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Abstract. As Electroencephalography (EEG) is a non-invasive brain imaging tech-
nique that records the electric field on the scalp instead of direct measuring activi-
ties of brain voxels on the cortex, many approaches were proposed to estimate the
activated sources due to its significance in neuroscience research and clinical appli-
cations. However, since most part of the brain activity is composed of the sponta-
neous neural activities or non-task related activations, true task relevant activation
sources can be very challenging to be discovered given strong background signals.
For decades, the EEG source imaging problem was solved in an unsupervised way
without taking into consideration the label information that representing different
brain states (e.g. happiness, sadness, and surprise). A novel model for solving EEG
inverse problem called Graph Regularized Discriminative Source Imaging (GRDSI)
was proposed, which aims to explicitly extract the discriminative sources by implic-
itly coding the label information into the graph regularization term. The proposed
model is capable of estimating the discriminative brain sources under different brain
states and encouraging intra-class consistency. Simulation results show the effec-
tiveness of our proposed framework in retrieving the discriminative sources.
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1 Introduction

To infer the activated brain sources from the recorded EEG data is called inverse prob-

lem. Precise localization of neuronal firing pattern inside the brain can offer an insightful
understanding of how the brain is functioning under certain cognitive and motion tasks.
We also argue that source reconstruction or solving the inverse problem is the first and
primary step for connectivity analysis of the brain, and precise inference of time course of
brain sources is required in order to build the brain connectivity network. The latter step
is to analyze the brain network using complex networks [4][14][17] characteristics mea-
surement, as we saw a shift in neuroscience community from traditional “segregation”
perspective to “integration” perspective where the functional and effective connectivity
between different regions of brains are intensively studied [8][10] in the past decades.

In order to solve the ill-posed inverse problem, different priors or assumptions have to
be imposed to obtain a unique solution. The most traditionally used priors are based on
minimum power, leading to what is known as the minimum norm estimate (MNE) inverse
solver [6], or minimum magnitude, termed as minimum current estimate (MCE) [16],
leading to a least absolute shrinkage and selection operator (LASSO) formulation. Other
assumptions or priors are presented with different inverse algorithms, such as standardized
low-resolution brain electromagnetic tomography sLORETA [15], which enforces spatial
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smoothness of the source located on neighboring voxels; Bernoulli-Laplace priors, which
introduced `0 + `1 norm in a Bayesian framework [2]; Mixed Norm Estimates (MxNE),
which imposes sparsity over space and smoothness over time using `1,2-norm regulariza-
tion [3]; graph Fractional-Order Total Variation (gFOTV) [12], which impose sparsity of
the spatial fractional derivatives so that it locates source peaks by providing the freedom
of choosing smoothness order.

As summarized above, numerous algorithms that were based on different source con-
figuration assumptions or prior knowledge were presented to solve the inverse problem.
Traditional algorithms solve the EEG inverse problem independently for different brain
states without leveraging the label information, that will make it hard to compare the
reconstructed sources under different brain states due to its low SNR (Signal-to-Noise
Ratio) of the EEG signal. To the best of our knowledge, few researchers come up with
a model that can integrate EEG inverse problem with label information (e.g. happiness,
sadness, and surprise) to find task related discriminative sources except our previous work
[13]. To explicitly extract factual sources and eliminate the spurious ones, we proposed
the graph regularized version of discriminative source reconstruction that has the capabil-
ity of promoting intra-class consistency, and we tested it on synthetic data and illustrated
its effectiveness in discovering task related sources.

