnaissance missions, 

spying, attacking targets by delivering ordinance and dropping bombs on them, or even search and rescue missions on the 

battlefield. While in civilian applications, UAVs can be used to monitor the environment (e.g. gathering information in 

inclement weather), monitor traffic congestion, monitor oil pipelines, and in disaster relief operations.  

The development of UAVs is evolving, and there has been an increased interest to make UAVs operate more 

autonomously. When UAVs operate fully autonomously, they can plan their own paths to move from one location to another 

and avoid obstacles or threats encountered on their routes. However, if the UAV is not operating autonomously, then 

pre-mission path planning is considered a very crucial step for routing the UAV. This is because usually UAV routing 

decisions are made before the mission begins.  
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A good mission path plan should solve an optimization problem that satisfies the mission objectives and restrictions. 

A UAV should complete its mission by traveling from where it is initially located and proceed as planned until reaching its 

desired final destination. Mission objectives can include, for example, planning a mission with least distance traveled, which 

eventually leads to less fuel consumed, and ultimately making sure the mission can be completed. Similarly, minimizing time 

to complete the mission is very important if the mission is time sensitive. In military operations, minimizing the level of 

exposure to enemy threats or avoiding them entirely is of utmost importance for the planner and crucial for the UAV to 

complete its mission safely and successfully.  

In a military environment, a UAV could be detected by an enemy and become vulnerable to being shot down when 

traveling in threatened areas. Thus, the entire mission can be disrupted or lost. In this research, the UAV exposure to enemy 

threats is considered a major risk factor, which requires a crucial pre-mission plan. Therefore, routes, which not only 

optimize the number of visited targets but also limit the threat level of exposure and the travel time, must be designed 

efficiently and effectively. An acceptable level of threat is dependent on the planner’s preference or protocols. As the 

accepted level of exposure to threats decreases, the UAV will try to avoid flying directly over threats and thereby travel 

farther away from them in order to reduce the threat exposure level. Thus, the UAV will travel a longer route. However, as 

the accepted level of exposure to threats increases, the UAV will travel a shorter, more direct route.  

1.1 Research Objective 

The main goal for this research is to find optimal routes that consider the targets visited, threat exposure, and travel 

time. We formulate a mixed integer linear program that maximizes the total number of visited targets for multiple UAVs, 

while limiting both the route travel time for each UAV and the total threat level for all UAVs to predetermined constant 

parameters. Furthermore, we generate waypoints that a UAV can visit while traveling from one target to another in order to 

reduce the threat level on high-threat level edges. When the maximum allowable level of threat decreases, the UAVs visit 

more waypoints, and conversely, as it increases, the UAVs are more likely to visit fewer waypoints.  

Consider the following process. The pre-mission path planner receives information about the area of operation that 

includes the locations of a set of available UAVs, a set of stationary targets that need to be visited, and a set of stationary 

threat points. Figure 1-1 (left) shows a depot location, represented by a black circle around the center, targets, represented by 

green circles, and threat points, represented by red triangles. Then, the pre-mission path planner generates a set of waypoints, 

represented by blue diamonds as shown in Figure 1-1 (middle), that a UAV can visit while traveling from target to target in 

order to reduce the total threat level. Finally, the pre-mission path planner needs to accept a certain level of threat. Depending 
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Figure 1-1 An Area of Operation Containing Targets and Threat Points (Left), Waypoints Generated and Added to the Area 

of Operation (Middle), and an Optimized Route (Right) 

on the accepted level of threat, the pre-mission path planner obtains optimized routes. Figure 1-1 (right) shows an optimized 

route in which a single UAV originates and terminates at a depot location, visits a set of targets, and tries to avoid threat 

points along its route by visiting waypoints in order to maintain the pre-accepted level of threat. 

2. LITERATURE REVIEW AND CONTRIBUTIONS 

2.1 Vehicle Routing Problem (VRP) 

UAV routing is considered a vehicle routing problem (VRP), which is a popular combinatorial optimization problem 

that is extensively used in the fields of distribution and transportation. The VRP is widely believed to be first introduced in 

Dantzig and Ramser [8] in 1959. The VRP is considered a generalization of the traveling salesman problem (TSP). The 

VRP’s main objective is to determine a set of optimized cost routes for a group of homogenous vehicles, which originate and 

terminate at a single or multiple depots, to deliver service or goods to a given number of customers. Each customer must be 

visited at least once by at least one vehicle. In addition, vehicle capacity must not be exceeded by the total demand of 

customers in the path.  

In general, the VRP is usually defined on a network graph 𝐺 = (𝑉,𝐸), where 𝑉 = {𝑣! , 𝑣!, . . . , 𝑣!} is a set of all 

vertices, nodes. Vertex 𝑣! is a common depot, source. The rest of the vertices are customers or targets. 𝐸 = {𝑒!" = (𝑣! , 𝑣!) ∶

𝑖 ≠  𝑗, 𝑣! , 𝑣! ∈ 𝑉} is a set of all edges. There is an associated nonnegative cost, distance, 𝑐!", for each edge 𝑒!" when 

travelling from target 𝑣! to target 𝑣!. The VRP can be formulated as an integer set-covering problem as follows  

min  𝑐!𝑥                                                                                                          2.1  

𝑠. 𝑡.   𝐴𝑥 ≥ 1,                                                                                                    (2.2) 

  𝑥 ∈ 0, 1 !,                                                                                                      (2.3) 

The cost 𝑐 is a constant 𝑛×1 vector. The decision variable 𝑥 represents a binary 𝑛×1 vector that indicates which routes 

are selected in the solution. The constant 1 represents an 𝑚×1 vector of ones. In the constant 0-1 𝑚×𝑛 matrix 𝐴, each 

row represents a customer or target, while each column represents a route, and an entry 𝑎!" equals to 1 if customer 𝑖 is 

serviced by route 𝑗, while it is 0 otherwise. In our model, we let the right hand side of the classical VRP’s set-covering 

constraints in (2.2) be a binary variable and is only one when a target is visited. The VRP is considered an NP-hard problem 

in combinatorial optimization [7]. This means that as the size of the problem increases, its computational complexity 

exponentially increases. Even with medium-sized VRP problem data, a large number of variables can be used. Therefore, a 

column generation algorithm is traditionally used to solve these type of problems. 

VRP survey papers in the literature include Desrochers et al. [3], Laporte and Nobert [4], Toth and Vigo [5], 

Desrochers et al. [6], and Cordeau et al. [7]. Many papers in the literature have proposed solution methods for solving the 

capacitated VRP, including Clarke and Wright [9], Laporte et al. [14], Balinski and Quandt [15], Gendreau et al. [16], and 

Osman [17]. Other papers in the literature, such as Solomon [10], Kolen et al. [11], Desrochers et al. [12],and Gambardella et 

al. [13], have proposed solution methods for solving the VRP in which each customer is required to be visited within a time 

window. 
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2.2 Unmanned Aerial Vehicle (UAV) Routing in the Presence of Threats 

Many papers in the literature have studied UAV mission path planning in a hostile area of operation and tried to 

assess the risk associated with the routes that the UAV can take. The risk can be caused by sources of threats or obstacles 

such as the enemy’s surface-to-air missiles, radar detection zones, no-fly zones, terrain, or other vehicles that the UAV could 

collide with on its route. Although threats may be stationary or moving, almost all papers have assumed stationary threats [1, 

18, 19, 23-33, 35-40]. However, Jun and D'Andrea [21, 34], Rathbun et al. [2], and Schouwenaars et al. [20] allowed for 

moving threats. Zengin and Dogan [32] considered moving targets, but other literature has assumed targets that are 

stationary. In our research, we use stationary threat points and stationary targets.  

Most research has used a single UAV and a single target in the presence of threats [2, 18-20, 23-27, 29, 32, 34-38, 

40]. In addition, a few papers used a single UAV and multiple targets [28] or multiple UAVs and a single target [20, 34, 39]. 

However, a very small number of papers in the literature studied multiple UAVs and multiple targets [1, 22, 30, 31]. In our 

research, we consider the case with multiple UAVs that visit multiple targets.  

Different numbers of threats, obstacles, and no fly zones were used in the literature. Rathbun et al. [2] considered 

two obstacles. Wang et al. [19] used a single threat and three obstacles, which are mountains. Xinzeng et al. [25] assumed 

five threat zones. Bortoff [26] designated ten radar sites as threat zones. Dogan [27] and [28] used seventeen threat zones. 

Zengin and Dogan [32] assumed seventeen threat areas and three no fly zones. Blackmore et al. [29] considered three 

obstacles. Beard et al. [30] used thirty-six threat points that represent radar locations. Maddula et al. [31] considered forty 

threat points that represented radars sites. Pelosi et al. [35] assumed two radar areas. Helgason et al. [36] used five obstacles. 

Zabarankin et al. [37] presented algorithms for a single radar and for two radars. Carlyle et al. [39] presented two different 

case studies. One considered fifteen surface-to-air missiles, and the other considered four of them. Pfeiffer et al. [40] assumed 

three threat zones of the same shape in one example, while two threat zones of different shapes were in another example. In 

our research, we consider two examples, one with 10 targets and 30 threat points and another example with 20 targets and 60 

threat points. 

