
Support Vector Regression Value Function Approximation for Infinite Horizon Stochastic

Dynamic Programming

Ying Chen, Feng Liu, Victoria Chen, Jay Rosenberger

Ying Chen*

Department of Industrial, Manufacturing, and Systems Engineering, The University of Texas at Arlington,

U.S.A.,ying.chen@mavs.uta.edu

Feng Liu

Department of Industrial, Manufacturing, and Systems Engineering, The University of Texas at Arlington,

U.S.A., feng.liu@mavs.uta.edu

Victoria C. P. Chen

Department of Industrial, Manufacturing, and Systems Engineering, The University of Texas at Arlington,

U.S.A., vchen@uta.edu

Jay Rosenberger

Department of Industrial, Manufacturing, and Systems Engineering, The University of Texas at Arlington,

U.S.A., jrosenbe@uta.edu

*Corresponding author. Phone number:1-817-272-3092

Department of Industrial, Manufacturing, and Systems Engineering, The University of Texas at Arlington,

76013,U.S.A.,ying.chen@mavs.uta.edu

Abstract

Approximate dynamic programming (ADP) is a computational approach to provide decision policies for

complex dynamic control problems. ADP challenges include high-dimensional and continuous state and

decision spaces. A statistical perspective of ADP utilizes design of experiments, to sample a high-

dimensional continuous state space, and statistical modeling, to build a continuous value function

approximation. In this paper, this statistical perspective is employed with support vector machines (SVM)

for value function approximation in an infinite horizon inventory stochastic dynamic programming

problem. SVM applications have been successful in a variety of domains, but have not been employed

for ADP. Comparisons are made to a prior infinite horizon ADP implementation using multivariate

adaptive regression splines (MARS), which have also been used for finite horizon problems. Stopping

criteria are discussed, including a 45-degree line correspondence criterion based on a regression

concept. SVR is seen to have more stable behavior than MARS. Overall, recommendations are provided

to enable good performance using SVR for infinite horizon ADP.

Keywords: dynamic programming, design and analysis of computer experiments, support vector

regression, stopping criteria

1. Introduction

The objective of dynamic programming (DP) is to minimize “cost” or maximize “benefit” of a system

evolving over several time periods. For continuous spaces, a typical solution approach discretizes both the

state and decision spaces to finite sets. With the increase in computational power, approximate dynamic

programming (ADP) methods have grown in popularity, including reinforcement learning (e.g., Sutton

and Barto 1998, Castelletti et al. 2010, Wei et al. 2015), neuro-DP (e.g., Bertsekas and Tsitsiklis 1996,

Van Roy et al. 1997, Castelletti et al. 2007), and methods using the post-decision state (e.g., Powell 2007,

Anderson et al. 2011, Simao et al. 2008). However, high-dimensional problems still face the “curse of

dimensionality,” which is exponential growth of computational and storage requirements as the

dimension of state, decision and/or stochastic variables increase (Powell, 2007).

 A statistical perspective enables a more general view of continuous-state DP problems (Chen et al.

1999). This perspective of ADP is analogous to design and analysis of computer experiments (DACE,

Chen et al. 2006). State space discretization is based on design of experiments, and value function

approximation is based on statistical modeling. Chen et al. (2017) introduced the DACE approach to

infinite horizon problems and utilized an experimental design derived from a Sobol low-discrepancy

sequence (Sobol 1967) and multivariate adaptive regression splines (MARS), which has previously been

used for finite horizon problems (e.g., Chen 1999, Cervellera et al. 2007, Yang et al. 2009) In this paper,

we study the use of a support vector regression (SVR, Drucker et al. 1997) within a DACE based infinite

horizon ADP algorithm.

 Support vector machines (SVM) are discriminative classifiers which formally are defined by a

separating hyperplane (Cortes and Vapnik 1995). Initially, the SVM approach was developed for binary

classification, which is also called support vector classification (SVC). Later, Drucker et al. (1997)

proposed SVR to handle regression-type modeling based on the theory of SVC. In recent years, SVM has

been successful in a variety of data mining applications, including healthcare (e.g., Furey et al. 2000, Hua

and Sun 2001, Rick et al. 2008), energy (e.g., Mohandes et al. 2004, Sarikprueck et al. 2015, Dong et al.

2005), manufacturing (e.g., Chen and Wang 2007, Martinez-de-Pison et al. 2008, Li and Huang 2009),

finance (e.g., Farquad et al. 2012, Yao and Lian 2016, Zhang et al. 2015), etc. To our knowledge, SVR

has not been utilized for value function approximation.

