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Abstract. Electroencephalography (EEG) is one of the most promising noninvasive neuroimag-
ing tools that provides high temporal accuracy. As the EEG electrode sensors measure elec-
trical potentials on the scalp instead of direct measuring activities of brain voxels deep inside
the head, many approaches is proposed to infer the activated brain sources due to its signif-
icance in neuroscience research and clinical applications. However, since mostly part of the
brain activity is composed of the spontaneous neural activities or non-task related activations,
true task relevant activation sources will be corrupted in strong background signal/noises. For
decades, the EEG inverse problem was solved in an unsupervised way without any utilization
of the label information that comes from different brain states (e.g. happiness, sadness, and sur-
prise). We argue that by leveraging label information, the task related discriminative sources
can be much better retrieved. A novel model for solving EEG inverse problem called Laplacian
Graph Regularized Discriminative Source Reconstruction (LGRDSR) which aims to explicitly
extract the discriminative sources by implicitly coding the label information into the graph reg-
ularization term. The proposed model is capable of estimation the discriminative brain sources
under given different brain states and reduce the variation within classes simultaneously. The
proposed model is general and can be extended with different neurophysiological assumptions
or prior. Simulated result show the effectiveness of our proposed framework.
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1 Introduction

Due to its low cost, easy portability, high temporal resolution and no exposure to radioligands,
electroencephalography (EEG) has become one of the most popular brain imaging tools. Compared
to other techniques such as positron emission topography (PET) and functional magnetic resonance
imaging (fMRI), EEG is a direct measurement of real time electrical neural activities, and EEG
is more suitable to answer exactly when different brain modules are activated and hence in what
processing steps each module is involved [9]. PET and fMRI cannot be used to assess rapidly
varying neuronal activity due to the slow response of metabolism [6]. Successful applications of
EEG can be found in several clinical environments, such as real time monitoring of patients’ sleep
apnea[14], detection and prediction of epilepsy seizures [2].

To infer the brain source from the recorded EEG is termed as inverse problem. In order to solve
the inverse problem, different priors or assumptions can be made. The most traditionally used priors
in EEG source reconstruction are based on the `2 norm, leading to what is known as the minimum
norm (MN) inverse solver [5]. This MN inverse solver leads to a minimum norm estimates (MNE)
of the sources. However, `2-based solvers suffer from several limitations, e.g. the solution inside
the brain will be diffuse for the overestimation of activated sources. Other assumption priors are
also presented with different methodologies, such as, Multiple Signal classifier (MUSIC) and Re-
cursively applied and projected MUSIC (RAP MUSIC) [10][11] which adopted spatio-temporal
independent topographies (IT) model with recursive subspace projection; low resolution brain elec-
tromagnetic tomography (LORETA) [12] and stardardized LORETA [13] which enforces spatial
smoothness of the source located on neighboring voxels, focal under determined system solution
(FOCUSS) [3] which combines the advantages of distributed dipole modeling method and linear
estimation method by allowing current sources to take arbitrary shape with high resolution;
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As summarized above, based on different assumptions or prior knowledge, different algorithms
solving the inverse problem were proposed. Usually, when we designed a sequence of experiments
to record the EEG and asked the subjects to perform different psychological tasks within certain
time windows, the label information on the recorded EEG data can be easily obtained. Traditional
algorithms solve the EEG inverse problem independently without leveraging the label information,
that will make it hard to compare the reconstructed sources under different brain states due to its
low SNR(Signal-to-noise ratio) of the brain. EEG signal is highly non-stationary and contains much
noises, to explicitly extract factual sources and promote the in-class consistency and out-class dis-
crimination, we implemented the graph regularized version of discriminative source reconstruction,
and tested on simulated data and real EEG data.

The contributions of this paper is listed in the following: (1) We proposed to use label informa-
tion to solve the EEG inverse problem in a supervised way. (2) A graph regularized EEG inverse
model is presented that can promote in-class consistency and out-class discrimination. (3) A Voting
Orthogonal Matching pursuit algorithm is given to decompose the common sources motivated by
the “cross-and-bouquet” model [16].