Many research papers modeled threat zones, obstacles, or no fly areas in two- or three-dimensional areas of 

operation and formulated their problems accordingly. Richards et al. [1], Schouwenaars et al. [20], and Ruiz et al. [24] 

defined obstacles as rectangles. Xinzeng et al. [25] modeled each threat zone as two-nested circles. The inner circle 

represents the no-fly zone, and the outer one represents the can-fly zone. Dogan [27] and [28] characterized each source of 

threat position and area by a two-dimensional Gaussian probability density function. In addition to threat zones, Zengin and 

Dogan in [32] added no-fly areas with two-dimensional uniform distributions. Beard et al. [30] and Maddula et al. [31] 

constructed polygons around threat points, which represent radar sites. De Filippis et al. [33] divided an area of operation 

containing obstacles, mountains, into cells. Jun and D’Andrea [34] divided an area of operation, involving moving threats, 

into hexagonal cells. Helgason et al. [36] modeled threat areas as circles and polygons. Carlyle et al. [39] modeled threat 

zones as circles, which represent surface-to-air missiles that are guided by radars. Pfeiffer et al. [40] modeled threat zones as 

nested polygons and nested circles. Some papers used three-dimensional models in order to incorporate low or high altitude 

UAV flight. In Foo et al. [18], a three-dimensional virtual path planner that can aid the human operator to choose alternative 

routes was introduced. The threat zone was defined as a sphere. Wang et al. [19] proposed a three-dimensional path planning 
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model and modeled the threat area as a sphere as well. Pelosi et al. [35] presented a three-dimensional model that uses UAV 

capability to fly in different altitude ranges. McManus et al. [38] introduced a mission and pilot planner that used 

three-dimensional graphics to enable the UAV with onboard situational awareness. In our research, we model threats as 

points that represent radars that are located at these threat points in two-dimensional areas of operation. 

Many approaches and methods were considered to find optimized routes for UAVs in the presence of threats. The 

methods can be classified as graph based approaches, probabilistic approaches, and deterministic approaches. A VORONOI 

diagram is a very popular graph approach that uses a Delaunay triangulation procedure in order to construct a set of edges 

around known threat point locations, which can form potential paths from a starting point to a target location [23, 26, 30, 31]. 

Other graph approaches can be found in De Filippis et al. [33], Jun and D’Andrea [34], Helgasonet al. [36], McManus et al. 

[38], and Carlyle et al. [39]. Probabilistic approaches to obtain optimal paths for UAVs in the presence of threats have also 

been considered in the literature. The most common probabilistic method used is building a probability map of the area of 

operation [21, 22, 27, 28, 32-34]. Other probabilistic approaches include Rathbun et al. [2], Xinzeng et al. [25], Blackmore et 

al. [29], Pelosi et al. [35], Carlyle et al. [39], and Pfeiffer et al. [40]. Other research has considered deterministic approaches 

to obtain optimal paths for UAVs in the presence of threats [1, 18-20, 23, 36-38]. Ruiz et al. [24], Bortoff [26], Beard et al. 

[30], and Maddula et al. [31] assumed that the threat risk function is proportional to the Radar Cross Section (RCS) of the 

UAV and reciprocal to the fourth power of the distance from the UAV to the radar.   

2.3 Contributions 

In this section, we describe our contributions based on our review of the existing literature with respect to routing 

UAVs in a hostile area of operation. A very small number of papers in the literature studied multiple UAVs and multiple 

targets. In Krishna et al. [22], each UAV was assigned to exactly one target. In Richards et al. [1], multiple targets were 

assigned to a group of UAVs with time dependency and logical assignments constraints. In Beard et al. [30], a single target 

was assigned to a team of UAVs, where some targets can be unassigned, and the time over each target that is assigned to a 

team of UAVs was estimated in order to coordinate simultaneous arrivals for attacking. In Maddula et al. [31], targets were 

assigned to UAVs and divided equally among them. In our research, we consider multiple UAVs to visit multiple targets with 

no restriction on how many targets a UAV can visit or in what order.  

Many methods and approaches were used in the literature to solve the UAV routing problem in the presence of 

threats. However, none of them considered solving the UAV routing problem in the presence of threats with a 

branch-and-cut-and-price methodology with a simple path heuristic. 

Some papers in the literature proposed algorithms that are suitable for real-time applications [1, 2, 21, 24, 26-29, 34, 

38]. In this research, a pre-mission planner provides only a schedule, which can be used to initiate the mission. However, 

after the mission starts, and if it is not followed as planned, the schedule can be adjusted with the available online/onboard 

application. 

Very few papers considered using a threat level based on all threats in the area of operation such as Beard et al. [30] 

and Maddula et al. [31]. Similarly, in our case, the threat exposure level from all threat points in the area of operation is 

considered. However, their approaches are different from ours. Both constructed a VORONOI diagram, a set of edges around 

the threat points, and both used the K-best shortest paths algorithm as a search tool. We do not construct a VORONOI 



6 
 

diagram, and we optimize routes with BCP methodology using a simple path heuristic. In addition, Beard et al. [30] 

minimized threat cost and/or traveling distance and assigned a target to a team of UAVs in order to coordinate simultaneous 

arrivals for attacking, while Maddula et al. [31] minimized the total distance traveled for all UAVs, limited the threat for each 

UAV under a threshold, and divided targets equally among the UAVs. In our research, we maximize the total number of 

visited targets, while keeping the route travel time for a UAV and the total threat level for all UAVs under constant 

parameters. Furthermore, we generate waypoints based on threat and target locations. Instead of traveling over high-risk 

edges, the UAV can visit these waypoints when traveling from a target to another in order to reduce the threat level. 

The remainder of this paper is structured as follows. Section 3 describes the model and algorithmic approaches, 

which include new waypoint generation methods and a new simple path heuristic. Although these models and approaches are 

developed for UAV routing in a hostile area, they could be used for other vehicle routing problems in which the vehicles 

must avoid certain obstacles. Section 4 provides computational results, and we discuss conclusions and future research in 

Section 5. 

3. MODELS AND APPROACHES 

3.1 Model Assumptions 

In this research, we make the following assumptions: 

1. UAV exposure to enemy threats is the only major factor of risk. 

2. Threats are modeled as stationary threat points in the area of operation. 

3. The threat level is based on the UAV’s exposure to a radar that is at the threat point location. 

4. The positions of the threats are known, so the threat level can be estimated a priori. 

5. The ground speeds that a UAV will fly between two targets or waypoints is known a priori. 

6. UAV routes originate and terminate at the same depot (or base). 

3.2 Problem Formulation 

We formulate a mixed integer linear program to solve the Unmanned Aerial Vehicle Routing Problem (UAVRP). 

The formulation is based on the VRP with set covering in (2.1)-(2.3). In UAVRP, we find optimal routes that maximize the 

total number of visited targets. We maintain the route travel time for a UAV and the total threat level for all UAVs to  

predetermined constant parameters. Furthermore, we generate waypoints that UAVs may visit when traveling from a target to 

another in order to reduce the threat level a priori. 

Let 𝑈 represent a set of UAV types located at the same base and need to be scheduled. Let 𝑛! be the total number 

of UAVs of type 𝑢 ∈ 𝑈. Let 𝐹! represents a set of all possible routes of a UAV of type 𝑢 in the set 𝑈. Let the set 𝐹 be 

the set of all possible routes for all UAVs in the set 𝑈; that is, 𝐹 = 𝐹! !∈! . Let 𝐾 denote the set of all targets. Let 𝑡!" be 

the level of exposure to threats for a UAV of type 𝑢 ∈  𝑈 in a route 𝑓 ∈ 𝐹!. Let 𝑎!"# be a binary constant that is equal to 

one when a target 𝑘 ∈  𝐾 is visited by a UAV of type 𝑢 ∈  𝑈 in a route 𝑓 ∈ 𝐹!. The binary decision variable 𝑥!" = 1 

when a UAV of type 𝑢 ∈ 𝑈 services a route 𝑓 ∈ 𝐹!. For each target 𝑘 ∈ 𝐾, let 𝐵! be the benefit, or reward for visiting 

target 𝑘, and let binary variable 𝑥! indicate whether target 𝑘 ∈ 𝐾 is visited. Although in our computational experiments 

we treat all targets as equally important, we can simply make targets have different priorities. The UAVRP formulation is as 

follows 
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max 𝐵!𝑥!
!∈!

                                                                                                     (3.1) 

𝑠. 𝑡. 𝑎!"#
!∈!!

 𝑥!"  ≥  𝑥!                                 ∀𝑘 ∈  𝐾                          (3.2)
!∈!

 

𝑥!"
!∈!!

   ≤  𝑛!                                 ∀𝑢 ∈  𝑈                          (3.3) 

𝑡!"
!∈!!

 𝑥!"  ≤  𝑑                                                                           
!∈!

(3.4) 

                                                               𝑥!" ∈ 0,1                                   ∀ 𝑢 ∈ 𝑈, 𝑓 ∈ 𝐹!               (3.5) 

                                                           𝑥!  ∈ 0,1                                         ∀ 𝑘 ∈ 𝐾                       (3.6) 

The cost objective function in (3.1) maximizes the total number of visited targets for all UAVs. The right hand side of the 

set-covering constraints in (3.2) is only one when a target is visited. The constraints in (3.3) imply that at most 𝑛! routes can 

be assigned to each UAV of type 𝑢 ∈ 𝑈. In constraint (3.4), the positive constant parameter, 𝑑, limits the total threat level. 

