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Abstract 

In this paper, an approximate dynamic programming (ADP) method using design and analysis of 

computer experiments for infinite-horizon Markov decision problems is presented, aiming to mitigate the 

"curse of dimensionality" in continuous state and decision spaces. In this algorithm, quasi Monte Carlo 

sampling methods and adaptive value function approximation are incorporated within a sampling-based 

fitted value iteration algorithm. In addition, we use “translation” of the value function as a basis to 

develop a new stopping rule, which may stop the ADP algorithm earlier than the traditional 𝐿∞-norm 

stopping rule and reduce computational effort. Wait-and-see, mean-value and greedy policies, are used as 

benchmarks to demonstrate the performance of selected ADP policies. Numerical experiments are 

conducted on three infinite-horizon inventory problems with different dimensions.  The results 

demonstrate that the proposed ADP algorithm is well-suited to solve high-dimensional, infinite-horizon 

stochastic dynamic programs over continuous state and decision spaces, and the proposed stopping rule is 

able to select a high-quality ADP policy with fewer value iterations.  

Key words: infinite-horizon Markov decision problems, approximate dynamic programming, design and 

analysis of computer experiments, stopping rule 

1. Introduction 

Dynamic programming (DP) was first introduced by Bellman (1957) as an optimization approach to solve 

a system that evolves through a series of consecutive stages or time periods. Value iteration as a popular 

method, offers a simple approach to obtaining optimal value functions and policies for finite-state 

discounted dynamic programs. Nevertheless, due to the curse of dimensionality, the traditional approach 

still has limitations in solving high-dimensional problems, especially over continuous state spaces. Dating 



back to Bellman and Dreyfus (1959), approximate value iteration (AVI) was proposed by approximating 

each value function using a linear combination of predefined basis functions, and in many cases, an 

approximation to the optimal value function is sufficient to achieve a good control performance such as 

with a 3-dimensonal elevator control problem (Crites and Barto 1996). As a special case of AVI, 

sampling-based fitted value iteration (FVI) algorithms (Chen et al. 1999; Jung and Uthmann 2004; Ernst 

et al. 2005; Riedmiller 2005) have been developed and used in approximate dynamic programming (ADP) 

and reinforcement learning (RL) communities. However, none of this research explains why 

sampling-based ADP/RL algorithms can be expected to work well due to approximation errors. 

Specifically, Tsitsiklis and Van Roy (1996) gave several simple counterexamples to illustrate that 

sampling-based FVI is unstable, and the value function diverges. Recognizing this issue, Munos and 

Szepesvari (2008) studied the interaction of value iteration and function approximation methods 

theoretically for discounted, large (possibly infinite) state space, finite-action Markov decision processes 

(MDP) when only a generative model of the environment is available. They provided finite-time 

performance bounds for sampling-based FVI that hold with high probability, theoretically. After that, 

Antos et al. (2008) studied a variant of fitted Q-iteration (Ernst et al. 2005) and proved a first finite-time 

bound for value function based algorithms for continuous state and action problems. These two 

theoretical works provide a solid foundation for sample-based FVI algorithms. However, as Munos and 

Szepesvari (2008) explained, FVI may suffer from the curse of dimensionality except in some specific 

conditions (sparsity, extreme smoothness, etc). Hence, adaptive methods are needed for more general 

problems. It is noted that not only FVI, but other ADP/RL algorithms also struggle to overcome the curse 

of dimensionality, especially with problems over continuous state and decision spaces. For example, 

Ernst et al. (2009) considered only two state variables and one decision variable in a continuous space, 

and Wei et al. (2015) only used two state variables and two decision variables in a continuous space. 

Some exceptions include the work of Peng et al. (2016), which aimed to solve high-dimensional, 

infinite-horizon MDPs over continuous state spaces. However, their algorithm requires substantial 



computation, since it needs millions of tuples for value function training. In addition, optimization was 

conducted in a discrete environment.  

Given the limitations of the existing ADP/RL algorithms, an infinite-horizon approach is presented 

in this study based on the finite-horizon work of Chen et al. (1999), which was the first ADP approach to 

use statistical methods in order to mitigate the curse of dimensionality in a continuous state and decision 

space. In this work, we refer to this approach as design and analysis of computer experiments (DACE, 

Sacks et al. 1989, Chen et al. 2006).  

The DACE ADP algorithm is appropriate for studying complex computer models, such as vehicle 

safety simulations or air quality models (Chen et al. 2006).  Specifically, computer experiments involve 

controlled runs of a computer program from which the experimenter gains information about a complex 

system (the control of runs comes from an experimental design), therefore, design of experiments is used 

to sample the input space of the computer model, optimization is conducted according to constraints for 

each sampled state to achieve the output and corresponding decisions. Then, statistical modeling 

techniques are used to estimate the relationship between the input and output for function approximation. 

For ADP, the relevant computer model is the stagewise value function optimization problem, where the 

input space corresponds to the state space, and the output corresponds to the value of the value function.  

Hence, the relationship modeled is the value function.  As noted, this DACE ADP algorithm is also a 

variant of sample-based ADP approaches. So far, the DACE ADP algorithm has been employed to solve a 

9-dimensional inventory problem (Chen et al. 1999), a 20-dimensional wastewater treatment system 

problem (Tsai et al. 2004), a 30-dimensional water reservoir problem (Cervellera et al. 2006), and a 

524-dimensional nonstationary ground-level ozone pollution problem (Yang et al. 2009). However, all of 

these problems are over a finite horizon. Therefore, with the help of solid theoretical performance bounds 

developed in Munos and Szepesvari (2008) and Antos et al. (2008) and the achieved success of the DACE 

based finite-horizon ADP algorithm in high-dimensional problems mentioned above, in this study, we 



extend the DACE algorithm to the infinite-horizon case under stationary conditions, and focus on solving 

high-dimensional, infinite-horizon problems over continuous state and decision spaces.  

1.1. Contribution 

When the transition probability, cost function and the process governing the exogenous information are 

stationary, the convergence of the value function is the essence of the infinite horizon problems. However, 

for a problem over a continuous state and decision space, sampling all the states is impossible, but by 

increasing the number of samples and the richness of the function space simultaneously, the resulting 

algorithm can solve a wide class of MDPs (Munos and Szepesvri 2008). From the statistical perspective, 

DACE attempts to overcome the curse of dimensionality in the state space by using a space-filling 

method to sample the state space with a limited set of representative points and through a statistical 

modeling method to develop a model that cover the state space. In this process, the decision variables are 

calculated through computer experiments as mentioned above, so, we do not need to enumerate the 

decision space as the other ADP/RL algorithms such as in a Q-iterated algorithm (Ernst et al. 2005), and 

the curse of dimensionality over the decision space can be avoided.   

     As suggested by Munos and Szepesvri (2008), an adaptive version of sampling-based FVI is 

needed to solve high-dimensional, infinite-horizon, problems over continuous state spaces since there is 

no prior knowledge how many states are needed to represent a state space. Considering this issue, in this 

study, we aim to develop an adaptive infinite-horizon, ADP algorithm on the basis of the DACE 

algorithm proposed in Chen et al. (1999) and an adaptive value function approximation (AVFA) method 

(Fan et al. 2013). Additionally, as stated in Ernst et al. (2005), for some supervised learning algorithms 

that employ statistical modeling tools for the value function approximation, there is no guarantee that the 

sequence of approximate value functions actually converges using the Bellman error bound (Bellman 

1957), which is referred to as the 𝐿∞-norm stopping rule in this study. Multivariate adaptive regression 

splines (MARS), as a supervised learning algorithm, have been employed in finite-horizon cases (e.g. 

Chen et al. 1999 and Yang et al. 2009). However, whether the 𝐿∞-norm stopping rule is able to identify a 



good solution is investigated when using MARS. Furthermore, we propose a new stopping rule, referred 

to as the 45-degree line stopping rule that is less restrictive than the traditional 𝐿∞-norm stopping rule 

but nonetheless identifies an optimally equivalent value function (OEVF), which can be used in the MDP 

to make the same decisions as an optimal value function. Consequently, the 45-degree line stopping rule 

may terminate the ADP algorithm earlier than the 𝐿∞-norm stopping rule and yield an optimal policy to 

the MDP. Although this stopping rule is applied to the DACE ADP algorithm in this paper, it could also 

be used in many other ADP/RL algorithms for infinite-horizon problems to save the computational effort. 

To demonstrate the performance of the proposed DACE ADP algorithm and stopping rule on the 

infinite-horizon cases, numerical experiments are conducted on an inventory problem with three different 

scales. As stated in Salas and Powell (2018), providing optimal policies as benchmarks are surprisingly 

rare in the ADP and RL communities. In the literature, a proposed ADP algorithm is usually compared to 

other existing ADP/RL algorithms, such as in Jiang and Powell (2015) and in Wei et al. (2015). However, 

comparing each ADP/RL algorithm requires adapting it to the continuous state and decision spaces, 

which is not straightforward. Instead, from a stochastic programming perspective, we use the mean-value 

(MV) policy to provide a good solution (Birge and Louveaux 1997) as a benchmark by using the average 

value of the uncertainty. Similarly, we consider the wait-and-see (WS) policy that gives an optimal 

solution, since perfect future information is assumed to be known before making decisions in the MDP. In 

the literature, the MV policy is similar to the lookahead policy with deterministic rolling horizon 

procedure (Powell 2011), and the WS policy has been used to generate a lower bound for the cost of a 

multiclass queuing application (Brown and Haugh 2017). In addition, Sarikprueck et al. (2017) built 

optimality bounds for an electric vehicle charging station control system using WS and MV policies. 