2 The Inverse Problem

Under the quasi-static approximation of Maxwell’s equations, the EEG signal measure-
ments X can be described as the following linear function of current sources S:

X = LS + E, (1)

where X 2 RNc⇥Nt is the EEG data measured at a set of Nc electrodes for Nt time
points, L 2 RNc⇥Nd is a wide matrix called lead field matrix that maps the brain source
signal to sensors on the scalp, each column of L represents the activation pattern of a
particular brain source to the EEG electrodes, S 2 RNd⇥Nt represents the corresponding
neural electric field in Nd source locations for Nt time points. E 2 RNc⇥Nt is additive
noise. An estimate of S can be found by minimizing the following cost function, which is
composed of a data fidelity term and a regularization term:

argmin

S
kX � LSk2F + �⇥(S), (2)

where k·kF is the Frobenius Norm. The regularization term ⇥(S) can be used to guarantee
smooth source configurations temporally or spatially and enforces neurophysiologically
plausible solutions or to guarantee sparsity in source solution. For example, to restrict the
total number of activated voxels to be less than or equal to k, the constraint ksik0 6 k

can be used. Even though `0-norm is the best intuitive formulation to restrict number of
activated sources, it’s a common practice to use approximated norm such as `1 to avoid
the problem being NP-hard when solving EEG inverse problem. For the ith time point,
the `1 regularized formulation is given below:

hsi i = argmin

si
kxi � Lsik22 + �ksik1. (3)

Given the EEG recordings at a time point, which is denoted as ith column xi of X ma-
trix, we want to represent the signal with minimum error by trying to find the best linear
representation from activation patterns (atoms) in the over-complete dictionary L [13].
The solution si is the sparse coding for the xi in the dictionary L, the non-zero entries in
si corresponding to a column in the dictionary matrix L represent the activated regions
inside the brain [13].
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3 Proposed Framework

3.1 Graph Regularized Discriminative Source Imaging

Due to the fact that EEG signal is non-stationary and typically the SNR is very low, it’s
important to get consistent inverse solution under the same brain status and eliminate
the spurious sources that are usually not consistent within the same class. Inspired by
the successful applications of graph regularization in computer vision community [1][5],
the proposed model of retrieving task related discriminative source is presented, which
is termed as Graph Regularized Discriminative Source Imaging (GRDSI), and comprises
the data fidelity term and label guided graph regularization term:

hS i = argmin

S
kX � LSk2F + �kSk1,1 +

�

2

NX

i,j=1

ksi � sjk22 Mij , (4)

where the first term is the fidelity term, the second term is the cost of sparse coding,
k·k1,1 is the `1 norm notation for a matrix, equal to the sum of the absolute value of all
elements in a matrix. The third term is the graph regularization term that requires all the
sparse coder within the same category remains similar pattern while making the sparse
representation for different class distinct from each other. The definition of M matrix can
be written as:

Mij =

⇢
1, if (si,sj) belong to the same class
0, if (si,sj) belong to different classes

The goal of this formulation is to find discriminative sources while maintaining the ro-
bustness of in-class reconstructed sources.
Remarks on design of M matrix

When (si, sj) belong to the same class, design the value of Mij to be positive will add
penalty when the intrinsic geometry (si, sj) is different, thus promoting intra-class con-
sistency of the source and reduce the spurious sources estimated at each time point.
Define D as a diagonal matrix whose entries are column or row sums of the symmetric
matrix M , Dii =

P
j Mij , define G = D�M , G is called graph Laplacian [1], The third

term of Eq.4 can be further derived in the following way:

NX

i,j=1

ksi � sjk22 Mij =

NX

i,j=1

(si
T
si + sj

T
sj � 2si

T
sj)Mij = 2tr(SGS

T
) (5)

As a result, Eq.4 is further derived as:

hS i = argmin

S
kX � LSk2F + �kSk1,1 + �(Tr(SGS

T
)) (6)

Eq.6 can be efficiently solved using feature-sign search algorithm [1][11].

3.2 Common Sources Decomposition with Voting Orthogonal Matching
Pursue(VOMP)

Under the assumption of strong common spontaneous source activation pattern, the con-
tribution of discriminative sources to the EEG recorded data is relatively small, making
the solution space for different classes highly correlated and difficult to find discrimina-
tive sources. As a result, the convex hull spanned by all the source configuration is limited
to a tiny portion of the space [18]. In order to address that, we use the idea of “cross-and-
bouquet” model [18] and come up with a useful step that is to decompose of X to find