Although constraint set (3.6) ensures that the target variables are binary, these variables can be relaxed to be continuous.                  

3.3 Modeling the Risk of Threat 

The threat level is calculated deterministically using an approximation proposed by Beard et al. [30]. In addition to 

the set of targets 𝐾, let 𝑇 be the set of all threats in the area of operation, and let 𝑊 be the set of all waypoints. The 

network for the UAV routing is given by 𝐺(𝑉,𝐸), where the set of nodes 𝑉 = 𝐾 ∪𝑊 ∪ {𝑣!}, and 𝐸 is the complete set of 

directed edges between pairs of nodes in 𝑉×𝑉. The threat for traveling an edge 𝑒 ∈ 𝐸 is calculated by assuming that the 

UAV Radar Cross Sectional (RCS) is uniform in all directions and is proportional to the edge length and inversely 

proportional to the distance from the UAV to the threat to the fourth power. Instead of calculating the integration along each 

edge, an approximation is used to calculate the threat at three points along each edge. Namely, at points along the edge that 

are 1/6, 1/2, and 5/6 of the edge length. Beard et al. [30] claimed that the approximation yields errors of less than two percent 

for nearby threats and in the order of a tenth of a percent for far away threats. In our implementation, the level of the risk of 

exposure to threats is calculated from all 𝑇 sources of threats in the area of operation for each edge. For each edge 𝑒 ∈ 𝐸, 

let 𝜏! be the length of the edge, and let 𝑑!/!,!!  ,𝑑!/!,!!  ,𝑑!/!,!! be the distances from the selected three points on the edge 

𝑒 to each threat point 𝑝 ∈ 𝑇, respectively. The threat level,  𝑡!, for a UAV of type 𝑢 ∈ 𝑈 for traveling an edge 𝑒 ∈  𝐸 is 

calculated as follows  

 𝑡! =
𝜏!
3

1
𝑑! !,!!

! +
1

𝑑! !,!!
! +

1
𝑑! !,!!

!
!∈!

                                    ∀𝑒 ∈ 𝐸        (3.7) 

The threat level for a UAV of type 𝑢 ∈ 𝑈 for traveling in a route 𝑓 ∈ 𝐹! can be calculated as an additive sum of the threat 

level for the individual edges in the route as  

𝑡!" = 𝑡!
!∈!

                                                 ∀𝑓 ∈ 𝐹!, 𝑢 ∈ 𝑈       (3.8) 
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3.4 Waypoint Generation Methods 

We generate waypoints that a UAV may use in order to reduce the level of threat exposure by avoiding traveling 

over high-risk edges. Consider a high-threat level edge from target 𝑣! to target 𝑣!. Instead of traveling the edge, the UAV 

may travel from target 𝑣! to a waypoint 𝑤 and then proceed to target 𝑣! in order to reduce the threat level. Since a UAV 

must maintain its preplanned schedule, the planner’s preference or protocol must accept a certain threat exposure level. In the 

formulation, when the accepted level of threat exposure decreases, the UAV will use more waypoints and travel longer 

routes, which increases the time to complete the mission. However, as the accepted level of threat exposure increases, the 

UAV will use fewer waypoints and thus, travel a shorter route, which results in a shorter mission time. In UAVRP, the 

waypoints generated before optimizing UAV routes substantially affect the total number of visited targets. Therefore, several 

waypoint generation methods are investigated.  

3.4.1 Maximin 

The Maximin method generates waypoints using the maximin distance design of experiments criterion in a 

two-dimensional grid representing the area of operation. The maximin distance design was first studied and introduced by 

Johnson et al. [45]. The experimental region is a two-dimensional grid representing the area of operation and contains the 

given set of targets and threat points. Based on the lowest and highest ranges of these target and threat points, and for each 

iteration of the maximin criterion, a huge set (typically ten-thousand) of evenly-spaced grid points is generated, representing 

candidate waypoints. The Euclidean distance matrix from each candidate waypoint to each target, threat point, and previously 

selected waypoint is calculated. The design selects the candidate waypoint that maximizes the smallest distance between the 

candidate waypoint and the targets, threat points, and previously selected waypoint in the two-dimensional grid. The process 

is repeated until the desired number of waypoints are selected. The resulting generated waypoints tend to be uniformly 

scattered in the experimental region based on this design. Figure 3-1 shows problem instances that include 5 UAVs, 10 

targets, 30 threat points, and 55 waypoints generated using the Maximin method. 

 
Figure 0-1 10 targets, 30 threat points, and 55 waypoints (Maximin) 

3.4.2 Rectangular Threat Reduction 

The Rectangular Threat Reduction method generates waypoints that reduce threat. In this method, a rectangle is 

placed between any two targets including the base. The total number of such rectangles is ! !!
! . Then, a set of 100 grid 
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points is generated within a rectangle 𝑞 formed by any pair of targets (or the base) (𝑘! , 𝑘!) as the corners. Next, for target 

𝑘!, target 𝑘!, and each grid point 𝑔 in rectangle 𝑞, the threat levels, 𝑡!!,!!
! , 𝑡!!,!

! , and 𝑡!,!!
! , (see Figure 3-2), are calculated 

from all the threats in the area of operation based on equation 3.7. Then, the threat reduction for each grid point 𝑔 in a 

rectangle 𝑞 is calculated as follows 

𝑇ℎ𝑟𝑒𝑎𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑔, 𝑞 =  𝑡!!,!!
! − 𝑡!!,!

! + 𝑡!,!!
!                                          (3.9) 

For each pair (𝑘! , 𝑘!), a grid point 𝑔 with the highest threat reduction is added to the area of operation. Figure 3-3 shows 

problem instances that include 5 UAVs, 10 targets, 30 threat points, and 55 waypoints generated using the Rectangular 

Threat Reduction method. 

 
        Figure 0-2 Threat Reduction for Grid Point 𝑔 in a Rectangle 𝑞 

 
Figure 0-3 10 targets, 30 threats, and 55 waypoints (Rectangular Threat Reduction) 

3.4.3 Maximin Reduced 

The Maximin method, described in section 3.4.1, generates unimportant waypoints, which are unlikely to be visited 

by a UAV. Consequently, the Maximin Reduced method eliminates likely unimportant waypoints. After the Maximin method 

is done, a rectangle is placed between any two targets including the base as described in Section 3.4.2. Then, any waypoint 

that does not lie in any one of the rectangles is removed. For example, recall that Figure 3-1 shows problem instances that 

include 10 targets, 30 threat points, and 55 waypoints generated using Maximin method. After applying the Maximin Reduced 

method to this problem instance, the number of waypoints in the area of operation decreases from 55 waypoints down to only 

29 waypoints as shown in Figure 3-4. 



10 
 

 
Figure 0-4 10 targets, 30 threats, and 29 waypoints (Maximin Reduced) 

3.4.4 Maximin Threat Reduction 

The Maximin Threat Reduction method removes waypoints from the Maximin Reduced method based upon their 

threat reduction. Specifically, after an initial set of waypoints is determined from the Maximin Reduced method, the total 

threat reduction for each waypoint is calculated based on the set of rectangles where the waypoint lies. This is done by 

placing a rectangle, 𝑞, between any two targets in the area of operation including the base as described in Section 3.4.2. 

Then, the threat reduction for each waypoint 𝑤 inside a rectangle 𝑞 is calculated based on equation 3.7. Next, for each of 

remaining waypoint 𝑤 in the area of operation, the set of rectangles 𝑁!
!  in which it lies is determined. Then, the total threat 

reduction for each waypoint 𝑤 based on the set of rectangles, 𝑁!
! , that the waypoint lies in is calculated based on the 

following equation 

𝑇𝑜𝑡𝑎𝑙 𝑇ℎ𝑟𝑒𝑎𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑤 = 𝑇ℎ𝑟𝑒𝑎𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑤, 𝑞
!∈!!

!

                             (3.10) 

An example of the total threat reduction for one waypoint lying in two rectangles is shown in Figure 3-5.  

 
Figure 0-5 Total Threat Reduction of a Waypoint Lying in Two Rectangles 
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Then, the waypoints are sorted from highest to lowest based on their total threat reduction. Finally, depending on the 

planner’s preference for the number of waypoints, the best set of waypoint in terms of highest total threat reduction are 

selected. 

3.5 Branch-and-Cut-and-Price Methodology  

Even in a small-sized VRP, a large number of possible routes exist. The branch-and-cut-and price (BCP) 

methodology is an efficient method when dealing with problems with a large number of variables. In BCP, a restricted master 

problem (RMP) considers only a subset of all the routes 𝐹 ⊂ 𝐹. BCP methodology is used as a platform to solve our 

problem. To ensure we obtain an integer solution, our problem is solved within a branch-and-bound tree. First, the linear 

programing relaxation of the problem is solved within each node of the tree to obtain a solution 𝑥∗. Then, the cut step is 

performed. Traditionally, cuts are added in order to tighten the relaxation so that the feasible region of the sub problem is 

nearly approximated by the relaxed set. In this implementation, the cut step generates valid inequalities called the minimum 

dependent set (MDS) constraints, 𝐶 ⊂ 𝐷, and adds them to the RMP in order to cut a fractional solution 𝑥∗ and encourage 

integrality. Afterwards, in the pricing step, new routes, variables, with negative reduced costs are generated using a dynamic 

column generation algorithm and added to the RMP as needed. Finally, bounds are updated and branching is carried out 

using a variant of Ryan and Foster [43] branching logic. The BCP steps are repeated, and when there is no route needed to be 

added to the RMP, the steps are terminated, and an optimal integer solution 𝑥∗ is found. 