2 The Inverse Problem

Under the quasi-static approximation of Maxwell’s equations, the measured EEG signal X can be
described as the following linear function of current sources S:

X = LS + E (1)

where X ∈ RNc×Nt is the EEG data measured at a set of Nc electrodes for Nt time points, L ∈
RNc×Nd is the lead field matrix which maps the brain source signal to sensors on the scalp, each
column of L represents the activation pattern of a particular source to the EEG electrodes, S ∈
RNd×Nt represents the corresponding neural potential in Nd sources locations for all the Nt time
points. E ∈ RNc×Nt is additive noise. L is a matrix with number of columns far much greater
than the number of rows, making the inverse problem ill-posed. an estimate of S can be found by
minimizing the following cost function, which is composed of a quadratic error and a regularization
term:

argmin
S
‖X − LS‖2F + λΘ(S) (2)

The regularization term Θ(S) is to discourage complicated source configurations temporally or
spatially and enforces neurophysiologically plausible solutions, and ‖·‖F is the Frobenius Norm.
The regularization term take the form of `2, `1 or mixed norm, spatially smooth formulation as
in LORETA estimation or spatially sparse formulation with least absolute shrinkage and selection
operator estimate. For example, to restrict the total number of activated sources less than a scalar
T , the following `0-Norm formulation can be used:

argmin
S
‖X − LS‖2F s.t. ‖si‖0 6 T, (3)

As is well know that `0-norm is the best intuitive formulation to restrict number of activated sources,
almost of neuroscience researchers, if not all, for solving EEG inverse problem use approximated
norm such as `1 to avoid the problem being NP-hard. For the ith time point, the `1 regularized
formulation is given below:

si = s∗(xi, L) = argmin
x
‖xi − Lsi‖22 + γ‖si‖1 (4)

The ill-posed problem of Eq.1 originates from the fact thathe L matrix as a dictionary, and each
column in L is an atom of the dictionary. Given the EEG recordings at a time point, which is
denoted as ith column xi of X matrix, we want to represent the signal with minimum error by
trying to find the best linear representation from activation patterns (atoms) in the over-complete
dictionary L. The solution si is the sparse coding for the xi in the dictionary L, the non-zero entries
in si corresponding to a column in the dictionary matrix L represent the activated regions inside the
brain.
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3 Proposed Framework

3.1 Discriminative Source Reconstruction with Graph Regularization

Due to the fact that EEG signal is non-stationary and typically the SNR is very low, it’s impor-
tant to get consistent inverse solution given under same brain status and discriminative solutions
under different brain status. Inspired by the successful applications of graph regularization in com-
puter vision community [4][1], the proposed model in form of discriminative dictionary learning
is described, which is termed as Laplacian Graph Regularized Discriminative Source Reconstruc-
tion (LGRDSR), and comprises the source reconstruction fidelity term and label guided in-class
consistency and out-class discrimination term:

〈S 〉 = argmin
S
‖X − LS‖2F + γ‖S‖1,1 +

β

2

N∑
i,j=1

‖si − sj‖22Mij , (5)

where the first term is the fidelity term, the second term is the cost of sparse coding, ‖·‖1,1 is the
`1 norm notation for a matrix, equal to the sum of the absolute value of all elements in a matrix.
The third term is the graph regularization term that requires all the sparse coder within the same
category remains similar pattern while making the sparse representation for different class distinct
from each other. The definition of M matrix can be written as:

Mij =

{
+1, if (si,sj) belong to the same class
−1, if (si,sj) belong to different classes

The goal of this formulation is to find discriminative sources while maintaining the robustness of
in-class reconstructed sources.
Remarks on design of M matrix
When (si, sj) belong to the same class, design the value ofMij to be positive will add penalty when
the intrinsic geometry (si, sj) is different, thus promoting in-class consistency of the source. When
(si, sj) belong to different classes, design the value of Mij to be negative will explicitly promote
out-class discrimination of the source. In practice, if we care more about in-class consistency, we
can set Mij = 0 when (si, sj) belongs to different classes. The magnitude of Mij can also be
adjusted to tailor the relative weight between in-class consistency and out-class discrimination.

Define D as a diagonal matrix whose entries are column or row sums of the symmetric matrix
M , Dii =

∑
j Mij , define G = D −M , G is called graph Laplacian [1], The third term of Eq.5

can be further derived in the following way:

N∑
i,j=1

‖si − sj‖22Mij =

N∑
i,j=1

(si
T si + sj

T sj − 2si
T sj)Mij = 2tr(STGS) (6)

As a result, Eq.5 is further derived as:

〈S 〉 = argmin
S
‖X − LS‖2F + γ‖S‖1,1 + β(Tr(STGS)) (7)

Eq.7 can be solving using feature-sign search algorithm [1][8], which converted the nondifferen-
tiable `1 norm problem to a `1-regularized problem which better convergence rates.