Hence, in this study, for the first time, we make use of these two policies to build bounds for the selected 

ADP policies. Thus, the contributions of this research are: 

(1). A new infinite-horizon DACE ADP algorithm to solve high-dimensional, MDPs over a continuous 

state and decision space is developed. 

(2). A theoretical foundation for the 45-degree line stopping rule is described. 



(3). Three inventory problems are simulated to demonstrate the performance of selected ADP policies 

versus the baseline greedy policy.   

(4). Optimality bounds based on the WS and MV policies from stochastic programming are determined to 

evaluate the quality of selected ADP policies. 

     The remainder of this paper is summarized as follows. Section 2 describes background on 

infinite-horizon ADP models and MARS; Section 3 introduces the DACE ADP algorithm for the 

infinite-horizon cases; Section 4 presents the new stopping criteria; Section 5 describes the policy 

evaluation methods; Section 6 shows the simulation results of applying the proposed methodology to 

three inventory problems; Section 7 gives conclusions and future research areas. 

2. Background 

2.1.    Infinite-horizon ADP model 

DP problems can be classified as either finite-horizon or infinite-horizon. The infinite-horizon 

formulation is more natural, since a specific finite time horizon is not easily specified in many real-world 

applications, and more importantly, it offers greater simplicity because stationary problems with infinite 

time horizon will lead to optimal stationary strategies (Bertsekas 2017). Infinite-horizon ADP is modeled 

using the following recursive formulation (Bellman 1957). 

𝑉(𝑥) = min௨∈Γ 𝐸൛𝑐(𝑥, 𝑢, 𝜉) + 𝛾𝑉൫𝑓(𝑥, 𝑢, 𝜉)൯ൟ,   ∀𝑥 ∈ 𝒳. (1) 

In Eq. (1), 𝑥 is a vector of state variables within a real domain 𝒳 ⊆ ℝ௡, 𝑢 is a vector of decision 

variables within a set of feasible decisionsΓ ⊆ ℝ௠, 𝜉 is a vector of stochastic variables, 𝑓 is a state 

transition function, 𝛾 ∈ (0,1) is a discount factor, c is a cost function, and V is the future value function 

(FVF). As described in Section 1, finding an FVF exactly is intractable for medium-sized problems. 

Consequently, ADP attempts to find an approximate FVF (aFVF, 𝑉෠ ) using the following formulation. 



𝑉෠ (𝑥) ≈ 𝑉෨ (𝑥) = min௨∈Γ 𝐸൛𝑐(𝑥, 𝑢, 𝜉) + 𝛾𝑉෠ ൫𝑓(𝑥, 𝑢, 𝜉)൯ൟ,   ∀𝑥 ∈ 𝒳. (2) 

Multiple methods can be used to construct an aFVF. In this research, we use a statistical modeling 

technique-MARS, which is described below. 

2.2.    Multivariate adaptive regression splines  

In previous DACE based research, MARS, introduced by Friedman (1991), has been utilized as a 

statistical regression tool, since it yields an adaptive continuous approximation model that does not 

impose any structural assumptions on the input and output data in the state space. That is, the use of 

MARS uncovers the structure of the value function. The MARS model, which essentially is a linear 

statistical model, constructs the relation from a set of coefficients and basis functions that are entirely 

“driven” from the regression data. The model yields accurate predictions from a forward stepwise 

algorithm to select model terms and a backward procedure to prune the model terms. One of the 

objectives of the forward stepwise algorithm is to select variables and appropriate knots simultaneously, 

since the MARS approximation bends to model curvature at “knot” locations. After completing the 

selection of basis functions, smoothness is applied to obtain a certain degree of continuity. The number of 

basis functions determines the flexibility and computational effort of MARS. The set of eligible knots are 

chosen to coincide with input levels, which are represented in the data.  

     The MARS backward algorithm is used to eliminate over-fitting, but this algorithm can often be 

omitted in order to save computational time due to the extremely low error variability in most DACE 

applications (Martinez et al. 2015). Instead of using the backward algorithm, an automatic stopping rule 

proposed by Tsai and Chen (2005) is incorporated in the forward algorithm to seek more robust models 

with fewer high-order interaction terms. In this study, a quintic version of MARS developed in Martinez 

et al. (2015) is used to model aFVFs. For detailed information of this version of MARS, please refer to 

Martinez et al. (2015) and Martinez (2013).  



3.   Infinite-horizon DACE ADP algorithm 

Consider the following DACE ADP algorithm to approximately solve infinite-horizon MDPs over 

continuous state and decision spaces. This algorithm includes an inner data loop and an outer DP loop. 

The data loop samples the state space sequentially to build an aFVF, and the DP loop, provides initial 

aFVFs for the data loop and checks for convergence. The DP loop in this study is based on the concept of 

the value iteration algorithm. In order to obtain an aFVF, different stopping criteria should be used for the 

data loop and the DP loop. A description of the algorithm is shown below: 

 

Figure 1. DACE ADP algorithm for infinite horizon MDPs 

Step 0: Initialization: 

    (a). Input a discount factor 𝛾, a state transition function 𝑓, and a cost function, 𝑐. 

    (b). Choose the training data set XTrain ⊂ 𝒳  and testing data set XTest ⊂ 𝒳  generated by 
low-discrepancy sequences. 

    (c). Set the iteration counter to 𝑘 ← 0, set the initial aFVF 𝑉෠଴ = 0, and the set of evaluated state 
variables 𝑋 ← ∅. 

Step 1: Iteration of DACE ADP algorithm:  

    (a). Set 𝑘 ← 𝑘 + 1. 

(b). For each state variable 𝑥 ∈ 𝑋Train − 𝑋 , solve 
𝑉෨௞(𝑥) = min௨∈୻ 𝐸൛𝑐(𝑥, 𝑢, 𝜉) + 𝛾𝑉෠௞ିଵ൫𝑓(𝑥, 𝑢, 𝜉)൯ൟ and set 𝑋 ← 𝑋 ∪ {𝑥}; 

    (c). Fit a regression model using the data ൛൫𝑥, 𝑉෨௞(𝑥)൯ൟ
௫∈௑Train  to obtain 𝑉෠௞; 

    (d). If 𝑉෠௞ fails the stopping criteria for the data loop on the data ൛൫𝑥, 𝑉෠௞(𝑥)൯ൟ
௫∈௑Test,  add a 

new set of state variables 𝑋′ generated by low-discrepancy sequences to the training data set 
𝑋Train ← 𝑋Train ∪ 𝑋′ and go to Step 1 (b); 

    (e) If 𝑉෠௞(𝑥) ≈ 𝑉෠௞ିଵ(𝑥), for each 𝑥 ∈ 𝑋Test, output 𝑉෠௞; otherwise, 𝑋 ← ∅ and go to Step 1(a). 



In Fig. 1, Steps 1(a)-(e) are the DP loop, and Steps 1(b)-(d) represent the data loop. Flow charts of the 

data and DP loops are given in Fig. 1(a) and 1(b), respectively. It is noted that 𝑋Test determines the 

quality of the value function since all stopping criteria are performed on 𝑋Test. In this study, following 

Fan et al. (2013), Cervellera et al. (2013 and 2014), low-discrepancy sequences (Kuipers and Neiderreiter 

2005), which are also called quasi-random sequences due to their common use as a replacement of 

uniformly distributed random numbers, are used to sample the training data and testing data sets. This 

algorithm is a general method to approximately solve infinite-horizon MDPs from the statistical 

perspective when the transition function, the cost function, and the process governing the exogenous 

information are stationary. 

 

 (a) 



 

 (b) 

Figure 2. Algorithm to approximately solve infinite horizon MDPs using the DACE ADP algorithm: (a) 

inner data loop, (b) outer DP loop   

Remark:  Bellman (1957) showed that the value iteration algorithm converges to an optimal future 

value function for DP problems with discrete state and decision spaces by showing that an iteration of the 

algorithm is a contraction mapping. By contrast, there is no similar proof of convergence to an optimal 

value function over a continuous state and decision space. However, Munos and Szepesvri (2008) 

developed finite-time bounds for sample-based FVI algorithms to solve infinite (continuous) state-space, 

discounted-reward MDPs theoretically. They further demonstrated that sampling-based FVI algorithms 

behave well by using a sufficiently large number of samples for a wide class of MDPs. Moreover, 

arbitrarily good performance results can be achieved with high probability. In this proposed DACE ADP 

algorithm, the settings of the data loop and testing data set can ensure a large training data set, which 

suggests that a good value function is likely generated.  



4. Stopping Criteria 

Under stationary conditions, there is a unique function 𝑉(𝑥) that solves the Bellman equation (1). In the 

literature, the 𝐿∞-norm (Bellman 1957) is a traditional stopping rule used to identify the convergence of 

the value function. Specifically, the L∞-norm stopping rule proposed by Bellman (1957) and used 

frequently in the literature (e.g., Wei et al. 2016 and Parr et al. 2007) terminates the value iteration 

algorithm when the following condition is met 

                                      max
௫∈௑Test

ห𝑉෠௞(𝑥) − 𝑉෠௞ିଵ(𝑥)ห < ϑ(1 − γ)/2γ ,                            (3) 

     The value iteration algorithm stops when the maximum difference in the aFVF of any state is lower 

than the setting of the right-hand side in Eq. (3), where γ is the discount factor, and 𝜗 is a specified error 

tolerance. However, this stopping rule can be onerous as stated by Ernest et al. (2005) when using 

supervised learning algorithms to approximate the value function, so in the remainder of this section, a 

45-degree line stopping rule is developed.  In the remainder of this section, the motivation of this 

stopping rule is presented first, and then its usage to terminate the DP loop is described. Finally, the fact 

that as the L∞-norm converges, the criteria of the 45-degree line stopping rule also converge is proven. 