3.5.1 Minimum Dependent Set (MDS) Constraints 

In integer programming, the constraint  𝑡!"!∈!!  𝑥!" ≤ 𝑑!∈! , in (3.4), is considered a binary knapsack 

constraint, since its coefficients are nonnegative constants. From (3.4), a set of valid inequality constraints that can cut off 

some fractional solutions and encourage integrality can be derived. The set of valid inequality constraints are called minimum 

dependent sets (MDS) and was reported in Nemhauser and Wolsey [41]. According to Kellerer et al. [46], the minimal 

dependent sets are also known as minimal cover inequalities, and defining facets for the knapsack polytope were originally 

studied in 1975 [47-49]. Consider the following feasible set for the binary knapsack problem  

𝑆 = 𝑥 ∈ 0,1 ! |  𝑡!𝑥!
!∈!

≤ 𝑑                                                                  (3.11) 

where,  𝐹 = {1,2,… , 𝑛} , 𝑡! ∈ ℝ!
! , ∀𝑗 ∈ 𝐹 , and 𝑑 ∈ ℝ!

! . Assume that the coefficients 𝑡! ∈ ℝ!
! , ∀𝑗 ∈ 𝐹 , are ordered 

monotonically such that 𝑡! ≥ 𝑡! ≥ ⋯ ≥ 𝑡!. Let 𝐶 ⊂ 𝐹 such that 𝑡! > 𝑑!∈! . Then, set 𝐶 is called a dependent set when 

the characteristic vector 𝑥! ∉ 𝑆, and its components 𝑥!! = 1, ∀𝑗 ∈ 𝐶, and 𝑥!! = 0, ∀𝑗 ∉ 𝐶. Otherwise, 𝑥! ∈ 𝑆 and set 𝐶 

is called an independent set. The dependent set 𝐶 is called minimum when all of its contained subsets are independent. 

Notice that, in order to maintain feasibility, it is impossible to set all of the variables in set 𝐶 to one at the same time. 

Therefore, according to Nemhauser and Wolsey [41], the inequality 𝑥! ≤ 𝐶 − 1!∈! , where 𝐶 is a dependent set, is a 

valid inequality for feasible set 𝑆. In our implementation, the feasible region for the binary knapsack constraint in (3.4) is   

𝑆 = 𝑥 ∈ 0,1 !  |  𝑡!"
!∈!!

 𝑥!"  ≤  𝑑
!∈!

                                                 3.12  
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Let binary constant 𝑎!"# = 1 if a variable 𝑥!" ∈ 𝐶, and 0 otherwise. By letting a finite set 𝐷 that contains all 

minimum dependent sets for 𝑆, then the following MDS constraints are valid inequalities for the feasible region 𝑆 

𝑎!"#
!∈!!

 𝑥!"  ≤ 𝐶 − 1                                 ∀𝐶 ∈  𝐷                          (3.13)
!∈!

 

Consider the continuous relaxation for the feasible set of the knapsack constraint in (3.12) 

𝑆 = 0 ≤ 𝑥 ≤ 1 |  𝑡!"
!∈!!

 𝑥!"  ≤  𝑑
!∈!

                                                   (3.14) 

At least one fractional solution 𝑥 ∈ 𝑆 violates (3.13). The proof presented here can be found in Nemhauser and 

Wolsey [41]. Let 𝐶 ⊂ 𝐹 be a minimum dependent set, such that ∀ 𝑘 ∈ 𝐶and 𝐶\{𝑘} is independent. That is, removing any 

variable from the dependent set 𝐶 gives a set whose coefficients’ sum does not exceed 𝑑. If 𝑡! > 𝑑!∈! , then consider 𝑥 

of the following form:  

𝑥! = 1          if 𝑗 ∈ 𝐶\{𝑘},                                                                (3.15) 

𝑥! = 0          if 𝑗 ∈ 𝐹\𝐶,                                                                   (3.16) 

                 𝑥! =
𝑑 − 𝑡!!∈!\{!}

𝑡!
          if 𝑗 = 𝑘.                                              (3.17) 

From the last fractional form in (3.17), it is clear that  

𝑥!  = 𝐶 − 1
!∈!

+  
𝑑 − 𝑡!!∈!\{!}

𝑡!
   >  𝐶 − 1                                        (3.18) 

Therefore, ∃𝑥 ∈ 𝑆 that does not satisfy the valid inequalities in (3.13), so the MDS constraints in (3.13) cut off the fractional 

solution 𝑥. Notice that the integer coefficients of the MDS constraints in (3.13) should also encourage solution integrality. 

3.5.2 Cut Generation 

At each node of the tree, after the linear programming relaxation of the problem is solved to obtain a solution 𝑥∗, a 

cut generation step is called in order to try to generate an MDS constraint. If an MDS constraint exists, then, it will be added 

as a cut in the RMP in order to cut off a fractional solution 𝑥∗ and encourage solution integrality. The MDS constraints are 

generated using a heuristic method similar to solving the linear programming relaxation of a binary knapsack problem, 

Chvátal [44]. Consider the following integer programing problem 

min (1 − 𝑥!"∗ )
!∈!!!∈!

 𝑥!"                                                                        (3.19) 

𝑠. 𝑡. 𝑡!"
!∈!!

 𝑥!"  ≥  𝑑 + 𝜀                                                                 (3.20)
!∈!

 

                                                               𝑥!" ∈ 0,1 ,                            ∀ 𝑢 ∈ 𝑈, 𝑓 ∈ 𝐹!                   (3.21) 

A feasible solution to the problem in (3.19)-(3.21) could be one where the objective value is less than 𝜀. This 

implies that there should be at least one MDS constraint that cuts off the fractional solution 𝑥∗. The heuristic begins by 

sorting variables, 𝑥!", in an ascending order with respect to their corresponding terms 
!!!!"

∗

!!"
.  In addition, larger 𝑡!" 
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values are used in order to break ties. Let 𝐹  be the current total number of variables, 𝑥!" , that are already in the RMP. Let 

𝑖 in a variable 𝑥!"!  represent the 𝑖!! order of the sorted sequence 𝑖 = 1,2,… 𝐹 . Let set 𝐶 be a minimum dependent set. 

Beginning from 𝑖 = 1, variable 𝑥!"!  is greedily added into set 𝐶 until the complete minimum dependent set 𝐶 is found. 

The steps of the heuristic that generates the MDS cuts is illustrated by Algorithm 1.  

Algorithm 1  MDS Heuristic 

Initialization: Let a set 𝑪 ← ∅ be an MDS, and 𝒊 = 𝟏. 

Selection: Add a variable 𝒙𝒖𝒇𝒊  into the MDS , 𝑪 ← 𝑪 ∪ {𝒖, 𝒇}, and 𝒊 ← 𝒊 + 𝟏. 

Check: 

if 𝒊 ≤ 𝑭  then 

if 𝒂𝑪𝒖𝒇  𝒕𝒖𝒇𝒇∈𝑭𝒖  𝒙𝒖𝒇∗  >  𝒅𝒖∈𝑼  and 𝒂𝑪𝒖𝒇𝒇∈𝑭𝒖  𝒙𝒖𝒇∗  > 𝑪 − 𝟏𝒖∈𝑼  then 

Return the MDS 𝑪. 

else 

Return to Selection. 

end if 

else 

Return ∅. 

end if 

 

3.5.3 Reduced Cost 

The LP relaxation problem of the UAVRP after relaxing the integrality requirement and adding the MDS constraints 

is as follows 

max 𝐵!𝑥!
!∈!

                                                                                                     (3.22) 

  𝑠. 𝑡. 𝑎!"#
!∈!!

 𝑥!"   ≥  𝑥!                               ∀𝑘 ∈  𝐾                          (3.23)
!∈!

 

𝑥!"
!∈!!

   ≤  𝑛!                                ∀𝑢 ∈  𝑈                          (3.24) 

𝑡!"
!∈!!

 𝑥!"  ≤  𝑑                                                                         
!∈!

(3.25) 

𝑎!"#
!∈!!

 𝑥!"  ≤ 𝐶 − 1                      ∀𝐶 ∈  𝐷                         (3.26)
!∈!

 

                                                           0  ≤   𝑥!  ≤  1                                 ∀ 𝑘 ∈ 𝐾                        (3.27) 

                                                                        0 ≤ 𝑥!"                                           ∀ 𝑢 ∈ 𝑈, 𝑓 ∈ 𝐹!          (3.28) 

Let the dual variable for the target constraint in (3.23) be represented by 𝜋!(!), and let 𝜋!(!)∗  be the value of this dual 

variable if the tail of the edge 𝑒 is a target 𝑘; otherwise 𝜋!(!)∗  is zero. In addition, let the dual variables for the constraints 
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in (3.24), (3.25), and (3.26) be represented by 𝜋!, 𝜆, and 𝜌! , respectively. Finally, let 𝑥∗, 𝜋!(!)∗ , 𝜋!∗ , 𝜆∗, and 𝜌!∗  be an 

obtained optimal solution after solving the LP relaxation problem (3.22)-(3.28). Therefore, the reduced cost 𝑐!" for variable 

𝑥!" can be calculated as follows 

𝑐!" = − 𝑎!"# 𝜋!(!)∗

!∈!