3.2 Common Sources Decomposition with Voting Othogonal Matching Pursue(VOMP)

Under the assumption of strong common spontaneous source activation pattern, the contribution of
discriminative sources to the EEG recorded data is relatively small, making the solution space for
different classes highly correlated, which is hard to solve. In order to address that, we use the idea
of a useful step is to decompose of X , which is very helpful in the reconstruction of discriminative
sources. Similar procedure The Voting Othogonal Matching Pursue (OMP) is proposed. The aim is
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Algorithm 1 Decomposition of Non-discriminative Sources with Voting OMP (VOMP)
INPUT: Lead field matrix L, preprocessed EEG signal matrix X , label matrix H , Prior knowledge of maxi-
mum number of common activated sources Tmax, Minimum Voting Acceptance percentage p
OUTPUT: Sc, result of removed common sources Xr

Initialization: T ← 1, Ω = ∅, R = X , Rnew = X , S′ = 0

while Stopping criteria is not met do
for i ∈ 1, ..., Nt do

si ← OMP(L, xi, 1) . Orthogonal Matching Pursuit with only 1 iteration
qi ← nonzero index of si . q is used to denote nonzero element index

end for
qbest ← most frequent qi . qbest is the voted nonzero index
if T = Tmax or frequency of f(qbest) < p then

break;
else

Ω ← Ω ∪ qbest ; L
′
= (L:,i|i ∈ Ω) ; S

′
← pinv(L′)X

S
′
← mean(S

′
) . make the common source consistent across all classes

Rnew ← X − L′S′

end if
for k ∈ 1, ..., C do . Loop for all the classes

Rk
new = {Rnew(i)|i ∈ class k} ; Rk = {R(i)|i ∈ class k}

end for
if
∥∥Rk

new

∥∥ < ∥∥Rk
∥∥ for k ∈ 1, ..., C then

continue; . Continue if and only if the residual for all classes are decreasing
else break;
end if
T ← T + 1; R← Rnew

end while
Xr = Rnew; Sc = S′

return Sc, Xr

to recover the common sources across all classes. As we assumed, the strong spontaneous source
activation pattern is very strong, thus making the convex hull spanned by all the source configuration
to a tiny portion of the space [16]. We propose the denoising model and an very efficient algorithm
to solve it. We used orthogonal matching pursuit algorithm to solve it.

〈Sc 〉 = argmin
Wc

‖X − LSc‖2F s.t. ‖si‖0 6 Tmax, i = 1, 2, ...Nd (8)

Algorithm 2 Proposed framework of solving Problem 7
INPUT: Lead field matrix L, preprocessed EEG signal matrix X , label matrix H
OUTPUT: Discriminative source Sd

Initialization: T ← 1, Ω = ∅, R = X , Rnew = X , S′ = 0

while Stoping criteria not met do
(1) Using VOMP algorithm for common source decomposition;
(2) Solve the following sparse coding problem for < s(i) >= argmin

s(i)
L(si) + γ‖si‖1

using the feature-sign search algorithm [8] ;
(3) Adjust the voting threshold p;

end while

4 Numerical Result

We used a recently developed realistic head model called ICBM-NY or “New York Head” [7]
which is based on highly detailed standardized finite element model (FEM) of the non-linear aver-
aged anatomical template-ICBM152. In the simulation experiments, we designed common sources
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Fig. 1: Procedures of our framework: After gathering labeled EEG recorded data, the brain model
is constructed using finite element method (BEM) based on MRI images, then we first use the
VOMP algorithm to decompose the primary common source starting with a high minimum voting
percentage, and then solve it using feature-sign search algorithm, do these steps alternative until
converged, last step is to map discriminative sources to the cortex.

which has much higher magnitude and three discriminative sources under three assumed brain con-
ditions with smaller magnitude compared to common sources. The dimension of lead field matrix
is 108× 2004, representing 108 channels and 2004 voxels. Like the authors in Ref.[15] estimating
source when source signal is around the peak, we designed 2 neighbor voxels to be the sponta-
neous common sources with a magnitude of 0.8 with standard deviation to be 0.1 and another 2
neighbor source as the secondary source with magnitude to be 0.2 with standard deviation of 0.05.
We designed three classes, all the three class share the same common sources and have their own
discriminative source. We sampled 200 time points for each class, and did the experiment 5 time to
get the average accuracy of the reconstructed source. For the LGRDSR parameter, we set β to be
0.05 and γ to be 0.1; The noise matrix is designed to effect the EEG recording together with the true
source signal. For each time point, 3 random voxels are corrupted randomly, with controlled mag-
nitude randomly within a region.The SNR is calculated as SNR = 20 log ‖S‖‖N‖ . The reconstruction
performance of the proposed method as well as the benchmark methods is given in Table 1.