 In Section 2, we describe the DACE based ADP approach. In Section 3, we compare SVR and MARS

using the infinite horizon inventory SDP problem from Chen et al. (2017), which was derived from a

prior finite horizon inventory problem (Chen et al. 1999, Chen 1999, Cervellera et al. 2007, Cervellera

and Macciò 2011, Cervellera and Macciò 2016) In Section 4, we describe stopping criteria, including a

formal stopping rule using a 45-degree line correspondence criterion that was first suggested by Chen et

al. (2017). In Section 5, we discuss the computational results using these stopping criteria and other SVR

considerations, and in Section 6, we present concluding remarks.

2. ADP Approach

In the following, we will first overview the infinite horizon DP formulation (Bellman 1957), then we

summarize the DACE based infinite horizon ADP algorithm introduced by Chen et al. (2017).

2.1. Infinite Horizon DP Formulation

The future value function (FVF) for an infinite horizon stochastic DP problem can be written as follows:

(௧ݔ)ܸ = min௨ ∑}ܧ ௧ݔ)௧ܿߛ , ௧ݑ
∞
௧ୀ଴ , ௧)}, (1)ߝ

where t is the time period, E is the conditional expectation under the policy, ߛ ,ݑ ∈[0,1] is a discount

factor that handles the tradeoff between the immediate and delayed costs, ݔ௧ is the state vector, c is the

cost function, ܸ is the FVF, and ߝ௧ is the stochastic variable. This equation can be written recursively as:

(௧ݔ)ܸ = min௨೟
E{ܿ(௧ݔ , ,௧ݑ (௧ߝ + { (௧ାଵݔ)ܸߛ

 s.t. ݔ௧ାଵ = ௧ݔ)݂ , ௧ݑ , ௧) , (2)ߝ

௧ݔ) , (௧ݑ ∈ t ,

where f is the state transition function and t represents state and decision space constraints. Since in

infinite horizon DP, there is only one true value function, a value iteration approach creates a sequence of

value functions that eventually converge to the true one (Bertsekas 2017). An ADP version can be written

as:

෨ܸ௞(ݔ௧) = min௨೟
E{ܿ(௧ݔ , ,௧ݑ (௧ߝ + ߛ ෠ܸ௞ିଵ(ݔ௧ାଵ) }

 s.t. ݔ௧ାଵ = ௧ݔ)݂ , ௧ݑ , ௧) , (3)ߝ

௧ݔ) , (௧ݑ ∈ t ,

where ෠ܸ௞ିଵ is the approximate FVF (aFVF) at the k-1th iteration, and the realized ෨ܸ௞ values from the

minimization are approximated by the aFVF denoted by ෠ܸ௞ିଵ.

2.2. DACE Based Infinite Horizon ADP

Chen et al. (2017) used the DACE concept to develop a new algorithm to solve infinite horizon DP

problems over a continuous space. In this algorithm, two loops are used to achieve the aFVF: an inner

data loop and an outer DP loop. The data loop follows the adaptive value function approximation (AVFA)

approach of Fan et al. (2013) to sample the state space sequentially in order to control the amount of

sampling needed to build an aFVF. The DP loop follows the value iteration concept to generate a

sequence of aFVFs. It should be noted that stopping criteria must be specified in advance for both the data

loop and the DP. The flow chart of this algorithm using SVR for the FVF approximation is shown in

Fig.1.

Figure 1. DACE based infinite horizon ADP algorithm (Chen et al. 2017): (a) data loop, (b) DP loop

 For our implementation of SVR, we employed a least squares SVM (LSSVM, Suykens et al. 2002)

toolbox in MATLAB (http://www.esat.kuleuven.be/sista/lssvmlab/). The LSSVM algorithm is one of

many SVM variants, including linear programming SVM (Zhou et al. 2002), sparse SVM (Bi et al. 2003),

etc. These variants differ in their specification of objective functions and constraints. LSSVM is a

reformulation of the standard SVM model, which utilizes linear Karush-Kuhn-Tucker conditions

(Suykens et al. 2002). LSSVM is also closely related to Gaussian processes and regularization networks,

but additionally emphasizes and exploits primal-dual interpretations (Suykens et al. 2002). In the LSSVM

toolbox, the Gaussian RBF kernel was selected, which requires adjustment of its two main parameters:

bandwidth and the regularization ratio. The function “tunelssvm” in this toolbox was used to tune these

two parameters via a grid-search algorithm. Specifically, the tuning procedure consists of two steps: 1) a

coupled simulated annealing algorithm to determine the suitable tuning parameter and 2) a simplex

method that performs fine tuning of the parameters (Brabanter et al. 2011). This approach enables

adaptive tuning of the SVR model, which is necessary for the AVFA approach (Fan et al. 2013) to

approximate the value function, as shown in Fig. 1.