− 𝜋!∗ − 𝑡!" 𝜆∗ − 𝑎!"# 𝜌!∗

!∈!

, 

∀ 𝑓 ∈ 𝐹!,∀ 𝑢 ∈ 𝑈                                                                                  (3.29) 

Using the equation in (3.8), the reduced cost 𝑐!! for a variable 𝑥!" can be rewritten as a edge-based reduced cost 

as 

𝑐!" = −  𝜋!(!)∗

!∈!

− 𝜋!∗  − 𝑡!
!∈!

 𝜆∗  − 𝑎!"# 𝜌!∗

!∈!

, 

∀ 𝑓 ∈ 𝐹!,∀ 𝑢 ∈ 𝑈                                                                                 (3.30)  

Based on (3.30), we can say that the term (−𝑡!  𝜆∗ − 𝜋!(!)∗ ) represents the cost of edge 𝑒 ∈ 𝐸 in a graph 𝐺. In 

addition, the term (−𝜋!∗) represents the cost of using a UAV 𝑢 ∈ 𝑈. Finally, the cost of existing in a minimum dependent 

set 𝐶 ∈ 𝐷 is represented by the term (𝜌!∗), and the total cost of existing MDS costraints for the route 𝑓 is 𝑎!"# 𝜌!∗!∈! . 

3.5.4 Column Generation 

After the RMP is solved at a node of the tree using only a subset 𝐹 ⊆ 𝐹, and the algorithm is done generating MDS 

constraints, the dual solution is sent to the column generation subproblem in order to generate new routes so they can be 

added to the RMP. For UAVRP, the column generation step must find a simple path in 𝐺 with negative reduced cost that 

originates and terminates at the base 𝑣! in order to add it to the RMP. The integer programming shortest path algorithm 

(IPSP) [41] is used as our column generation algorithm engine to find a simple path with negative reduced cost.  

In addition to the network 𝐺(𝑉,𝐸), we split the base node in a source node 𝑣! and a terminal node 𝑣!!!. For each 

edge 𝑒 in 𝐸, let 𝑦! be a binary variable in which 𝑦! = 1 indicates that edge 𝑒 is in the generated route, and let the cost of 

selecting edge 𝑒 be 𝑐! = −𝜋!(!)∗ −  𝑡!  𝜆∗. Let 𝑓∗ be the minimum cost path found. Then, the total cost of traveling route 

𝑓∗, is just the additive sum of the cost of traveling over all edges 𝑒 ∈ 𝑓∗. That is {−𝜋!(!)∗  −  𝑡!  𝜆∗}!∈!∗  from (3.30). In 

order to obtain the reduced cost 𝑐!!∗, the cost, −𝜋!∗ , of using a UAV of type 𝑢 ∈ 𝑈 is added. Note that since the column 

generation subproblem finds new routes after generating MDS constraints, the 𝜌!∗  term in (3.30) is not applicable. If the path 

𝑓∗ has a negative reduced cost, 𝑐!!∗ < 0, then it is added to the RMP.  

In addition, each route must be completed within certain predetermined amount of time 𝑟, since a prolonged 

missions may alert an enemy. For each edge 𝑒 in 𝐸, let 𝑠!  be the ground speed, and let 𝑚! be the travel time over edge 𝑒, 

which is calculated as 

𝑚! =  
𝜏!
𝑠!

                                                                                                 (3.31) 

Let 𝛿!!
! = {𝑗: (𝑖, 𝑗) ∈ 𝐸} be the set of all edges that are departing from node 𝑣!, 𝛿!!

! = {𝑗: (𝑗, 𝑖) ∈ 𝐸} be the set of 

all entering edges to node 𝑣!, and Ω(𝑓) be the set of all visited nodes, targets and waypoints, in route 𝑓. Let 𝐹 ⊂ 𝐹 denote 

a finite set of all paths that were previously generated and added to the RMP. A simple path and a negative cost cycle are 
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referred to as walks and denoted 𝜓. The negative cost cycles are called invalid walks, and the set of all invalid walks is 

denoted ℋ. 

For the UAVRP, the formulation of the subproblem is as follows 

min  {−𝜋!(!)∗  − 𝑡!  𝜆∗} 𝑦!
!∈!

                                                                                    (3.32) 

                                              𝑠. 𝑡.  𝑦!
!∈!!!

!

−  𝑦!
!∈!!!

!

 =  𝑏 𝑣!                                   ∀𝑣! ∈ 𝑉                        (3.33) 

                                                                         𝑦!
!∈!!!

!

≤ 1                                            ∀𝑣! ∈ 𝑉                        (3.34) 

                                                                            𝑦! ≤  Ω 𝑓                                   ∀𝑓 ∈  𝐹 
!∈!

                      (3.35) 

                                                                            𝑦!  ≤  ℎ 𝜓                                    ∀𝜓 ∈  ℋ                      (3.36)
!∈!

 

                                                                            𝑚!  𝑦! ≤ 𝑟                                           
!∈!

                                 (3.37) 

                                       𝑦! ∈ 0,1                                           ∀𝑒 ∈ 𝐸                         (3.38) 

The objective function in (3.32) minimizes the reduced cost in UAVRP. The flow balance constraints in set (3.33) 

require paths to begin at the source node 𝑣!  and end at the terminal node  𝑣!!! , where 

𝑏 𝑣! = 1, 𝑏 𝑣!!! = −1,  and 𝑏 𝑣! = 0 ∀ 𝑣! ∈ 𝑉\{𝑣!, 𝑣!!!}. The constraints in set (3.34) limit the outflow for each node 

to be at most one. Both the set in (3.33) and (3.34) can help in preventing some cycles from forming. The route elimination 

constraints in set (3.35) prevent previously generated routes already included in the RMP from being generated in future 

iterations. The left-hand side represents the edges of the route that starts from the base, visits some targets, and returns to the 

base. While the right-hand side represents the nodes that are visited in the route without the source/terminal node. For 

example, visiting two nodes means the left-hand side includes three edges while the right-hand side equals two. The set in 

(3.35) is added a priori to solving the subproblem since 𝐹 is a finite set. The invalid walks, 𝜓 ∈  ℋ, are eliminated by the 

walk or cycle elimination constraints in set (3.36), where ℎ 𝜓 = Ω 𝑓 − 1. The set (3.36) is added dynamically to the 

subproblem. In constraint (3.37), the nonnegative constant parameter, 𝑟, limits the route travel time for a UAV. The 

constraints in set (3.38) require the decision variables 𝑦! to be binary, which indicates edges selected in the route 𝑓∗.  

Notice that the edge cost 𝑐!" and the reduced cost 𝑐!!∗ are not restricted in sign. As a result, a simple path 

generated by the column generation process usually has an embedded negative cost cycles. A simple path with a negative 

cost cycle is shown in Figure 3-6. However, the cost of the simple path could be positive or negative.  
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Figure 0-6 A Simple Path with Negative Cost Cycle 

Therefore, the simple path and the negative cost cycle cannot be added together to the RMP. Usually, a set of cut 

constraints that eliminate negative cost cycles are added to the sub problem. We considered the following four scenarios 

1. If we find a simple path with a negative reduced cost, and do not find a cycle, the simple path will be added to RMP. 

2. If we find a simple path with a negative reduced cost, and we find negative cost cycles, the simple path alone will be 

added to the RMP and no cuts to eliminate the cycles are added to the sub problem. 

3. If we find a simple path with positive reduced cost, and we do not find cycles, the simple path will be ignored. The 

column generation step is terminated since no simple path with a negative reduced cost is found. 

4. If we find a simple path with positive reduced cost, and we find negative cost cycles, the simple path will be 

ignored, not added to the RMP, and cuts to eliminate the cycles will be added to the sub problem. The column 

generation step is repeated until a simple path with a negative reduced cost is found or shows that no such path 

exists. 

However, sequentially adding cycle elimination constraints is time consuming. Therefore, a simple path heuristic is discussed 

next.  

3.5.5 Simple Path Heuristic 

If we find a simple path with positive reduced cost, and we find negative cost cycles in the column generation step, 

we ignore the simple path and add a cycle elimination constraint to eliminate the negative cost cycles. The step is then 

repeated until we find a path with negative reduced cost or show that no such path exists. This process can be time 

consuming and impractical with large-sized problems. Therefore, in order to expedite the process and make the column 

generation step more efficient, we use a simple path heuristic. The main goal of the simple path heuristic is to generate 

simple paths from the negative cost cycles, and the one that has the least negative reduced cost is added to the RMP. 

Let 𝑓! represent a simple path. Let a set of all negative cost cycles that might accompany the simple path be 

denoted Ѳ!. Thus, the path 𝑓 ≡ 𝑓! ∪ Ѳ! , where Ѳ! ≠ ∅, represents a path that has negative cost cycles. Assume that the 

path 𝑓 that was found by the column generation algorithm has a simple path 𝑓! with positive reduced cost and has a 

negative cost cycle 𝜓 ∈ Ѳ! as shown in Figure 3-6. Instead of adding walk elimination constraints to eliminate the cost 

cycle, the simple path heuristic will be invoked to generate simple paths from negative cost cycles. 
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Figure 0-7 Generating Simple Path from a Cycle Using Simple Path Heuristic 

In each iteration of the heuristic, an edge 𝑒 that is part of a cycle is deleted and two new edges are heuristically 

added in order to form a new simple path as shown in Figure 3-7. When the edge between 𝑣! and 𝑣! is deleted, two new 

edges are added; one connects the source node and node 𝑣! and the other connects node 𝑣! and the terminal node. The 

number of paths that the heuristic can generate equals the number of edges in a cycle, and the one that will be added to the 

RMP is the one that has the most negative reduce cost if such path exists and does not violate other path constraints, such as 

(3.35) or (3.37).   