The 8 benchmark method includes ElasticNet, Homotopy, DALM, PDIPA, FISTA, sLORETA,
WMN. The former 6 can be referred to Ref.[17]. In table 1, time is recorded with unit of second
(s), PSA represent primary source (spontaneous common source) accuracy, which is to measure the
capability of each algorithm to reconstruct the common sources. All the values except the Time
column in the table represents the distance in (mm) of ground true source to the reconstructed
source calculated using shortest path algorithm. F means failed when the reconstructed location is
on a different hemisphere. EC1 represents error for class 1, which is to calculate the distance of
the reconstructed discriminative source with the ground true. EC2 and EC3 are similarly defined.
To illstrate the effect of the proposed framework, the ground truth of the activated pattern is given
in Fig.2, with the reconstructed source by WMN, sLORETA and our method given in Fig.3–5. We
can see from Table 1 and the Fig.3–5 that when the SNR is large, all the algorithms performs well
in reconstructing primary source, as for the discriminative sources for different classes, our method
can achieve perfect reconstruction performance. All other algorithms’ except sLORETA and WMN
performance are also acceptable when SNR is large. When we increase the noise, all the algorithms
can still achieve high accuracy in finding the primary source. For the discriminative source, our
algorithm perform much better. We also validated that, to solve a pure `1 EEG inverse problem,
Homotopy algorithm performs better than other algorithms in the EEG inverse problem, which is
in accordance with Ref.[17].
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Fig. 2: Ground truth for all 3 classes

Table 1: Reconstruction Accuracy Summary
SNR = 16.5 SNR = 24.5

Methods Time PSA EC1 EC2 EC3 Time PSE EC1 EC2 EC3
ElasticNet 0.011 6.96 F F F 0.01 6.96 F F F
Homotopy 0.56 0.004 124.0 86.1 129.1 0.19 0 3.02 3.29 3.43

DALM 0.30 0.36 97.9 69.8 158.5 0.29 0 3.29 4.22 3.90
PDIPA 1.78 0.37 117.1 74.9 135.0 1.07 0 4.53 4.21 4.45
L1LS 4.09 0.42 123.3 72.8 78.8 136.6 0 3.13 3.01 3.87
FISTA 2.63 10.18 138.5 75.9 192.0 2.63 0 8.64 9.15 8.30

sLORETA 0.055 1.71 F F F 0.54 0 F F F
WMN 0.0004 8.43 F F F 0.0004 8.71 F F F

LGRDSR 0.28 0 4.33 3.97 4.01 0.26 0 0 0 0

5 Conclusion

In this paper, we proposed to use label information to retrieve discriminative sources corresponding
to each different brain status. Although solving sparse representation with graph regularization in
computer vision and compressive sensing community is nothing new, its application in EEG inverse
problem that implicitly using label information has never been proposed. Our model is presented
with a Laplacian graph regularized term that can boost the in-class similarity and discourage the
out-class similarity, thus making the source solution from the same class more robust to the noise.
We bring up the idea of cross-and-bouquet in the inverse problem and present an efficient algorithm
to address the highly coherence of the reconstructed signals given high background spontaneous
source signals. We illustrated that current algorithms can’t find the discriminative sources and the
superior of our algorithm given certain amount of noises.
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Fig. 3: WMN solution: The above row is the WMN solution for class 1; Class 2 and class 3 is
illustrated in the middle and bottom row. The solution WMN gives is not sparse, with too many
spurious sources of small magnitude.

Fig. 4: sLORETA inverse solution: The above row is the sLORETA solution for class 1; Class 2
and class 3 is illustrated in the middle and bottom row. sLORETA can successfully reconstruct the
primary source, however the secondary source is not successfully reconstructed. Compared to the
solution of WMN, sLORETA can suppress the numerous spurious sources with small magnitude.
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Fig. 5: LGRDSR reconstructed source: The reconstruction solutions for 3 classes are given in each
row. As can be seen from the illustration, the discriminative source can be successfully reconstructed
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