4.1. Motivation of 45-degree line stopping rule 

In a real-time MDP, optimal decisions 𝑢∗ are determined by solving the following optimization problem: 

𝑢∗ ∈ arg min௨∈୻ 𝐸൛𝑐(𝑥, 𝑢, 𝜉) + 𝛾𝑉൫𝑓(𝑥, 𝑢, 𝜉)൯ൟ. 

However, there may be multiple methods to determine optimal decisions 𝑢∗. In this section, optimal 

equivalent value functions and the translation of the value function are defined. Then, the theoretical 

relationship between them is proven.  



Definition 1 (Optimally Equivalent Value Function).  A function 𝑉ᇱ(𝑥) is an optimally equivalent 

value function (OEVF) if  

argmin௨∈୻ 𝐸൛𝑐(𝑥, 𝑢, 𝜉) + 𝛾𝑉ᇱ൫𝑓(𝑥, 𝑢, 𝜉)൯ൟ ⊆ argmin௨∈୻ 𝐸൛𝑐(𝑥, 𝑢, 𝜉) + 𝛾𝑉൫𝑓(𝑥, 𝑢, 𝜉)൯ൟ, ∀𝑥 ∈ 𝒳. 

Note that when used in a real-time MDP, using decisions based upon an OEVF will yield an optimal 

policy. 

Definition 2 (Translation of a Function). 𝑉′(𝑥)  is a translation of 𝑉(𝑥)  if 𝑉′(𝑥) = 𝑉(𝑥) + 𝜃 ,  

∀𝑥 ∈ 𝒳, where 𝜃 is a constant. 

Lemma 1. If 𝑉′(𝑥) is a translation of 𝑉(𝑥), then 𝑉′(𝑥) is an OEVF. 

Proof  Since 𝑉′(𝑥) is a translation of 𝑉(𝑥), i.e., 𝑉′(𝑥) = 𝑉(𝑥) + 𝜃.  

    𝑉ᇱ(𝑥) = 𝑉(𝑥) + 𝜃 = min௨∈Γ 𝐸൛𝑐(𝑥, 𝑢, 𝜉) + 𝛾𝑉൫𝑓(𝑥, 𝑢, 𝜉)൯ൟ + 𝜃,   ∀𝑥 ∈ 𝒳. (4) 

Since 𝜃 is a constant, a decision vector  𝑢∗ ∈  Γthat optimizes Eq. (4) also optimizes Eq. (1). Thus, by 

Definition 1, 𝑉′(𝑥) is an OEVF. 

Proposition 2. Consider a constant 𝜃 ∈ ℝ, and a function 𝑉ᇱ: 𝒳 → ℝ such that  

𝑉ᇱ(𝑥) = min௨∈Γ 𝐸൛𝑐(𝑥, 𝑢, 𝜉) + 𝛾𝑉ᇱ൫𝑓(𝑥, 𝑢, 𝜉)൯ൟ + 𝜃,   ∀𝑥 ∈ 𝒳. (5) 

Then, 𝑉ᇱ(𝑥) = 𝑉(𝑥) + 𝜃
1 − 𝛾ൗ , ∀𝑥 ∈ 𝒳, where 𝑉(𝑥): 𝒳 → ℝ satisfies the Eq. (1).  

The proof of Proposition 2 is given in Appendix A. 

The value function 𝑉 is unique, but there are infinitely many translations of 𝑉. Consequently, relaxing 

the stopping criteria to allow for translations of 𝑉 has the potential to stop the DACE ADP algorithm 

earlier than requiring the algorithm to continue until it finds the value function. Nonetheless, a translation 

of  𝑉 is an OEVF, which also yields an optimal policy when used in a real-time MDP. Therefore, even 

if the traditional L∞-norm stopping rule is unmet, an OEVF may be identified, so the DP loop can be 

terminated. Consider the following corollary: 



Corollary 3: If 𝑉෠௞(𝑥) = 𝑉෨௞(𝑥) = 𝑉෠௞ିଵ(𝑥) + 𝜃, ∀𝑥 ∈ 𝒳, where 𝜃 is a constant, then 𝑉෠௞ is an OEVF.  

Proof  By Proposition 2, 𝑉෠௞(𝑥) = 𝑉(𝑥) + 𝜃
1 − 𝛾ൗ , ∀𝑥 ∈ 𝒳. By Definition 2, 𝑉෠௞ is a translation of of 

𝑉. By Lemma 1, 𝑉෠௞ is an OEVF.  

Based on Corollary 3, in the proposed algorithm shown in Fig. 1, Step 1(e) may be changed to: 

If 𝑉෠௞(𝑥) ≈ 𝑉෠௞ିଵ(𝑥) + 𝜃, for each 𝑥 ∈ 𝑋Test, output 𝑉෠௞; otherwise, 𝑋 ← ∅ and go to Step 1(a). 

4.2. Description of 45-degree line stopping rule 

Based on Corollary 3, a new stopping rule by using a simple linear regression between two consecutive 

value functions is proposed. Consider the simple linear regression model shown below: 

                                                      𝑌௞ = 𝛽଴
௞ + 𝛽ଵ

௞𝑋௞ିଵ + 𝜖௫
௞, ∀𝑥 ∈ 𝑋Test,                          (6) 

where 𝑋௞ିଵ is the output of 𝑉෠  from iteration k  ̵ 1 after inputting the 𝑋Test , 𝑌௞ is the output of 𝑉෠  

from iteration k after inputting the 𝑋Test, 𝛽଴
௞ is the y axis intercept of the regression line at iteration k, 

𝛽ଵ
௞ is the slope of the regression line at iteration k, and 𝜖௫

௞ is a random error term at iteration k. Eq. (6) is 

a simple linear regression model to generate the best line between the two variables in which the slope 

and intercept are estimated. As shown in Fig. 3, the best line (fitted line) is the one that minimizes the 

distances of the points from the line. The fitted regression line shows the relationship between predictor 

and response. If the slope of the line is 45 degrees, and the line passes through the origin of the coordinate 

system, the value of the predictor coincides with the response completely, indicating that the value 

function is determined. 



 

Figure 3. Example of functional relation 

In the new stopping rule, the fitted regression line is represented in Eq. (7): 

                                                 𝑌෠௞ = 𝑏଴
௞ + 𝑏ଵ

௞𝑋௞ିଵ ,   ∀𝑥 ∈ 𝑋Test                                          (7) 

where 𝑌෠௞ estimates 𝑌௞, and 𝑏଴
௞ and 𝑏ଵ

௞estimate the intercept and the slope at iteration k, respectively. 

According to Corollary 3, 𝑌௞ is an OEVF, if  

                                                    𝑌௞ = 𝑋௞ିଵ + 𝜃௞,     ∀𝑥 ∈ 𝑋Test                    (8) 

In Eq. (7) and Eq. (8), 𝑏଴
௞ and 𝜃௞ are both constants. Therefore, if 𝑏ଵ

௞ equals 1, and 𝑌෠௞ is able to 

estimate 𝑌௞ perfectly, then 𝑌௞ is an OEVF. The coefficient of determination, 𝑅௞
ଶ, is used to represent 

how well 𝑌෠௞ estimates 𝑌௞. Ideally, 𝑅௞
ଶ equals 1, so the stopping conditions for this rule at the kth 

iteration are given by 

                                                      𝑏ଵ
௞ ≈ 1  and 𝑅௞

ଶ ≈ 1                               (9)                                

4.3. Convergence of 45-degree line stopping rule 



In this section, we prove that if the 𝐿∞-norm converges to zero, then under mild conditions, 𝑏ଵ and 𝑅ଶ 

converge to one, which suggests that the 45-degree line stopping rule is no more restrictive than the 

traditional 𝐿∞-norm stropping rule.  

Proposition 4: Consider 𝛿 > 0 such that max௫∈௑Testห𝑉෠௞(𝑥) − 𝑉෠௞ିଵ(𝑥)ห < 𝛿, then,  

                ห𝑏ଵ
௞ − 1ห <

ଶఋ ∑ |௏෡ೖషభ(௫)|/ห௑Testหೣ∈೉Test

∑ ௏෡ೖషభ(௫)మ/
ೣ∈೉Test ห௑Testหି൫∑ ௏෡ೖషభ(௫)/ห௑Testห

ೣ∈೉Test ൯
మ , 𝑥 ∈ 𝑋Test         (10) 

        1 −

ఋమቌ
∑ ೇ෡ೖషభ(ೣ)మ

ೣ∈𝑋Test

ቚ𝑋Test
ቚ

ାଶอ
∑ ೇ෡ೖషభ(ೣ)

ೣ∈𝑋Test

ቚ𝑋Test
ቚ

อ൭
∑ |ೇ෡ೖషభ(ೣ)

ೣ∈𝑋Test |)

ቚ𝑋Test
ቚ

൱ቍ

ቌ
∑ ೇ෡ೖషభ(ೣ)మ

ೣ∈𝑋Test

ቚ𝑋Testቚ
ି൭

∑ ೇ෡ ೖషభ(ೣ)
ೣ∈𝑋Test

ቚ𝑋Testቚ
൱

మ

ቍቌ
∑ ೇ෡ ೖ(ೣ)మ

ೣ∈𝑋Test

ቚ𝑋Testቚ
ି൭

∑ ೇ෡ೖ(ೣ)
ೣ∈𝑋Test

ቚ𝑋Testቚ
൱

మ

ቍ

 < 𝑅௞
ଶ ≤ 1 , 𝑥 ∈ 𝑋Test     (11) 

The proof of Proposition 4 is provided in Appendix B.  