3.5.6 Branching Logic 

We use the follow-on branching, which was developed by Vance et al. [42] and is a variant of Ryan and Foster 

branching [43], as our branching logic because it is computationally more efficient than conventional variable branching and 

can be applied to the column generation sub problem. Thus, at each node of the search tree, column generation can be 

implemented. 

In general, branching requires partitioning the space, which prevents the same solution from occurring on different 

branches. It also requires a clear definition of a solution in the leaves of the branch-and-bound tree. Consider two consecutive 

targets; 𝑎 and 𝑏. In the branch-and-bound tree, the up branch requires that any route that has target 𝑎 must have target 𝑏 

following it, any route that has target 𝑏 must have target 𝑎 preceding it, and all other routes with either 𝑎 or 𝑏 are 

deleted. In the sub problem, the edge that is departing from target 𝑎 and entering target 𝑏 will be kept, while all other 

departing edges from target 𝑎  and all other entering edges to target 𝑏  will be deleted. On the other side of the 

branch-and-bound tree, the down branch requires deleting any route that has 𝑎 followed by 𝑏 and keeping all other routes. 

In the sub problem, the edge that is departing from target 𝑎 and entering target 𝑏 will be deleted, while all other departing 

edges from target 𝑎 and and all other entering edges to target 𝑏 will be kept. 

4. COMPUTATIONAL STUDY 

A computational study to solve the UAVRP with BCP methodology was done. The UAVRP was implemented using 

the BCP framework that was coded in C++ using the Computational Infrastructure for Operations Research (COIN-OR) 

project, which is an open-source mathematical software used in the operations research community. IBM ILOG CPLEX 

Optimization Studio 12.5 was used as a solver interface with COIN-OR. A 2.67 GHz Intel Xeon computer was used to 

conduct the study.  
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We experimented with two different algorithms. The first one considers only the Delayed Column Generation 

algorithm with the simple path heuristic, referred to as the DCG. The second one considers DCG with the Minimum 

Dependent Set heuristic, referred to as the DCG-MDS. In other experiments, we considered algorithms without the simple 

path heuristic, but they require very long times to generate routes. 

We created different sets of problem instances with 10 targets and 20 targets. With each case, 5 UAVs are available. 

The UAVs originate and terminate at the same base, which is located at the center of the area of operation. The targets and 

threat points are randomly generated. In this computational study, we analyze how the total number of visited targets 

responds to varying the levels of the total allowable threat for all UAVs and varying the levels of the allowable route travel 

time for each UAV. Intuitively, visiting more targets encourages a longer route. In addition, allowing only lower threat levels 

increases the use of waypoints, hence, encourages longer routes as well. However, allowing less travel time encourages a 

shorter route.  

4.1 Results for Ten-Target Case 

At the beginning, we obtained the minimum route travel time for visiting all the 10 targets with only one UAV, 

which is 280.31 hours. Then, this value is used to represent the maximum value for the predetermined maximum route travel 

time parameter 𝑟 in (3.37) in order to limit the route travel time for a UAV in our sub problem. Setting a value lower than 

this maximum limit for the route travel time will definitely encourage the use of more UAVs, since no one UAV can visit all 

10 targets alone. In addition, four more evenly spaced levels of 𝑟 are considered. They are 224.25, 168.18, 112.12, and 

56.06 hours.  

Similarly, we obtained the total threat level corresponding to the minimum route travel time for visiting all the 10 

targets with only one UAV, which is 6.58E-07. We limit the total threat level for all UAVs, but this value was obtained for a 

single UAV. In addition, setting a value lower or higher only encourages the use of more or fewer waypoints, but does not 

encourage the use of more UAVs. Furthermore, based on a set of problem instances that includes 10 targets, 30 threat points, 

and 55 waypoints, visiting all targets and waypoints in the area of operation yields a total threat level value equal to 

9.67E-04, and visiting only the closest target yields a threat level value equal to 1.60E-09. In order to cover a range of threat 

levels, the 6.58E-07 is only used as a reference level to obtain more levels of the predetermined constant parameter 𝑑 in 

(3.4). The experiment includes two levels above the reference threat level value by multiplying by 10 and 10! and two 

levels below the reference threat level value by multiplying by 10!! and 10!!, so the four levels of 𝑑 considered are 

6.58E-06, 6.58E-07, 6.58E-08, and 6.58E-09. 

We experimented with four waypoints generation methods, Rectangular Threat Reduction, Maximin, Maximin 

Reduced, and Maximin Threat Reduction. At the beginning, we experimented with only the Rectangular Threat Reduction 

method and the Maximin method. Since Rectangular Threat Reduction method is based on placing a rectangle on any two 

targets including the base, we have a total of 55 rectangles, !!
! , and 55 waypoints. For the sake of a fair comparison 

between the two waypoint generation methods, we create 2 sets of problem instances. Both instances include 10 targets, 30 

threat points, and 55 waypoints, shown in Figure 4-1. The 55 waypoints in the first set (left) are generated using the 

Rectangular Threat Reduction method, and the 55 waypoints in the second set (right) are generated using the Maximin 

method.  
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Figure 0-1 10 Targets, 30 Threats, and 55 Waypoints, using Rectangular Threat Reduction (Left) and Maximin (Right) 

We considered the DCG algorithm and the DCG-MDS algorithm to solve each set of the problem instances. In an 

attempt to find solution results in a reasonable time, the run time was set at 4 hours for each set of problem instances with 

each route travel time level 𝑟, each threat level 𝑑, and each algorithm type. Our goal now is to see how the total number of 

visited targets for multiple UAVs responds to varying the levels of 𝑟 and 𝑑 within the available 4-hour run time for the two 

waypoint generation methods. 

The results for the two waypoint generation methods for the DCG and DCG-MDS algorithms are presented in Table 

4-1 and Table 4-2, respectively. Each table includes 16 executions for each of the four aforementioned levels for the constant 

parameters 𝑟 and 𝑑, which represent the limits for the travel time for each UAV and the total threat level for all UAVs. For 

each run, the results we obtained include the maximum total number of visited targets, our objective function, the number of 

UAVs used, the CPU time (in seconds) until the best-known solution is found, the CPU time (in seconds) until the algorithm 

finished, the number of generated variables until the best-known solution is found, and the number of generated variables 

until the algorithm finished. However, what is shown here in Table 4-1 and 4-2, are only the maximum total number of 

visited targets and the CPU time until the algorithm finished. For example, for the run at 𝑟! = 224.25 and 𝑑! = 6.58𝐸 −

06 in Table 4-2, the maximum total number of visited targets is 10, and the CPU time until the algorithm finished is 16.56 

seconds. We can see short or high solution times for some cases and no solution times for others in response to decreasing or 

increasing the route travel time 𝑟, the total threat level 𝑑, or both. Generally, when both 𝑟 and 𝑑 are restricted, the 

algorithm becomes inefficient in finding a solution within the 4-hour run time limit. However, as both 𝑟 and 𝑑 increase, the 

algorithm becomes more efficient because it can easily determine a path that meets the constraints and reaches all ten targets. 
 

 Table 0-1 Results for DCG Algorithm for 10 Targets, 30 Threat Points, and 55 Waypoints (Rectangular Threat 
Reduction) 

Total Number of Visited Targets 
    r, Maximum Route Travel Time 
    MIN 1 2 3 4 MAX 

d,
 

M
ax

im
u

m
 T

ot
al

 
Th

re
at

 
Le

ve
l MIN 0 56.06 112.12 168.18 224.25 280.31 

1 6.58E-09 1 0 1 0   
2 6.58E-08 1 0 4 0   
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3 6.58E-07 1 3 4 6   
4 6.58E-06 1 3 4 6   

MAX 6.58E-05           
CPU Time until the Algorithm Terminated 

    r, Maximum Route Travel Time 
    MIN 1 2 3 4 MAX 

d,
 M

ax
im

um
 T

ot
al

 
Th

re
at

 L
ev

el
 MIN 0 56.06 112.12 168.18 224.25 280.31 

1 6.58E-09 Time Ran Out Time Ran Out Time Ran Out Time Ran Out   
2 6.58E-08 Time Ran Out Time Ran Out Time Ran Out Time Ran Out   
3 6.58E-07 Time Ran Out Time Ran Out Time Ran Out Time Ran Out   
4 6.58E-06 Time Ran Out Time Ran Out Time Ran Out Time Ran Out   

MAX 6.58E-05           
 
  



21 
 

Table 0-2 Results for DCG Algorithm for 10 Targets, 30 Threat Points, and 55 Waypoints (Maximin) 

Total Number of Visited Targets 
    r, Maximum Route Travel Time 
    MIN 1 2 3 4 MAX 

d,
 M

ax
im

um
 T

ot
al

 
Th

re
at

 L
ev

el
 MIN 0 56.06 112.12 168.18 224.25 280.31 

1 6.58E-09 1 0 0 1   
2 6.58E-08 1 0 0 1   
3 6.58E-07 1 2 6 10   
4 6.58E-06 1 10 10 10   

MAX 6.58E-05           
CPU Time until the Algorithm Terminated 

    r, Maximum Route Travel Time 
    MIN 1 2 3 4 MAX 

d,
 M

ax
im

um
 T

ot
al

 
Th

re
at

 L
ev

el
 MIN 0 56.06 112.12 168.18 224.25 280.31 

1 6.58E-09 2236.42 Time Ran Out Time Ran Out Time Ran Out   
2 6.58E-08 2289.94 Time Ran Out Time Ran Out Time Ran Out   
3 6.58E-07 2273.88 Time Ran Out Time Ran Out 428.25   
4 6.58E-06 2212.12 Time Ran Out 12064.45 16.56   

MAX 6.58E-05           
 

For DCG and for both waypoint generation methods, Rectangular Threat Reduction and Maximin, the maximum 

total number of visited targets varies in response to decreasing or increasing the route travel time 𝑟, the total threat level 𝑑, 

or both. Generally, as both 𝑟 and 𝑑 decrease, the total number of visited targets also decreases. Similarly, as both 𝑟 and 𝑑 

increase, the total number of visited targets also increases.  