4 Feng Liu, Rahilsadat Hosseini, Jay Rosenberger, Shouyi Wang, and Jianzhong Su

Algorithm 1 Decomposition of Non-discriminative Sources with VOMP
INPUT: Lead field matrix L, EEG data X , maximum number of common sources T

max

, minimum
voting acceptance threshold p
OUTPUT: S

c

, result of removed common sources X
new

Initialization: T  1, ⌦ = ;, R = X , R
new

= X , S0 = 0

while Stopping criteria is not met do
for i 2 1, ..., N

t

do
s
i

 OMP(L, x
i

, 1)
q
i

 nonzero index of s
i

end for
q
best

 most frequent q
i

if T = T
max

or frequency of f(q
best

) < p then
break;

else
⌦  ⌦ [ q

best

; L
0
= (L:,i|i 2 ⌦) ; S

0
 pinv(L0)X; S

0
 mean(S

0
); R

new

 
X � L0S0

end if
for k 2 1, ..., C do

Rk

new

= {R
new

(i)|i 2 class k} ;
Rk = {R(i)|i 2 class k}

end for
if
��Rk

new

�� <
��Rk

�� for k 2 1, ..., C then
continue;

else break;
end if
T  T + 1; R R

new

end while
X

new

= R
new

; S
c

= S0

return S
c

, X
new

the common sources shared by different classes. The Voting Orthogonal Matching Pursue
(VOMP) is proposed and described in Algorithm (1). The aim is to recover the common
sources across all classes. The core part of VOMP is Orthogonal Matching Pursue (OMP)
which is a very efficient algorithm. After the decomposition of common source, its con-
tribution to the EEG data X is also removed. The new EEG data after removal of the
common source is written as Xnew = X � LSc.

Based on the discussion above, the proposed framework to solve Problem 6 is sum-
marized in Algorithm (2) and illustrated in Fig.1.

4 Numerical Results

We used a recently developed realistic head model called ICBM-NY or “New York Head”
[9]. The dimension of lead field matrix we are using is 108⇥2004, representing 108 chan-
nels and 2004 voxels. We also assume that source orientation is perpendicular to the cortex
surface. In each simulation, noises originate from sensor level and cortex voxel level both
contributed to the recorded EEG data. The SNR is calculated as SNR = 20 log10

kSk2
kNk2

.
We show the effectiveness of the graph regularization term in reconstructing the discrimi-
native sources by comparing it with the other eight benchmark algorithms, including Elas-
ticNet, Homotopy, DALM, PDIPA, L1LS, FISTA, sLORETA, MNE. The former 6 algo-
rithms are compared in image reconstruction applications and can be referred to Ref.[19]
for details.

We designed the spontaneous common sources with a magnitude of 0.8 with standard
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Fig. 1: Procedures of our framework: After gathering labeled EEG recorded data, the
brain model is constructed using finite element method (BEM) based on MRI images,
the VOMP algorithm is used to decompose the primary common source starting with a
high minimum voting percentage, and then solve it using feature-sign search algorithm,
the last step is to map discriminative sources to the cortex.

Algorithm 2 Proposed framework of solving Problem 6
INPUT: Lead field matrix L, preprocessed EEG signal matrix X , label matrix H
OUTPUT: Discriminative source S

d

Initialization: T  1, ⌦ = ;, R = X , R
new

= X , S0 = 0

while Stoping criteria not met do
(1) Using VOMP algorithm for common source decomposition;
(2) Solve the following sparse coding problem for < s(i) >= argmin

s(i)
L(s

i

) + �ks
i

k1
using the feature-sign search algorithm [11] ;
(3) Adjust the voting threshold p;

end while

deviation to be 0.1 and task related discriminative source with a magnitude of 0.2 with a
standard deviation of 0.05 located in different Region Of Interest (ROI)s from the common
sources. The ROI we used here are defined in Ref.[7]. We sampled 200 time points for
each class and did the experiment 5 times to get the average accuracy of the reconstructed
source. For the GRDSI parameter, we set � to be 0.05 and ↵ to be 0.06; The noise matrix
is designed to affect the EEG recording together with the true source signal. For each time
point, 3 random voxels are corrupted randomly with the average value being 0.2, 0.4, 0.6
and variance being 0.05 based on different SNR design. All computations were conducted
on a 64–bit Linux workstation with 3.00 GHz i7-5960x CPU and memory of 64 GB.