Corollary 5: If for any 𝜑ᇱ > 0, ∃ 𝐾ଵ, 𝐾ଶ and 𝐾ଷ and σ > 0, and 𝑉௨ > 0, such that  

Condition 1. max௫∈௑Test| 𝑉෠௞ିଵ(𝑥) | < 𝑉௨,∀𝑘 = 𝐾ଵ, 𝐾ଵ + 1, … 

Condition 2. ∑ 𝑉෠௞ିଵ(𝑥)ଶ/௫∈௑Test ห𝑋Testห − ൫∑ 𝑉෠௞ିଵ(𝑥)/ห𝑋Testห௫∈௑Test ൯
ଶ

> 𝜎, ∀𝑘 = 𝐾ଶ, 𝐾ଶ + 1, … 

Condition 3. max௫∈௑Testห𝑉෠௞(𝑥) − 𝑉෠௞ିଵ(𝑥)ห < 𝜑ᇱ, ∀𝑘 = 𝐾ଷ, 𝐾ଷ + 1, …  

then lim௞→ஶ 𝑏ଵ
௞ = 1. 

Proof  Consider 𝜑ଵ > 0, let 𝜑ᇱ =
ఙఝభ

ଶ௏ೠ > 0, by Condition 3, ∃ 𝐾ଷ, such that  

                            max௫∈௑Testห𝑉෠௞(𝑥) − 𝑉෠௞ିଵ(𝑥)ห <
ఙఝభ

ଶ௏ೠ, ∀𝑘 = 𝐾ଷ, 𝐾ଷ + 1, …                 (12) 

by Proposition 4, 

                           ห𝑏ଵ
௞ − 1ห <

ଶ
഑ക

మೇೠ ∑ |௏෡ೖషభ(௫)|/ห௑೅೐ೞ೟หೣ∈೉Test

∑ ௏෡ೖషభ(௫)మ/ೣ∈೉Test ห௑Testหି൫∑ ௏෡ೖషభ(௫)/ห௑Testหೣ∈೉Test ൯
మ, ∀𝑘 = 𝐾ଷ, 𝐾ଷ + 1 …     (13) 

Let 𝐾ସ = max (𝐾ଵ, 𝐾ଶ, 𝐾ଷ), then by Condition 1 and Condition 2, ห𝑏ଵ
௞ − 1ห < 𝜑ଵ, ∀𝑘 = 𝐾ସ, 𝐾ସ + 1 …  

Corollary 6: If for any 𝜑ᇱ > 0, ∃ 𝐾ଵ, 𝐾ଶ and 𝐾ଷ and σ > 0, and 𝑉௨ > 0, such that  



Condition 1. max௫∈௑Test| 𝑉෠௞ିଵ(𝑥) | < 𝑉௨,∀𝑘 = 𝐾ଵ, 𝐾ଵ + 1, … 

Condition 2. ∑ 𝑉෠௞ିଵ(𝑥)ଶ/௫∈௑Test ห𝑋Testห − ൫∑ 𝑉෠௞ିଵ(𝑥)/ห𝑋Testห௫∈௑Test ൯
ଶ

> 𝜎, ∀𝑘 = 𝐾ଶ, 𝐾ଶ + 1, … 

Condition 3. max௫∈௑Testห𝑉෠௞(𝑥) − 𝑉෠௞ିଵ(𝑥)ห < 𝜑ᇱ, ∀𝑘 = 𝐾ଷ, 𝐾ଷ + 1, …  

then lim௞→ஶ 𝑅௞
ଶ = 1. 

Proof  Consider 𝜑ଶ > 0, let 𝜑ᇱ =
஢ඥఝమ

√ଷ௏ೠ, by Condition 3, ∃ 𝐾ଷ, such that     

                                max௫∈௑Testห𝑉෠௞(𝑥) − 𝑉෠௞ିଵ(𝑥)ห <
஢ඥఝమ

√ଷ௏ೠ , ∀𝑘 = 𝐾ଷ, 𝐾ଷ + 1 …,                    (14) 

by Proposition 4, 
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 , ∀𝑘 = 𝐾ଷ, 𝐾ଷ + 1 …        (15) 

Let 𝐾ସ = max (𝐾ଵ, 𝐾ଶ, 𝐾ଷ), then by Condition 1 and Condition 2, then, 𝑅௞
ଶ > 1 − 𝜑ଶ, ∀𝑘 = 𝐾ସ, 𝐾ସ +

1 … By Proposition 4, 1 ≥ 𝑅௞
ଶ > 1 − 𝜑ଶ, ∀𝑘 = 𝐾ସ, 𝐾ସ + 1 … 

In Corollaries 5 and 6, Condition 1 indicates the value function is bounded, Condition 2 denotes the value 

function is not flat, and Condition 3 suggests that the value function converges. All these are the standard 

conditions for the contraction mapping theorem of the classical value iteration algorithm and are regarded 

as mild conditions in this study. Therefore, under mild conditions, according Corollaries 5 and 6, we are 

able to conclude that when 𝐿∞ -norm converges to 0, 𝑏ଵ  and 𝑅ଶ converge to 1. However, by 

Proposition 2, even when 𝑅ଶ and 𝑏ଵ are both 1, we cannot conclude 𝐿∞-norm converges to 0. Hence, 

we conclude that 𝐿∞-norm stopping rule is more restrictive than the 45-degree line stopping rule, which 

denotes that 45-degree line rule may stop the DACE ADP algorithm earlier than the 𝐿∞-norm rule. 

Moreover, we note that the 45-degree line stopping rule is a general stopping rule that is applicable to 



numerous other ADP/RL algorithms in the literature and may save computational effort with them as 

well. 

5. Policy Evaluation 

In order to evaluate the selected ADP policy, consider a simulation environment with the following 

process: 

 

One benchmark used in this and other research (e.g., Kossmann and Stocker 2000, Long et al. 2018) 

is a greedy policy, which determines actions based upon a myopic optimization process given by: 

                              min௨∈Γ 𝐸{𝑐(𝑥, 𝑢, 𝜉)}       

Step 0: Initialization: 

(a). Input a discount factor 𝛾, a state transition function 𝑓, a cost function, 𝑐, an aFVF 𝑉෠ , 
and let 𝑇 be the number of stages in a finite time horizon. 

(b). Use Sobol’s sequence to initialize a set of 𝑁 state vectors, 𝑋ே, and ∀𝑥 ∈ 𝑋ே, set the 
simulated cost 𝑐̃(𝑥) ← 0. 

(c). Set the evaluated state vectors 𝑋 ← ∅. 

Step 1: Iteration of simulation:  

(a). Consider state variable 𝑥 ∈ 𝑋ே − 𝑋, set the time period counter to 𝑡 ← 1. 

(b). Find 𝑢∗ ∈ arg min௨∈୻ 𝐸൛𝑐(𝑥, 𝑢, 𝜉) + 𝛾𝑉෠ ൫𝑓(𝑥, 𝑢, 𝜉)൯ൟ . 

(c). Sample a random vector 𝜁  and update the estimated total cost 𝑐̃(𝑥) ← 𝑐̃(𝑥) +
𝛾௧ିଵ𝑐(𝑥, 𝑢∗, 𝜁) and the state vector 𝑥 ← 𝑓(𝑥, 𝑢∗, 𝜁).   

(d). If 𝑡 < 𝑇, set 𝑡 ← 𝑡 + 1 and go to Step 1(b). 

(e). Set 𝑋 ← 𝑋 ∪ {𝑥} . If 𝑋 ⊂ 𝑋ே , go to Step 1(a); otherwise output the data 
{(𝑥, 𝑐̃(𝑥))}௫∈௑ಿ . 



Observe that the greedy policy optimizes each period without considering the impact of the decisions on 

future states. Therefore, to evaluate the greedy policy, Step 1(b) in above simulation process is given by  

Find 𝑢∗ ∈ arg min௨∈୻ 𝐸{𝑐(𝑥, 𝑢, 𝜉)} . 

Moreover, this research uses the MV and WS policies as optimality bounds in order to demonstrate 

the quality of the selected ADP policy, which has not previously been done in the ADP/RL literature. The 

MV policy makes decisions by solving a deterministic model in which all random variables are replaced 

by their means. Hence, using the MV policy, Step 1(b) in the above simulation process is given by the 

following two steps: 

(b) (i). Determine the expected value of 𝜉𝝉, 𝜉𝝉̅,  ∀𝜏 = 𝑡 … 𝑇 + 𝑡 − 1,  

(b) (ii). Find 𝑢௧
∗ ∈ arg min௨೟∈୻ ∑ 𝛾ఛିଵ𝑐൫𝑥ఛ, 𝑢ఛ, 𝜉𝝉̅൯்ା௧ିଵ

ఛୀ௧  s.t. 𝑥௧ = 𝑥 , 𝑥ఛାଵ = 𝑓൫𝑥ఛ, 𝑢ఛ, 𝜉𝝉̅൯ , 

𝑢ఛ ∈ Γ, ∀𝜏 = 𝑡 … 𝑇 + 𝑡 − 1. 

The value of the stochastic solution (VSS) describes the loss of ignoring uncertainty in a given problem. 