For the DCG algorithm, the waypoint generation using the Maximin method performs better than the Rectangular 

Threat Reduction method. Overall, a total of 54 targets were visited for all of the 16 runs using the Maximin compared to a 

total of 35 targets for the waypoint generation using the Rectangular Threat Reduction method. In terms of achieving the 

mission, with the Maximin, all the available 10 targets are visited in 4 runs, which are at 𝑟! = 224.25, 𝑑! = 6.58𝐸 − 06 ,

𝑟! = 168.18, 𝑑! = 6.58𝐸 − 06 , 𝑟! = 112.12, 𝑑! = 6.58𝐸 − 06 , and 𝑟! = 224.25, 𝑑! = 6.58𝐸 − 07 ,  while none 

of the runs with the Rectangular Threat Reduction method were able to visit all available targets. Notice that with the 

Maximin, the algorithm terminated before completing the 4-hour run time limit during 7 runs, while, none of the runs with 

the Rectangular Threat Reduction were able to finish before reaching the 4-hour run time limit. This is an indication of how 

the waypoint generation method used before optimizing UAV routes can substantially affect the algorithm performance in 

finding a solution within the 4-hour run time limit when both the route travel time 𝑟 and the total threat level 𝑑 are 

restricted. The results for the two-waypoint generation methods for the DCG-MDS algorithm are presented in Table 4-3 and 

Table 4-4, respectively.  
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Table 0-3 Results for DCG-MDS Algorithm for 10 Targets, 30 Threat Points, and 55 Waypoints (Rectangular Threat 
Reduction) 

Number of Visited Targets 
    r, Maximum Route Travel Time 
    MIN 1 2 3 4 MAX 

d,
 M

ax
im

um
 T

ot
al

  
Th

re
at

 L
ev

el
 MIN 0 56.06 112.12 168.18 224.25 280.31 

1 6.58E-09 1 0 1 0   
2 6.58E-08 1 0 4 0   
3 6.58E-07 1 3 4 4   
4 6.58E-06 1 3 4 9   

MAX 6.58E-05           
CPU Time until the Algorithm Terminated 

    r, Maximum Route Travel Time 
    MIN 1 2 3 4 MAX 

d,
 M

ax
im

um
 T

ot
al

 
Th

re
at

 L
ev

el
 MIN 0 56.06 112.12 168.18 224.25 280.31 

1 6.58E-09 Time Ran Out Time Ran Out Time Ran Out Time Ran Out   
2 6.58E-08 Time Ran Out Time Ran Out Time Ran Out Time Ran Out   
3 6.58E-07 Time Ran Out Time Ran Out Time Ran Out Time Ran Out   
4 6.58E-06 Time Ran Out Time Ran Out Time Ran Out Time Ran Out   

MAX 6.58E-05           
 

Table 0-4 Results for DCG-MDS Algorithm for 10 Targets, 30 Threat Points, and 55 Waypoints (Maximin) 

Total Number of Visited Targets  
    r, Maximum Route Travel Time 
    MIN 1 2 3 4 MAX 

d,
 M

ax
im

um
 T

ot
al

 
Th

re
at

 L
ev

el
 MIN 0 56.06 112.12 168.18 224.25 280.31 

1 6.58E-09 1 0 0 1   
2 6.58E-08 1 0 4 1   
3 6.58E-07 1 2 10 10   
4 6.58E-06 1 10 8 10   

MAX 6.58E-05           
 CPU Time until the Algorithm Terminated 

    r, Maximum Route Travel Time 
    MIN 1 2 3 4 MAX 

d,
 M

ax
im

um
 T

ot
al

 
Th

re
at

 L
ev

el
 MIN 0 56.06 112.12 168.18 224.25 280.31 

1 6.58E-09 2237.07 Time Ran Out Time Ran Out Time Ran Out   
2 6.58E-08 2294.64 Time Ran Out Time Ran Out Time Ran Out   
3 6.58E-07 2266.33 Time Ran Out 268.354 431.07   
4 6.58E-06 2228.67 Time Ran Out Time Ran Out 16.80   

MAX 6.58E-05           
 

For DCG-MDS and for both waypoint generation methods, the waypoint generation using Maximin obviously 

performs better than the Rectangular Threat Reduction method. Overall, a total of 60 targets are visited for all of the 16 runs 

using Maximin compared to a total of 36 targets for the waypoint generation using the Rectangular Threat Reduction method. 

In terms of achieving the mission, with Maximin, all the available 10 targets are visited in 4 runs, while none of the runs with 
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the Rectangular Threat Reduction method are able to visit all available targets. With the Maximin, the algorithm terminated 

before completing the 4-hour run time limit in 7 runs, while none of the runs with the Rectangular Threat Reduction method 

were able to finish before reaching the 4-hour run time limit.  

Based on the previous discussion, we can conclude that the waypoint generation using the Maximin method gives 

better results than the waypoint generation using the Rectangular Threat Reduction method for both DCG and DCG-MDS 

algorithms. As a result, Maximin is investigated further. Comparing both algorithms, DCG and DCG-MDS, for only the 55 

waypoints generated using the Maximin method, DCG-MDS performs better, visiting a total of 60 targets, than DCG does 

with the same number of waypoints, visiting only 54 targets.  

The problem we optimize is a computationally hard one. We generated 55 waypoints, using Maximin, and added 

them all together a priori to an area of operation that already contained 10 existing targets. The waypoints increase the size of 

the problem even though they are not required to be visited. Based on our implementation, a set of problem instances that 

includes 10 targets and 55 waypoints is equivalent to solving a problem with 65 nodes. If we consider fewer waypoints, the 

computational complexity of the problem exponentially decreases, and the CPU time spent for optimizing the sub problem, 

detecting cycles in the solution, and generating new routes reduces. As a result, we expect to obtain even better results with 

fewer waypoints than 55 waypoints. 

In order to improve the results for both DCG and the DCG-MDS that were previously obtained for the 55 waypoints 

generated using Maximin, we used the Maximin Reduced method in order to remove unnecessary waypoints, which are 

unlikely to be visited by a UAV. Initially, the process removes any waypoint that lies outside of the 55 rectangles. 

Consequently, the number of waypoints in the area of operation decreases from 55 waypoints to only 29 waypoints. Now, the 

area of operation, shown in Figure 4-2 (upper left), includes 5 UAVs located at the base, 10 targets, 30 threat points, and the 

remaining 29 waypoints.  

In the quest to obtain even better results, we used the Maximin Threat Reduction method in order to calculate the 

total threat reduction for each waypoint of the 29 waypoints based on the number of rectangles that a waypoint lies inside. 

This is done by placing a rectangle between any two targets in the area of operation including the base. That is a total of 55 

rectangles, !!
! . Then, the process determines total threat reduction for each waypoint for all rectangles it lies inside. Sorting 

the 29 waypoints based on their total threat reduction from highest to lowest, we half the number of a priori waypoints. 

Specifically, we begin with the 29 waypoints shown in Figure 4-2 (upper left). Then, the following three sets of waypoints 

are generated based upon the highest total threat reduction: 15 waypoints, (Figure 4-2 upper right), 8 waypoints (Figure 4-2 

lower left), and 4 waypoints (Figure 4-2 lower right).  
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Figure 0-2 10 Targets, 30 Threat points, and 29 Waypoints using Maximin Reduced (Upper Left), 15 Waypoints using 

Maximin Threat Reduction (Upper Right), 8 Waypoints using Maximin Threat Reduction (Lower Left), and 4 Waypoints 

using Maximin Threat Reduction (Lower Right). 