3. Comparison of SVR and MARS

In this section, we describe the infinite horizon inventory stochastic DP problem utilized by Chen et al.

(2017), and then present comparisons between SVR and MARS using the DACE based infinite horizon

ADP algorithm in Fig. 1.

3.1. Infinite Horizon Inventory Stochastic DP Problem

The inventory problem involves a nine-dimensional nearly continuous state space. It takes advantage of

forecasts of customer demand with the martingale model of forecast evolution (MMFE, Heath and

Jackson 1994) to evolve the state variables over time. Suppose there are nI different products and forecasts

for demand are made 0, 1,…, and (K - 1) months ahead, then there are nI (K + 1) state variables. The state

of the system at time t, can be defined as

࢞௧ = ቀܫ௧
(ଵ), … , ௧ܫ

(௡಺), (௧,௧)ܦ
(௜) , … , (௧,௧)ܦ

(௡಺), … , ௧,௧ା௄ିଵܦ
(௡಺) ቁ , (4)

where ܫ௧
(௜) is the inventory level of product i at the beginning of time period t and ܦ(௧,௧ା௞)

(௜) is the forecast

determined at the beginning of time period t to predict the demand of product i in time period t + k.

 The decision vector is ࢛௧ = ௧ݑ)
(ଵ), … , ௧ݑ

(௡಺)), where ݑ௧
(௜) is the amount of product i ordered in period t.

Let ܦ(௧,௧ା௞) = ቀܦ(௧,௧ା௞)
(ଵ) , … , (௧,௧ା௞)ܦ

(௡಺) ቁ, and ࣆ௧ = ቀߤ௧
(ଵ), … , ௧ߤ

(௡಺)ቁ be the vector of mean demands, where

௧ߤ
(௜) is the mean demand for product i in time period t. The mean demand ߤ௧

(௜) is utilized as the initial

forecast of demand for product i in time period t. In Chen et al. (1999), nI is set to 3 and K is set to be 2,

so the state space dimension is 9. At the beginning of time period t, the forecasts in the current period are

 .(௧,௧ାଵ)ܦ and the forecasts for the next period are ,(௧,௧)ܦ

 Following MMFE, the state transition model from time period t to t + 1 for each product is:

௧ାଵܫ
(௜) = ௧ܫ

(௜) + ௧ݑ
(௜) − ቀܦ(௧,௧)

(௜) ∙ (௧,௧)ߝ
(௜) ቁ , (5)

(௧ାଵ,௧ାଵ)ܦ
(௜) = ቀܦ(௧,௧ାଵ)

(௜) ∙ (௧,௧ାଵ)ߝ
(௜) ቁ , (6)

(௧ାଵ,௧ାଶ)ܦ
(௜) = ቀߤ௧ାଶ

(௜) ∙ (௧,௧ାଶ)ߝ
(௜) ቁ , (7)

where ߝ(௧,௧ାଶ)
(௜) represents the multiplicative error in the forecast for time period t + 2 from the mean

demand for that period, ߝ(௧,௧ାଵ)
(௜) denotes the multiplicative error in the forecast for the current time period

t+1 from the forecast made in period t, and ߝ(௧,௧)
(௜) is the multiplicative error in the forecast for the demand

in time period t. Specifically, the actual demand in period t is modeled as (ܦ(௧,௧)
(௜) ∙ (௧,௧)ߝ

(௜)) . The

multiplicative errors in the forecast for period t + k are:

(௧,௧ା௞)ߝ
(௜) =

஽(೟శభ,೟శೖ)
(೔)

஽(೟,೟శೖ)
(೔) , (8)

and are assumed to have a mean of one, therefore forming a martingale from the sequence of future

forecasts for period t + k (Heath and Jackson 1994). Let ߝ௧ be the 3nI × 1 vector:

௧ߝ = ቀߝ(ଵ,௧)
(଴) , … , (௡಺,௧)ߝ

(଴) , (ଵ,௧)ߝ
(ଵ) , … , (௡಺,௧)ߝ

(ଵ) , … , (௡಺,௧)ߝ
(ଶ) , … , (௡಺,௧)ߝ

(ଶ) ቁ . (9)

The random vector ߝ௧ is assumed to follow a multivariate lognormal distribution (Chen et al. 1999, Heath

and Jackson 1994). The standard inventory cost function is V-shaped, involving inventory holding costs

and backorder costs, as shown below:

ܿ௩(ݔ௧, (௧ݑ = ∑ (ℎ௜
ଷ
௜ୀଵ ቂܫ௧ାଵ

(௜) ቃ
ା

+ ௜ߨ ቂ−ܫ௧ାଵ
(௜) ቃ

ା
) , (10)

where ih is the holding cost parameter for product i , and i is the backorder cost parameter for project i .