Specifically, VSS is calculated by taking the difference between 𝑐̃(𝑥) using the MV policy and 𝑐̃(𝑥) 

using an optimal policy for each 𝑥 ∈ 𝑋ே. 

As mentioned above, the assumption for the WS policy is the future states are perfectly known, 

therefore, Steps 1(a)-1(d) in above process are changed to: 

Step 1:  

(a). Consider state variable 𝑥 ∈ 𝑋ே − 𝑋, set a sample counter to 𝑚 ← 1.  

(b)(i). Sample a random vector 𝜁𝝉,  ∀𝜏 = 1 … 𝑇,  



(b)(ii). Find 𝑢ଵ
∗ , 𝑢ଶ

∗ , … 𝑢்
∗ ∈ arg min௨భ,௨మ,…,௨೅∈୻ ∑ 𝛾ఛିଵ𝑐(𝑥ఛ, 𝑢ఛ, 𝜁𝝉)்

ఛୀଵ  s.t.  𝑥ଵ = 𝑥 ,  𝑥ఛାଵ =

𝑓(𝑥ఛ, 𝑢ఛ, 𝜁𝝉), ∀𝜏 = 1 … 𝑇. 

(c). Calculate the estimated total cost 𝑐̃(𝑥) ← 𝑐̃(𝑥) + ∑ 𝛾௧ିଵ𝑐(𝑥௧, 𝑢௧
∗, 𝜁௧)்

௧ୀଵ 𝑀⁄ . 

(d). If 𝑚 < 𝑀, set 𝑚 ← 𝑚 + 1 and go to Step 1(b). 

The expected value of perfect information (EVPI) is the loss of objective value due to the presence of 

uncertainty (Birge and Louveaux 1997), which is defined as the difference between the simulated results 

of the ADP policy and the WS policy in this study.  

Therefore, in this study, after evaluating the identified ADP policy in a simulated environment, in 

order to demonstrate its quality, it is compared with the greedy, the MV and the WS policies. 

6. Computational experiments of inventory problem 

In this research, a three-stage nine-dimensional stochastic inventory problem from the literature (e.g., 

Chen et al. 1999 and Chen 1999) is modified to have an infinite number of time periods and different 

dimensions. To demonstrate the effectiveness of the proposed infinite-horizon DACE ADP algorithm and 

stopping rule, numerical experiments are conducted on the inventory problem with different dimensions. 

Compared to cases with continuous state and decision spaces in the literature (e.g., Wei et al. 2015 and 

Ernst et al. 2009), these problems are relatively large.  

6.1.    Overview of stochastic inventory problem 

As described in Chen et al. (1999), the stochastic inventory problem considers order quantities for items 

(G) over two forecast periods given the inventory level and demand forecast for each item. The state 

variables include: 

 The inventory level of item i at the beginning of time period t : 𝐼௧
(௜). 



 The forecast of the demand of item i in the current time period t determined at the beginning of 

time period t : 𝐷(௧,௧)
(௜)

. 

 The forecast of the demand of item i in next time period t + 1 determined at the beginning of time 

period t : 𝐷(௧,௧ାଵ)
(௜) .  

The state vector at the beginning of a stage is represented by 

           𝑥௧ = ቀ𝐼௧
(ଵ)

, 𝐷୲,୲
(ଵ)

, 𝐷୲,୲ାଵ
(ଵ)

, 𝐼௧
(ଶ)

, 𝐷୲,୲
(ଶ)

, 𝐷୲,୲ାଵ
(ଶ)

, … , 𝐼௧
(ீ)

, 𝐷୲,୲
(ீ)

, 𝐷௧,௧ାଵ
(ீ)

ቁ
்

.                         (16) 

The decision variables are the amounts of item i ordered in period t, and the decision vector at the 

beginning of stage is represented by 𝑢௧ = ቀ𝑢௧
(ଵ)

, 𝑢௧
(ଶ)

, 𝑢௧
(ଷ)

ቁ. The state transition functions are modeled 

using a multiplicative MMFE (see Chen et al. 1999 for details). The constraints on the decision variables 

(amounts ordered) and the state variables (inventory levels) are placed in the form of capacity constraints. 

The transition functions are given by 

                    𝐼௧ାଵ
(௜)

= 𝐼௧
(௜)

+ 𝑢௧
௜ − (𝐷(௧,௧)

(௜)
∙ 𝜀(௧,௧)

(௜)
)      ,               ∀𝑖 ∈ 𝐺                (17)                             

                    𝐷(௧ାଵ,௧ାଵ)
(௜)

= ቀ𝐷(௧,௧ାଵ)
(௜)

∙ 𝜀(௧,௧ାଵ)
(௜)

ቁ        ,            ∀𝑖 ∈ 𝐺                 (18)                         

               𝐷(௧ାଵ,௧ାଶ)
(௜)

= ቀ𝜇௧ାଶ
(௜)

∙ 𝜀(௧,௧ାଶ)
(௜)

ቁ             ,             ∀𝑖 ∈ 𝐺                (19)                             

where 𝜇௧
(௜) is the mean demand for item i in period t, and 𝜀(௧,௧ା௣)

(௜)  is the change in forecast for the time t 

+ p from the forecast made in period t. The objective function is a cost function involving inventory 

holding costs and backorder costs. The cost function is V-shaped and is represented as  

               𝑐௧(𝑥௧, 𝑢௧, 𝜉௧) = ∑ ℎ௜ ቂ𝐼௧ାଵ
(௜)

ቃ
ା

ீ
௜ୀଵ + 𝜋௜ ቂ−𝐼௧ାଵ

(௜)
ቃ

ା
     ,           ∀𝑡 = 1, …       (20)                         



where hi is a constant holding cost parameter for item i, and πi is a constant backorder cost parameter for 

item i. For optimization purposes, a smoothed version of the cost function has been used (see Chen et al. 

1999 for details).  

 6.2.   Experimental settings 

Experiments on the DACE ADP algorithm for the infinite-horizon MDPs are conducted in MATLAB 

2016b on a Dell computer with a Xeon, 8-core, 3.6 GHz CPU. In order to compute the expected value of 

each sampled point in the state space, eight scenarios corresponding to eight realizations of stochastic 

variables are used (Chen et al. 1999). The discount factor used in this research is 0.9 since the duration 

between time periods is assumed to be a month. In the experiments, MARS approximates the value 

function, and the stopping rules described in Section 4 select the ADP policies. After determining the 

approximate value function, it is simulated as described in Section 5, where stochastic variables are 

generated by the MMFE.  

     The discount factor 𝛾 is less than 1, so as long as the cost 𝑐(𝑥, 𝑢, 𝜉), stabilizes, or grows at a rate 

less than 1
𝛾ൗ , over time, then the simulated cost 𝑐̃ converges. In this research, numerical experiments 

are conducted to determine a value of T for which the simulated cost appears to stabilize. Specifically, 10 

initial states are randomly selected and run 40, 50, 60, 70, 80 and 120 time periods using the greedy 

policy and then their simulated costs 𝑐̃, which are shown in Table 2, are compared. The 𝑐̃ of these 10 

states appears to stabilize at 70 periods, so for the remainder of the experiments, 70 time periods are 

simulated.  

     In the experiments, the inventory problems with three different scales are conducted, respectively, 

with the following settings. The initial training data set, 𝑋Train, includes 500, 1000 and 1500 state vectors 

generated by a Sobol sequence (Sobol, 1967) for 6-dim, 9-dim and 12-dim cases, separately. For these 

three cases, each iteration of the data loop adds 50 more state vectors, 𝑋′, which are also generated by a 



Sobol sequence. To avoid over fitting, in practice, we sample the testing data set, 𝑋Test, including 250 

state vectors created by a Halton sequence (Halton 1960). The stopping rule for data loop in Step 1(d) in 

Fig. 1 is whether the testing 𝑅ᇱଶ from testing data set is greater than 0.8, and the difference of 

𝑅ᇱଶ between two consecutive data loop is less than 0.05. In statistical modeling, high 𝑅ᇱଶ usually 

indicates a high-quality estimation, but high R2 might imply the model over-fits the data. Hence, the value 

0.8 is used in this study. 

Table 2. Simulated cost used for time period determination for 10 initial states ($) 

Scenario 40 periods 50 periods 60 periods 70 periods 80 periods 120 periods 

1 232.5 244.7 247.6 248.4 248.7 248.8 

2 225.5 228.5 229.5 230.3 230.4 230.4 

3 37.8 42.9 44.0 44.3 44.3 44.4 

4 1875.1 1890.1 1894.7 1896.0 1896.2 1896.3 

5 180.1 184.0 184.6 184.8 184.9 184.9 

6 220.9 224.7 226.2 226.5 226.5 226.7 

7 154.9 156.0 156.8 157.0 157.0 157.1 

8 235.9 239.3 240.5 241.1 241.4 241.5 

9 128.4 132.2 133.8 134.1 134.1 134.2 

10 122.9 126.6 129.8 130.6 130.8 130.9 

6.3. Computational results 

6.3.1. Stopping criteria and aFVF selection 

At the beginning of the computational experiments, 6000 DP iterations of the DACE ADP algorithm are 

executed on the 9-dimensional inventory problem, spending almost 10.5 days to investigate the ADP 

policies. A plot of the L∞-norm over the 6000 iterations is shown in Fig. 4, which clearly indicates that the 



value function is not converging using the

45-degree line for the 6000 DP iterations 

early DP loop iterations.  