The reconstruction performance of the proposed method as well as the benchmark
methods based on 150 experiments are summarized in Table 1. All of the values in Ta-
ble 1, except the Time column (in seconds) represents distance in (mm) from ground
true source to the reconstructed source calculated from the shortest path along cortex sur-
faces. PSE represents primary source error, which is the distance of reconstructed primary
source to the ground truth primary source. PSE measures the capability of each algorithm
to reconstruct the common sources. When the reconstructed location is in a different hemi-
sphere from the ground truth, there is no path connecting those two voxels, so we mark
the distance to be 250 mm. EC1 represents error for class 1, which is the distance of the
reconstructed discriminative source to the ground truth. EC2 and EC3 are similarly de-
fined.
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To illustrate the effect of the proposed framework, the ground truth of the acti-

Fig. 2: Ground truth for all 3 classes

vated pattern is given in Fig.2, with the reconstructed source by MNE, sLORETA and
our method given in Fig.3–5. We can see from Table 1 and the Fig.3–5 that when the
SNR is large, all the algorithms performs well in reconstructing primary source, as for
the discriminative sources for different classes, our method can achieve almost perfect re-
construction. All other algorithms’ performances are also acceptable when SNR is large,
except for sLORETA, MNE and ElasticNet. When we increase the noise, all of the algo-
rithms can still achieve high accuracy in finding the primary source. For the discrimina-
tive source, our algorithm performs much better. We also validated that, to solve a pure `1
EEG inverse problem, the Homotopy algorithm performs better in most cases than other
algorithms in the EEG inverse problem, which is in line with Ref.[19].

Table 1: Reconstruction Accuracy Summary
SNR = 10 SNR = 22

Methods Time PSE EC1 EC2 EC3 Time PSE EC1 EC2 EC3
ElasticNet 0.001 43.4 142.3 159.6 159.2 0.001 8.87 172.5 195.0 13.0
Homotopy 0.12 3.43 53.2 42.5 40.8 0.09 0 0.28 0.70 8.00

DALM 0.07 4.59 53.0 43.1 39.6 0.08 0 0.28 1.73 7.98
PDIPA 0.29 3.43 53.4 45.0 40.4 0.26 0 0.28 0.63 7.98
L1LS 3.89 0.69 51.6 67.4 37.1 3.92 0.069 0 0 4.36
FISTA 0.95 0.63 61.0 95.2 47.6 0.96 40.1 66.1 73.5 54.5

sLORETA 0.015 10.2 131.7 178.2 142.8 0.02 2.62 194.1 164.2 123.5
MNE 3e-5 29.3 131.8 157.7 131.7 3e-5 4.30 119.8 136.2 113.5

GRDSI (Proposed) 0.15 1.85 14.4 4.13 3.67 0.10 0 0 0 2.12

5 Conclusion

In this paper, we proposed to use label information to retrieve discriminative sources cor-
responding to different brain status. A graph regularized EEG inverse formulation called
GRDSI that implicitly uses the label information was presented that can boost the intra-
class consistency and eliminate spurious sources. We bring up the idea of cross-and-
bouquet in the inverse problem and present an efficient algorithm to address the high co-
herence problem of the reconstructed signals given high background spontaneous source
signal. An efficient algorithm called feature-sign search algorithm is used to solve the
GRDSI problem. We illustrated the superior of our algorithm in retrieving discriminative
sources while traditional algorithms failed given certain level of noises.
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Fig. 3: MNE solution: The above row is the MNE solution for class 1; Class 2 and class
3 is illustrated in the middle and bottom row. The solution MNE gives is not sparse, with
too many spurious sources of small magnitude.

Fig. 4: sLORETA inverse solution: sLORETA can successfully reconstruct the primary
source, however the secondary source is not successfully reconstructed. Compared to the
solution of MNE, sLORETA can suppress spurious sources with small magnitude.
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