A smoothed version of the cost function was used by Chen et al. (2017) (see Chen et al. 1999 for details

on the smoothed version).

3.2. Approximation of aFVFs using SVR

To implement the algorithm in Fig. 1, we utilized the same experimental design process as Chen et al.

(2017) and only compared SVR vs. MARS for the FVF approximation. Chen et al. (2017) employed a

Sobol’ low-discrepancy sequence (Sobol 1967) to sample state points for the training data set, and a

Halton’s low-discrepancy sequence (Halton 1960) for the testing data set. The range of each of the nine

state variables is in Table 1:

Table 1. Range of each variable in inventory forecasting problem

of Variable 1 2 3 4 5 6 7 8 9

Min -20 -24 -15 0 0 0 0 0 0

Max 20 24 15 20 24 15 13 16 10

 The first component of the algorithm in Fig. 1 is the data loop. The stopping criterion implemented for

the data loop uses the difference between the testing R2 for two consecutive data loops and the value of

testing R2. If this difference is less than 0.05 and testing R2 is also greater than 0.8 simultaneously, then

the data loop will stop, otherwise, the data loop continues by sampling another 50 state points for training.

The R2 metric is used to indicate how well the fitted SVR model predicts the testing data. The initial size

of the training data set is 150, and the size of testing data set is 250. Fig. 2 plots the testing R2 from each

iteration of the DP loop, up to 100 iterations. The total computational time for these 100 iterations

conducted in MATLAB 2016b on a Lenovo computer with a Xeon, 16-core, 2.8 GHz CPU, was 45

minutes. From Fig. 2, it can be seen that after the 21st iteration, the testing R2 rises above 0.99 and is

steadier compared to MARS. This demonstrates that SVR yields a more stable approximation than MARS.

Figure 2. Testing R2 curve as the DP loop iterations increase

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

T
es

ti
ng

 R
2

DP Loop Iteration #

SVR

MARS

 To assess the behavior of the DACE based infinite horizon ADP algorithm using SVR vs. MARS, we

computed two stopping criteria. The first is the ܮஶ norm (Powell 2007) defined as:

‖ ௞ܸ − ௞ܸିଵ‖ , where ‖ܸ‖ = max௦ (11) .|(ݏ)ܸ|

The second uses the estimated slope for 45-degree line correspondence, denoted by ܾଵin Chen et al.

(2017). The 45-degree line correspondence criterion ensures the stability of the shape of value function.

For this criterion, a linear regression is fit between two consecutive sets of ෨ܸ values from Eq. (3). The

fitted model is specified in Eq. (13):

෠ܻ௞ = ܾ଴ + ܾଵܺ௞ିଵ , (12)

where ܺ௞ିଵ is ෨ܸ from iteration k ̵ 1, ௞ܻ is ෨ܸ from iteration k, ෠ܻ௞ estimates ௞ܻ, ܾ଴ estimates the intercept,

and ܾଵ estimates the slope. If there is an exact 45-degree line correspondence between the value function

data from the two consecutive iterations, then the intercept should be 0, and the slope should be 1. In Figs.

3 and 4, the comparison between MARS and SVR is shown using these two criteria. From Fig. 3, the ܮஶ

norm with SVR levels off, especially starting from the 24th iteration. For MARS, the ܮஶ norm metric was

unable to level off within the 100 DP iterations, even with 6000 iterations as shown in Chen et al. (2017).

In Fig. 4, the b1 metric with SVR starts to level off around the 21st iteration, and the b1 values from the

21st to 100th iterations are between 0.991 to 1.015, which are very close to the ideal value of 1.0.

Compared to the b1 values for MARS, SVR achieves much smaller variation. Overall, based on Figs. 2-4,

we can conclude that SVR yields more stable performance than MARS for a DACE based infinite horizon

ADP algorithm. In the next section, we formally specify a stopping rule based on the 45-degree line

correspondence criterion.

Figure 3. Variations of ܮஶ norm value in the first 100 DP iterations

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

L
∞

no
rm

DP Loop Iteration #

MARS

SVR

Figure 4. Variations of 45-degree line correspondence rule in the first 100 DP iterations.