Figure 4
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     Numerical experiments for 6, 9 and 12 dimensional inventory problems yield plots of the L∞-norm 

and 45-degree line stopping rule shown in Fig. 6 and Fig. 7.  Observe in Fig. 6 that the L∞-norm rule 

exhibits no clear patterns, which indicates no aFVF can clearly be selected. However, in comparison, Fig. 

7 displays very promising patterns using the 45-degree line stopping rule. In Fig. 7(a), the b1 value of the 

6-dimensional inventory problem starts to level off at the 13th DP loop iteration, and the 𝑅ଶ value is 

0.986 at this iteration. Therefore, the 13th aFVF is selected as an OEVF with around 17 minutes of 

computational time. In Fig. 7(b) on the 9-dimensional problem, the b1 and 𝑅ଶ values level off at 1 at the 

15th DP loop iteration, but the b1 value has a subsequent downward spike, so the 20th aFVF is selected as 

an OEVF, which requires only about 50 minutes to compute. In Fig. 7(c), the b1 value starts to level off at 

the 13th iteration and tends to stabilize around 1 afterwards, and the change in the value of 𝑅 
ଶ stabilizes 

close to 1 after 3 DP iterations. Thus, the 13th aFVF is selected as an OEVF with about 91 minutes 

computational time for the 12-dimensional problem. To determine the quality of these selected aFVFs, 

they are simulated in the next section. 

 

Figure 6. L∞-norm value evolving patterns of the first 100 DP loop iterations for the 6, 9 and 

12-dimensional inventory problems 



 

Figure 7. Plot of b1 and 𝑅 
ଶ at early DP loop iterations of the DACE ADP algorithm for the 6, 9 and 

12-dimensional inventory problems 

6.3.2. Simulation results 

The selected ADP policies from the previous section are simulated with 100 initial state vectors, X100 

from a Sobol sequence. After collecting the results using the 13th, 20th, and 13th aFVFs for the 6, 9 and 12- 

dimensional inventory problems, respectively, optimality bounds are determined by simulating the WS 

and MV policies. In addition, the greedy policy is used as another benchmark. Table 3 shows the average 

simulated costs using the different policies. To compare the performance of the ADP policy and the other 

three policies, a paired t-test on the simulation results is conducted, for which each pair has the same 

initial state and epsilon trajectory. Hence, the simulation results for the two policies are dependent 

(Kutner et al. 2004). Note that the paired t-test has not previously been used for policy comparison in the 

literature. Table 4 shows the paired t-test results between the ADP policy and the other three policies 



(“p-value < α value” indicates strong evidence against the null hypothesis that the average costs are the 

same, so the null hypothesis will be rejected; “p-value > α value”, indicates weak evidence against the 

null hypothesis, therefore, it fails to reject the null hypothesis).  

Table 3. Average simulated costs using different policies for the 6, 9 and 12-dimesnioal inventory 

problems 

 
WS policy MV policy Greedy Policy ADP policy 

6-dim case 231.35 302.10 285.79 264.59 

9-dim case 270.56 335.6 331.54 297.53 

12-dim case 394.62 543.34 494.46 450.89 

Table 4. Paired t-test results (p-values) between ADP policy using the selected ADP policies and the other 

policies for the 6, 9 and 12-dimensional inventory problems (α=0.05) 

 WS policy VS ADP policy MV policy VS ADP policy Greedy policy VS ADP policy 

6-dim case <0.0001 <0.0001 0.0022 

9-dim case <0.0001 <0.0001 <0.0001 

12-dim case <0.0001 <0.0001 0.0171 

     The WS policy is a lower bound on the optimal cost since the future states are perfectly known in 

advance. As observed in Table 3, the WS policy has the lowest average simulated cost. On the other hand, 

the selected ADP policies perform much better than the MV policy and the greedy policy, which strongly 

demonstrates this infinite-horizon DACE ADP algorithm is able to solve the MDPs over continuous state 

and decision spaces, and the 45-degree line stopping rule is likely to stop the DP iterations reasonably by 

selecting high-quality ADP policies. 

     In addition, using the optimality bounds from stochastic programming, the importance of the 

building the ADP policy for the MDP is exhibited. Table 5 displays the WS, EVPI upper bounds and VSS 

lower bounds for the three case studies conducted above. The fourth and sixth columns indicate the EVPI 



upper bound percentages and VSS lower bound percentages of the simulation results using the ADP 

policy. From Table 5, observe that all of the EVPI upper bounds are smaller than the corresponding VSS 

lower bounds, which indicates that using the DACE ADP algorithm to build the model first decreases the 

effect of stochasticity in the MDP.   

Table 5. An upper bound on EVPI and a lower bound on VSS of these three problem instances 

Instance WS 
EVPI upper 

bound 

%EVPI upper 

bound 

VSS lower 

bound 

% VSS lower 

bound 

6-dim case 231.35 33.24 12.56 37.51 14.18 

9-dim case 270.56 26.97 9.06 34.01 11.43 

12-dim case 394.62 56.27 12.48 92.45 20.51 

7. Conclusion 

Solving high-dimensional, infinite-horizon MDPs over continuous state and decision spaces is still a 

challenge. In this study, a new algorithm based on DACE concepts from the statistical perspective to 

solve MDPs over a continuous state and decision space is proposed. Meanwhile, a new stopping rule 

based on the translation of the value function is developed. After theoretical exploration, the L∞-norm 

stopping rule is more restrictive than the 45-degree line stopping rule, which indicates 45-degree line rule 

is likely to terminate DP iteration earlier than the L∞-norm rule. Although the 45-degree line stopping rule 

is developed for the DACE ADP algorithm in this research, this rule may also be applied to numerous 

other RL/ADP algorithms for infinite-horizon MDPs. Furthermore, the DACE ADP algorithm and 

stopping rule are successfully applied to an inventory problem with three different scales. WS and MV 

policies from stochastic programming are used as optimality bounds for the selected ADP policies. The 

main conclusions from the results of these three inventory problems include: 1) the DACE based ADP 

algorithm has the capability to find high-quality approximate value functions for 



medium/high-dimensional MDPs over continuous state and decision spaces from the results shown in 

Tables 3-5 and Figs. 4-7; 2) the L∞-norm may not be useful to derive a high-quality or near-optimal ADP 

policy when using MARS as a supervised learning algorithm to approximate the value function from Figs 

4 and 6; 3) the proposed 45-degree line stopping rule facilitates the selection of an OEVF at early DP 

iterations, which significantly shortens the computational time: according to Fig. 7, the leveling-off 

patterns of 𝑏ଵ and 𝑅ଶ around 1, are observed for all three cases; 4) combining Tables 3-4, the ADP 

policy performs much better than the MV and greedy policies, statistically: in Table 3, the average 

simulated costs of ADP policies are much lower than those of the MV and greedy policies, and in Table 4, 

two-sided paired t-test results indicate the ADP policies do not have the same performance as the MV and 

greedy policies, statistically; 5) the resulting optimality bounds reveal the benefit of building the model 

for decision making in the MDPs to decrease the effects of uncertainty in practice since all of the EVPI 

upper bounds are smaller than the VSS lower bound in Table 5; 6) although the computational time to 

obtain an OEVF increases when the dimension of the problem increases, it does not increase 

exponentially (6-dim, 9-dim and 12 dim cases consume 17, 50, 91 minutes, respectively), which is also an 

essential benefit of this proposed DACE ADP algorithm for the infinite-horizon problems. 

     Future research will expand in three directions. Firstly, even though the 9- and 12-dimensional 

versions of the inventory problem are higher than many other problems in the literature, this algorithm 

should be applied to other MDPs with more dimensions and in different domains. Secondly, more 

efficient sampling of the state space should be explored, and data loop stopping rule needs to be 

investigated further. Thirdly, in this paper, aFVFs are not forced to be convex, so the optimization of 

problems in the proposed DACE ADP algorithm may be challenging. Consequently, methods to ensure 

that aFVFs are convex (e.g., Martinez et al. 2015) and methods to globally optimize nonconvex aFVFs 

(e.g., Martinez et al. 2017) should be explored.  
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Appendix A 

The proof of Proposition 2 is given below. 

Proposition 2. Consider a constant 𝜃 ∈ ℝ, and a function 𝑉ᇱ: 𝒳 → ℝ such that  

𝑉ᇱ(𝑥) = 𝑚𝑖𝑛௨∈௰ 𝐸൛𝑐(𝑥, 𝑢, 𝜉) + 𝛾𝑉ᇱ൫𝑓(𝑥, 𝑢, 𝜉)൯ൟ + 𝜃,   ∀𝑥 ∈ 𝒳. (A1) 

Then, 𝑉ᇱ(𝑥) = 𝑉(𝑥) + 𝜃
1 − 𝛾ൗ , ∀𝑥 ∈ 𝒳, where 𝑉(𝑥): 𝒳 → ℝ satisfies the Eq. (1).  

Proof: for proving convenience, we add a notation for x. 