The overall results for all 16 runs for 55, 29, 15, 8, and 4 waypoints for both algorithms, DCG and DCG-MDS, are 

presented in Table 4-5. 
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Table 0-5 Overall Results for 10-Target Case 

Overall	(16	Runs)	 55	Waypoints	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Maximin)	

29	Waypoints	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Maximin	
Reduced)	

15	Waypoints	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Maximin	Threat	

Reduction)	

8	Waypoints	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Maximin	Threat	

Reduction)	

4	Waypoints	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Maximin	Threat	

Reduction)	

Item	 DCG	 DCG-
MDS	 DCG	 DCG-

MDS	 DCG	 DCG-
MDS	 DCG	 DCG-

MDS	 DCG	 DCG-
MDS	

Total	Number	of	Visited	Targets	 54	 60	 64	 62	 88	 82	 89	 89	 89	 89	

Achieving	Mission	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Visiting	all	10	Targets)	(#	Runs)	

4	 4	 5	 3	 6	 6	 6	 6	 6	 6	

Number	of	UAVs	Used	 30	 32	 35	 30	 41	 35	 42	 42	 40	 40	

Terminating	before	Completing	
the	4-Hour	Run	Time	(#	Runs)	

7	 7	 9	 7	 10	 10	 10	 10	 12	 12	

Time	until	the	Best	Solution	is	
Found	

14,430	 2,646	 3,709	 10,897	 32,126	 24,147	 6,813	 4,416	 4,436	 2,720	

Number	of	Generated	 	
Variables	until	Best	Known	

Solution	Found	
116	 140	 126	 121	 1,581	 1,055	 2,028	 1,489	 1,925	 968	

Number	of	Generated	 	
Variables	until	Algorithm	

Terminated	
246	 272	 250	 234	 13,510	 10,431	 25,419	 26,669	 22,974	 22,715	

Number	of	MDS	Cuts	until	Best	
Known	Solution	Found	

‒	 24	 ‒	 14	 ‒	 207	 ‒	 46	 ‒	 70	

Number	of	MDS	Cuts	until	
Algorithm	Terminated	

‒	 30	 ‒	 16	 ‒	 689	 ‒	 1,597	 ‒	 2,522	

	 	 	 	 	 	 	 	 	 	 	Comparing the results using the five sets of waypoints, the 55 from Maximin, the 29 from Maximin Reduced, and the 

15, 8, and 4 from Maximin Threat Reduction, both DCG and DCG-MDS perform better with fewer waypoints. The total 

number of visited targets increased as the number of waypoints decreases in all but the 8-waypoint and 4-waypoint cases, in 

which the number of visited targets are the same. However, both algorithms perform slightly better with 4 waypoints than 

with 8 waypoints because they terminate before completing the 4-hour run time in 12 runs with 4 waypoints compared to 

only 10 runs with 8 waypoints. 

Comparing DCG with DCG-MDS yields more mixed results. As noted previously, with 55 waypoints, solutions 

found using DCG-MDS visits more targets than those of DCG. However with 15 and 29 waypoints, DCG finds solutions 

visiting more targets than those of DCG-MDS. For only 4 and 8 waypoints, no clear winner algorithm emerges, as both 

obtained the same solution that visits 89 targets overall. In addition, both algorithms terminate before completing the 4-hour 

run time in the same number of runs. However, DCG-MDS reaches the solution with a fewer number of generated variables 

than the DCG algorithm does with the same number of waypoints. In general, DCG-MDS uses the Minimum Dependent Set 

constraints, which cut some fractional solutions and encourage the solution integrality, while, DCG does not. If the problem 

is highly fractional, DCG-MDS spends most of the CPU time in the master problem and less time generating routes in the sub 

problem. As a result, DCG-MDS is expected to generate fewer variables than DCG does to find an optimal solution. 

Consequently, DCG-MDS with 4 and 8 waypoints finds an optimal solution faster than the DCG algorithm does with the 
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same number of waypoints. Nonetheless, for the 10-targets case and for the same number of waypoints, neither DCG nor 

DCG-MDS is guaranteed to perform better than the other.   

In addition, we tested both algorithms with fewer than 4 waypoints and found that the number of visited targets 

descreases. Therefore, based on the previous results and discussions, we can conclude that using Maximin Threat Recution 

with 4 waypoints is considered the right number of a priori waypoints for the 10-target case, yielding the best results witihin 

a 4-hour run time limit.  

4.2 Results for Twenty-Target Case 

In the 20-target case, the minimum route travel time for visiting all 20 targets with only one UAV is 321.2 hours, 

and the corresponding total threat level is 1.22E-05. Consequently, the considered four levels of 𝑟 are 256.95, 192.71, 

128.47, and 64.24 hours, and the four levels of 𝑑 are 1.22E-04, 1.22E-05, 1.22E-06, and 1.22E-07. Only the methods that 

are based on the Maximin method are used to generate waypoints for the 20-target case, since the Rectangular Threat 

Reduction method performed so poorly for the 10-taget case. First, we generated 210, !"
! , waypoints using Maximin. Figure 

4-3 (upper left) shows a set of problem instances that includes 5 UAVs located at the base, 20 targets, 60 threat points, and 

the 210 waypoints. Maximin Reduced decreased the number of waypoints in the area of operation from 210 waypoints to only 

148 waypoints (Figure 4-3 upper right). Maximin Threat Reduction subsequently selected 40 waypoints, in terms of total 

threat reduction (Figure 4-3 middle left), 20 waypoints (Figure 4-3 middle right), and 9 waypoints (Figure 4-3 bottom). 

Overall results for all 16 runs with 40, 20, and 9 waypoints for both algorithms are presented in Table 4-6.  

Like the 10-target case, the number of visited targets increases as the number of waypoints decreases. In other 

experiments, we tested both algorithms with fewer than 9 waypoints and found that the maximum number of visited targets 

decreases. Consequently, we can conclude that the 9 waypoints is considered the right number of a priori waypoints for the 

20-target case. Observe that the ratios of waypoints-to-targets in the best solutions for both problem instances are very 

similar, at 4-to-10 and 9-to-20. Comparing DCG versus DCG-MDS, DCG-MDS performs better with 40 waypoints and 20 

waypoints, but DCG performs better with 9 waypoints. Like the 10-target case, neither DCG nor DCG-MDS superior to the 

other for the 20-targets case. However, in both cases, DCG-MDS outperforms DCG with more waypoints, suggesting that it 

may be superior with largers problems. 
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Figure 0-3 20 Targets, 60 Threat Points, and 210 Waypoints Generated using Maximin (Upper Left), 148 Waypoints using 

Maximin Reduced (Upper Right), 40 Waypoints using Maximin Threat Reduction (Middle Left), 20 Waypoints using 

Maximin Threat Reduction (Middle Right), and 9 Waypoints using Maximin Threat Reduction (Bottom) 
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Table 0-6 Overall Results for 20-Target Case 

Overall	(16	Runs)	 40	Waypoints	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Maximin	Threat	Reduction)	

20	Waypoints	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Maximin	Threat	Reduction)	

9	Waypoints	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Maximin	Threat	Reduction)	

Item	 DCG	 DCG-MDS	 DCG	 DCG-MDS	 DCG	 DCG-MDS	
Total	Number	of	Visited	Targets	 106	 123	 121	 127	 156	 148	

Achieving	Mission	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Visiting	all	20	Targets)	(#	Runs)	

0	 0	 3	 4	 4	 3	

Number	of	UAVs	Used	 33	 37	 39	 40	 50	 48	

Terminating	before	Completing	the	
4-Hour	Run	Time	(#	Runs)	

0	 0	 2	 2	 8	 7	

Time	until	the	Best	Solution	is	Found	 26,662	 25,977	 47,883	 56,271	 18,276	 29,762	

Number	of	Generated	Variables	until	
Best	Known	Solution	Found	

155	 176	 172	 216	 360	 318	

Number	of	Generated	Variables	until	 	
Algorithm	Terminated	

355	 354	 577	 608	 796	 850	

Number	of	MDS	Cuts	until	Best	
Known	Solution	Found	

‒	 16	 ‒	 16	 ‒	 19	

Number	of	MDS	Cuts	until	Algorithm	
Terminated	

‒	 19	 ‒	 26	 ‒	 90	

 

5. CONCLUSIONS AND FUTURE RESEARCH 

In this research, we formulated a mixed integer linear program for routing the UAVs in the presence of threats. We 

did a computational study for the UAVRP and presented results for both the small-sized problem, 10 targets, and the 

medium-sized problem, 20 targets. Results for both the small-sized problem and the medium-sized problem show that fewer 

waypoints gives better results for both algorithms, DCG and DCG-MDS, based on the 4-hour run time limit. The right 

number of a priori waypoints for the small-sized problem, 4 waypoints for 10 targets and 9 waypoints for 20 targets. Both of 

these sets of waypoints were found using Maximum Threat Reduction. In addition, for both the small-sized and medium-sized 

problems and for using the same number of waypoints, neither DCG nor DCG-MDS performs better than the other. 

However, DCG-MDS performs better with more waypoints, suggesting that it may perform better with larger problems. 

The problem we optimize in this research requires a very long run time to obtain solutions. Consequently, one topic 

of future research includes improving the CPU time. In this research we generate waypoints and add them all together a 

priori. Instead, we will consider adding waypoints dynamically and only when they are needed. In addition, in our current 

implementation, we add only one simple path, at a time, with negative reduced cost to RMP. Instead, we plan to add multiple 

simple paths with negative reduced costs to RMP. In addition, one way to reduce problem size is by putting a threshold on 

the threat level of the edges, and then delete the ones that have threat levels greater than that threshold. In order to encourage 

the use of more UAVs, we could impose a constraint to limit the expected fuel burn of the route, the range of the distance that 

a UAV can travel, or the number of targets to be visited in the route. In this research, we treated all targets with equal 

importance. We will test the UAVRP with targets that have different priorities by varying their benefit values. 
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