 ∀𝑥଴ ∈ 𝒳, 

 𝑉ᇱ(𝑥଴) = min௨∈Γ 𝐸{𝑐(𝑥଴, 𝑢଴, 𝜉଴) + 𝛾𝑉ᇱ(𝑥଴, 𝑢଴, 𝜉଴)} + 𝜃  

= min௨బ∈Γ 𝐸కబ
ቄ𝑐(𝑥଴, 𝑢଴, 𝜉଴) + 𝛾 ቂmin௨భ∈Γ 𝐸కభ

൛𝑐(𝑓(𝑥଴, 𝑢଴, 𝜉଴), 𝑢ଵ, 𝜉ଵ) + 𝛾𝑉ᇱ൫𝑓(𝑓(𝑥଴, 𝑢଴, 𝜉଴), 𝑢ଵ, 𝜉ଵ)൯ൟቃቅ + 𝛾𝜃 + 𝜃   

= min
௨బ,௨భ∈Γ

𝐸కబ,కభ
൛𝑐(𝑥଴, 𝑢଴, 𝜉଴) + 𝛾𝑐(𝑥ଵ, 𝑢ଵ, 𝜉ଵ) + 𝛾ଶ𝑉ᇱ൫𝑓(𝑥ଵ, 𝑢ଵ, 𝜉ଵ)൯ൟ + 𝛾𝜃 + 𝜃 

= min
௨బ,௨భ,…,௨೟∈Γ

𝐸కబ,కభ,…,క೟
൛∑ 𝛾௧መ 𝑐(𝑥௧መ , 𝑢௧መ , 𝜉௧መ) +௧

௧መୀ଴ 𝛾௧ାଵ𝑉ᇱ൫𝑓(𝑥௧ , 𝑢௧ , 𝜉௧)൯ൟ + ∑ 𝛾௧መ௧
௧መୀ଴ 𝜃.  

when 𝑡 → ∞: 

𝑉ᇱ(𝑥଴) = min
௨బ,௨భ,…,∈Γ

𝐸కబ,కభ ,…൛∑ 𝛾௧መ𝑐(𝑥௧መ , 𝑢௧መ , 𝜉௧መ)
ஶ
௧መୀ଴ ൟ + 𝜃

1 − 𝛾ൗ ,   ∀𝑥଴ ∈ 𝒳   (A2) 



= 𝑉(𝑥଴) + 𝜃
1 − 𝛾,ൗ  ∀𝑥଴ ∈ 𝒳    (A3) 

From the Principle of Optimality (Bellman 1957), there is a unique value function 𝑉(𝑥଴), then it must 

follow: 

𝑉(𝑥଴) = 𝑉ᇱ(𝑥଴) − 𝜃
1 − 𝛾ൗ , ∀𝑥଴ ∈ 𝒳    (A4) 

In general without notation for x, 

𝑉ᇱ(𝑥) = 𝑉(𝑥) − 𝜃
1 − 𝛾ൗ , ∀𝑥 ∈ 𝒳        (A5) 

Appendix B 

The proof of Proposition 4 is given below. 

Proposition 4: Consider 𝛿 > 0 such that max௫∈௑Testห𝑉෠௞(𝑥) − 𝑉෠௞ିଵ(𝑥)ห < 𝛿, then,  

                ห𝑏ଵ
௞ − 1ห <

ଶఋ ∑ |௏෡ೖషభ(௫)|/ห௑Testหೣ∈೉Test

∑ ௏෡ೖషభ(௫)మ/ೣ∈೉౐౛౩౪ ห௑౐౛౩౪หି൫∑ ௏෡ೖషభ(௫)/ห௑౐౛౩౪หೣ∈೉౐౛౩౪ ൯
మ , 𝑥 ∈ 𝑋୘ୣୱ୲     (B1) 

1 −

ቚ𝑋Test
ቚఋమ(∑ ௏෡ೖషభ(௫)మ

ೣ∈𝑋Test ାଶ|
∑ ೇ෡ೖషభ(ೣ)

ೣ∈𝑋Test

ቚ𝑋Test
ቚ

|(∑ |௏෡ೖషభ(௫)
ೣ∈𝑋Test |))

ቀቚ𝑋Test
ቚ ∑ ௏෡ೖషభ(௫)మ

ೣ∈೉౐౛౩౪ ି(∑ ௏෡ೖషభ(௫))మ
ೣ∈೉౐౛౩౪ ቁቀቚ𝑋Test

ቚ ∑ ௏෡ೖ(௫)మ
ೣ∈𝑋Test ି(∑ ௏෡ೖ(௫))మ

ೣ∈𝑋Test ቁ
 < 𝑅௞

ଶ ≤ 1, 𝑥 ∈ 𝑋Test  (B2) 

where 𝑉෠ (𝑥): 𝑋Test → ℝ satisfies the Eq. (2).    

Proof for (B1): 

∀𝑥 ∈ 𝑋Test,  

𝑏ଵ
௞ =

ห௑Testห ∑ ௏෡ೖషభ(௫)௏෡ೖ(௫)ି∑ ௏෡ೖషభ(௫) ∑ ௏෡ೖ(௫)
ೣ∈೉Testೣ∈೉Testೣ∈೉Test

ห௑Testห ∑ ௏෡ೖషభ(௫)మ
ೣ∈೉Test ି൫∑ ௏෡ೖషభ(௫)ೣ∈೉Test ൯

మ        



=
ห௑Testห ∑ ௏෡ೖషభ(௫)(௏෡ೖ(௫)ା௏෡ೖషభ(௫)ି௏෡ೖషభ(௫))ି∑ ௏෡ೖషభ(௫) ∑ (௏෡ೖ(௫)ା௏෡ೖషభ(௫)ି௏෡ೖషభ(௫))ೣ∈೉Testೣ∈೉Testೣ∈೉Test

ห௑Testห ∑ ௏෡ೖషభ(௫)మ
ೣ∈೉Test ି൫∑ ௏෡ೖషభ(௫)ೣ∈೉Test ൯

మ  

=
ቚ𝑋Test

ቚ ∑ ௏෡ೖషభ(௫)మି∑ ൫௏෡ೖషభ(௫)൯
మ

ା
ೣ∈𝑋Test ቚ𝑋Test

ቚ ∑ ௏෡ೖషభ(௫)(
ೣ∈𝑋Test (௏෡ೖ(௫)ି௏෡ೖషభ(௫))ି∑ ௏෡ೖషభ(௫) ∑ (௏෡ೖ(௫)ି௏෡ೖషభ(௫))

ೣ∈𝑋Test
ೣ∈𝑋Test

ೣ∈𝑋Test

ቚ𝑋Test
ቚ ∑ ௏෡ೖషభ(௫)మ

ೣ∈𝑋Test ିቀ∑ ௏෡ೖషభ(௫)
ೣ∈𝑋Test ቁ

మ  

=1 +
ห௑Testห ∑ ௏෡ೖషభ(௫)(

ೣ∈೉Test (௏෡ೖ(௫)ି௏෡ೖషభ(௫))ି∑ ௏෡ೖషభ(௫) ∑ (௏෡ೖ(௫)ି௏෡ೖషభ(௫))
ೣ∈೉Testೣ∈೉Test

ห௑Testห ∑ ௏෡ೖషభ(௫)మ
ೣ∈೉Test ି൫∑ ௏෡ೖషభ(௫)ೣ∈೉Test ൯

మ                 (B3) 

To obtain the bounds for 𝑏ଵ
௞, Eq. (B3) is expressed as: 

∀𝑥 ∈ 𝑋Test,  

𝑏ଵ
௞ ≤ 1 +

ห𝑋Testห ∑ ห𝑉෠௞ିଵ(𝑥)ห௫∈௑Test ห𝑉෠௞(𝑥)−𝑉෠௞ିଵ(𝑥)ห + ∑ ห𝑉෠௞ିଵ(𝑥)ห ∑ ห𝑉෠௞(𝑥)−𝑉෠௞ିଵ(𝑥)ห௫∈௑Test௫∈௑Test

|𝑋Test| ∑ 𝑉෠௞ିଵ(𝑥)ଶ
௫∈௑Test − ൫∑ 𝑉෠௞ିଵ(𝑥)௫∈௑Test ൯

ଶ  

< 1 +
ห𝑋Testห ∑ ห𝑉෠௞ିଵ(𝑥)ห௫∈௑Test 𝛿 + ∑ ห𝑉෠௞ିଵ(𝑥)หห𝑋Testห𝛿௫∈௑Test

|𝑋Test| ∑ 𝑉෠௞ିଵ(𝑥)ଶ
௫∈௑Test − ൫∑ 𝑉෠௞ିଵ(𝑥)௫∈௑Test ൯

ଶ  

=1 +
ଶఋ

∑ หೇ෡ೖషభ(ೣ)ห
ೣ∈೉Test

ห೉೅೐ೞ೟ห

∑ ೇ෡ೖషభ(ೣ)మ
ೣ∈೉Test

ห೉Testห
ିቆ

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
ቇ

మ  ,                                               (B4) 

or 

𝑏ଵ
௞ ≥ 1 +

−ห𝑋Testห ∑ ห𝑉෠௞ିଵ(𝑥)ห௫∈௑Test ห𝑉෠௞(𝑥)−𝑉෠௞ିଵ(𝑥)ห − ∑ ห𝑉෠௞ିଵ(𝑥)ห ∑ ห𝑉෠௞(𝑥)−𝑉෠௞ିଵ(𝑥)ห௫∈௑Test௫∈௑౐౛౩౪

|𝑋Test| ∑ 𝑉෠௞ିଵ(𝑥)ଶ
௫∈௑Test − ൫∑ 𝑉෠௞ିଵ(𝑥)௫∈௑Test ൯

ଶ  

> 1 +
−ห𝑋Testห ∑ ห𝑉෠௞ିଵ(𝑥)ห௫∈௑Test 𝛿 − ∑ ห𝑉෠௞ିଵ(𝑥)หห𝑋Testห𝛿௫∈௑Test

|𝑋Test| ∑ 𝑉෠௞ିଵ(𝑥)ଶ
௫∈௑Test − ൫∑ 𝑉෠௞ିଵ(𝑥)௫∈௑Test ൯

ଶ  



= 1 −
ଶఋ

∑ หೇ෡ೖషభ(ೣ)ห
ೣ∈೉Test

ห೉೅೐ೞ೟ห

∑ ೇ෡ೖషభ(ೣ)మ
ೣ∈೉Test

ห೉Testห
ିቆ

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
ቇ

మ   .                                              (B5) 

Hence, Combining (B4) and (B5) the relationship between 𝑏ଵ
௞ and 𝛿 is  

ห𝑏ଵ
௞ − 1ห <

ଶఋ ∑ |௏෡ೖషభ(௫)|/ห௑Testหೣ∈೉Test

∑ ௏෡ೖషభ(௫)మ/ೣ∈೉Test ห௑Testหି൫∑ ௏෡ೖషభ(௫)/ห௑Testหೣ∈೉Test ൯
మ    

Proof for (B2) 

𝑅௞
ଶ=

(∑ ௏෡ೖషభ(௫)௏෡ೖ(௫)ିห௑Testหቆ
∑ ೇ෡ೖషభ(ೣ)

ೣ∈೉೅೐ೞ೟

ห೉Testห
ቇቆ

∑ ೇ෡ ೖ(ೣ)
ೣ∈೉೅೐ೞ೟

ห೉Testห
ቇೣ∈೉Test )మ

(∑ ௏෡ೖషభ(௫)మିห௑Testห(ೣ∈೉Test

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)మ)(∑ ௏෡ೖ(௫)మିห௑೅೐ೞ೟ห(ೣ∈೉Test

∑ ೇ෡ೖ(ೣ)
ೣ∈೉೅೐ೞ೟

ห೉Testห
)మ)

 

=
(∑ ௏෡ೖషభ(௫)(௏෡ೖషభ(௫)ା∆ೣ)ିห௑Testหቆ

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
ቇቆ

∑ (ೇ෡ೖషభ(ೣ)శ∆ೣ)
ೣ∈೉Test

ห೉Testห
ቇ

ೣ∈೉Test )మ

(∑ ௏෡ೖషభ(௫)మିห௑Testห(ೣ∈೉Test

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)మ)(∑ (௏෡ೖషభ(௫)ା∆ೣ)మିห௑Testห(ೣ∈೉Test

∑ (ೇ෡ೖషభ(ೣ)శ∆ೣ)
ೣ∈೉Test

ห೉Testห
)మ)

 

=1 −
൫∑ ௏෡ೖషభ(௫)మ

ೣ∈೉Test ൯(∑ ∆ೣ
మ)ೣ∈೉Test ାଶห௑Testห(

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)(

∑ ∆ೣೣ∈೉Test

ห೉Testห
)(∑ (௏෡ೖషభ(௫)∆ೣ)ೣ∈೉Test

(∑ ௏෡ೖషభ(௫)మିห௑Testห(ೣ∈೉Test

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)మ)(∑ (௏෡ೖషభ(௫)ା∆ೣ)మିห௑೅೐ೞ೟ห(ೣ∈೉Test

∑ (ೇ෡ೖషభ(ೣ)శ∆ೣ)
ೣ∈೉Test

ห೉Testห
)మ)

+ 

+
ห௑೅೐ೞ೟ห(

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)మ(∑ ∆ೣ

మ)ೣ∈೉Test ାห௑Testห൬
∑ ∆ೣೣ∈೉Test

ห೉Testห
൰

మ

∑ ௏෡ೖషభ(௫)మ
ೣ∈೉Test ା(∑ ௏෡ೖషభ(௫)∆ೣೣ∈೉Test )మ

ቆ∑ ௏෡ೖషభ(௫)మିห௑Testห(ೣ∈೉೅೐ೞ೟

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)మቇቆ∑ (௏෡ೖషభ(௫)ା∆ೣ)మିห௑Testห(ೣ∈೉Test

∑ ൫ೇ෡ೖషభ(ೣ)శ∆ೣ൯
ೣ∈೉Test

ห೉Testห
)మቇ

    (B7) 

Since 
ห௑೅೐ೞ೟ห(

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)మ(∑ ∆ೣ

మ)ೣ∈೉Test ାห௑Testห൬
∑ ∆ೣೣ∈೉Test

ห೉Testห
൰

మ

∑ ௏෡ೖషభ(௫)మ
ೣ∈೉Test ା(∑ ௏෡ೖషభ(௫)∆ೣೣ∈೉Test )మ

ቆ∑ ௏෡ೖషభ(௫)మିห௑Testห(ೣ∈೉೅೐ೞ೟

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)మቇቆ∑ (௏෡ೖషభ(௫)ା∆ೣ)మିห௑Testห(ೣ∈೉Test

∑ ൫ೇ෡ೖషభ(ೣ)శ∆ೣ൯
ೣ∈೉Test

ห೉Testห
)మቇ

≥ 0, 

hence, 

𝑅௞
ଶ ≥ 1 −

൫∑ ௏෡ೖషభ(௫)మ
ೣ∈೉Test ൯(∑ ∆ೣ

మ)
ೣ∈೉Test ାଶห௑Testห(

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)(

∑ ∆ೣೣ∈೉Test

ห೉Testห
)(∑ (௏෡ೖషభ(௫)∆ೣ)

ೣ∈೉Test

(∑ ௏෡ೖషభ(௫)మିห௑Testห(ೣ∈೉Test

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)మ)(∑ (௏෡ೖషభ(௫)ା∆ೣ)మିห௑೅೐ೞ೟ห(ೣ∈೉Test

∑ (ೇ෡ೖషభ(ೣ)శ∆ೣ)
ೣ∈೉Test

ห೉Testห
)మ)

  



> 1 −
ห௑Testหఋమ൫∑ ௏෡ೖషభ(௫)మ

ೣ∈೉Test ൯ାଶห௑Testหఋమ(
∑ ೇ෡ೖషభ(ೣ)

ೣ∈೉Test

ห೉Testห
)(∑ |௏෡ೖషభ(௫)|ೣ∈೉Test

(∑ ௏෡ೖషభ(௫)మିห௑Testห(ೣ∈೉Test

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)మ)(∑ (௏෡ೖషభ(௫)ା∆ೣ)మିห௑Testห(ೣ∈೉Test

∑ (ೇ෡ೖషభ(ೣ)శ∆ೣ)
ೣ∈೉Test

ห೉Testห
)మ)

  

= 1 −
ห௑Testหఋమ{൫∑ ௏෡ೖషభ(௫)మ

ೣ∈೉Test ൯ାଶ(
∑ ೇ෡ೖషభ(ೣ)

ೣ∈೉Test

ห೉Testห
)(∑ |௏෡ೖషభ(௫)|

ೣ∈೉Test }

(∑ ௏෡ೖషభ(௫)మିห௑Testห(ೣ∈೉Test

∑ ೇ෡ೖషభ(ೣ)
ೣ∈೉Test

ห೉Testห
)మ)(∑ (௏෡ೖషభ(௫)ା∆ೣ)మିห௑೅೐ೞ೟ห(ೣ∈೉Test

∑ (ೇ෡ೖషభ(ೣ)శ∆ೣ)
ೣ∈೉Test

ห೉Testห
)మ)

  

= 1 −

ఋమቌ
∑ ೇ෡ೖషభ(ೣ)మ

ೣ∈𝑋Test

ቚ𝑋Testቚ
ାଶอ

∑ ೇ෡ೖషభ(ೣ)
ೣ∈𝑋Test

ቚ𝑋Testቚ
อ൭

∑ |ೇ෡ೖషభ(ೣ)
ೣ∈𝑋Test |)

ቚ𝑋Testቚ
൱ቍ

ቌ
∑ ೇ෡ೖషభ(ೣ)మ

ೣ∈𝑋Test

ቚ𝑋Testቚ
ି൭

∑ ೇ෡ ೖషభ(ೣ)
ೣ∈𝑋Test

ቚ𝑋Testቚ
൱

మ

ቍቌ
∑ ೇ෡ ೖ(ೣ)మ

ೣ∈𝑋Test

ቚ𝑋Testቚ
ି൭

∑ ೇ෡ೖ(ೣ)
ೣ∈𝑋Test

ቚ𝑋Testቚ
൱

మ

ቍ

 < 𝑅௞
ଶ ≤ 1.                (B8) 

Since 𝑅௞
ଶ ≤ 1, therefore, 

1 −

ఋమቌ
∑ ೇ෡ೖషభ(ೣ)మ

ೣ∈𝑋Test

ቚ𝑋Testቚ
ାଶอ

∑ ೇ෡ೖషభ(ೣ)
ೣ∈𝑋Test

ቚ𝑋Testቚ
อ൭

∑ |ೇ෡ೖషభ(ೣ)
ೣ∈𝑋Test |)

ቚ𝑋Testቚ
൱ቍ

ቌ
∑ ೇ෡ೖషభ(ೣ)మ

ೣ∈𝑋Test

ቚ𝑋Test
ቚ

ି൭
∑ ೇ෡ೖషభ(ೣ)

ೣ∈𝑋Test

ቚ𝑋Test
ቚ

൱

మ

ቍቌ
∑ ೇ෡ೖ(ೣ)మ

ೣ∈𝑋Test

ቚ𝑋Test
ቚ

ି൭
∑ ೇ෡ೖ(ೣ)

ೣ∈𝑋Test

ቚ𝑋Test
ቚ

൱

మ

ቍ

 < 𝑅௞
ଶ ≤ 1 , 𝑥 ∈ 𝑋Test.  

 