4. Stopping Criteria

The typical stopping criterion for value iteration uses the ܮ
∞

 norm proposed by Powell (2017):

‖ ௞ܸ − ௞ܸିଵ‖ <
ఏ(ଵିγ)

ଶγ
 . (13)

Thus, the stopping criterion is reached when the maximum change in the value of any state is lower than

the setting of right-hand side in Eq. (3), where γ is the discount factor, and ߠ is a specified error tolerance.

In this study, the discount factor is 0.9, which is the same as Chen et al. (2017). Using the 45-degree line

correspondence criterion (Chen et al. 2017), the algorithm should stop once the shape of value function

has stabilized. As stated by Chen et al. (2017), we only need to pay attention to b1 since b0 only affects

the vertical position of the shape. An appropriate stopping rule should identify when b1 has leveled-off

and is sufficiently close to 1. While Chen et al. (2017) used b1 to identify high-quality ADP policies, they

did not specify a formal stopping rule, so we propose one here to work with the SVR value function

approximation.

 In Eq. (13), b1 compares consecutive ෨ܸ values from iteration k and iteration k - 1. We refer to this as b1

with 1 lag, denoted as ܾଵ
ᇱ . Alternately, we could calculate b1 between ෨ܸ values at iteration k and iteration k

- 2 and refer to this as b1 with 2 lags, denoted as ܾଵ
ᇱᇱ. If ܾଵ

ᇱ and ܾଵ
ᇱᇱ

 are both close to 1, our stopping rule

will stop the algorithm. By looking at both lag 1 and lag 2 of the slope estimate b1, we have a longer

assessment of the stability of the aFVF. Specifically, our stopping criterion uses the difference between ܾଵ
ᇱ

and ܾଵ
ᇱᇱ:

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

b
1

sl
op

e
fo

r
45

-d
eg

re
e

li
n

e
co

rr
es

p
on

d
en

ce

DP Loop Iteration #

MARS

SVR

ߜ = ܾଵ
ᇱᇱ − ܾଵ

ᇱ
 . (14)

 Intuitively, the ADP policy at iteration k should be closer to the ADP policy at iteration k - 1 than the

ADP policy at iteration k - 2, especially in the early DP iterations. Therefore, ܾଵ
ᇱᇱ

 usually is bigger than ܾଵ
ᇱ .

However, in later iterations, close to when the algorithm should stop, the two values will start to cross.

Once ߜ is less than or equal to an error tolerance ߳, ܾଵ
ᇱᇱ

 and ܾଵ
ᇱ can be considered close enough. However,

to ensure that stability has been reached, we save this potential high-quality ADP policy, then continue to

run m DP iterations to further identify if this saved ADP policy is sufficient. An additional error tolerance

is used as follows: if all ߜ values from the next m DP iterations, are less than ߦ, then this saved ADP

policy is finally identified as sufficient, and the algorithm stops.. A flowchart of this algorithm is shown

in Fig. 5.

Figure 5. Flowchart of specified 45-degree line correspondence stopping criterion algorithm

5. Discussion of Computational Results

Two issues are discussed in this section. First, the two stopping criteria described in Section 4 are used to

select ADP policies, and then these policies are simulated to explore how these ADP policies perform.

Second, the issue of extrapolation is examined for SVR.

5.1. Simulating ADP Policies

First, we need to specify the error tolerances for the two stopping criteria. For the ܮஶ norm rule, we

specify an error tolerance value for the right-hand side in Eq. (11) to be 180, so that when the ܮஶ norm

value is less than 10, the algorithm will stop. Using this, the 35th aFVF is selected. For the 45-degree line

correspondence stopping criterion described in Section 4, we set ߳ equal to 0, ߦ equal to 0.005 and m

equal to 5. The idea is if ߜ is less than or equal to 0, then the ܾଵ
ᇱᇱ and ܾଵ

ᇱ
 curves have crossed, indicating the

algorithm is nearing the point when it should stop. With this setting, the 43rd aFVF is selected since at the

43rd iteration, ߜ is equal to -0.003, and from 44th to 48th iteration, the ߜ values are between -0.001 and

0.002, which are all less than 0.005.

 Next we simulate the two identified aFVFs to assess if the stopping rules yielded good ADP policies.

For the simulation, 100 scenarios are conducted by initializing the state variables in the first stage using a

Sobol sequence with the same range as shown in Table 1. The simulation is executed for 70 time periods

for each initial point, following the same procedure as Chen et al. (2017). In addition, the solution policy

from the greedy algorithm is used as a benchmark. The main difference between the greedy algorithm and

ADP is that the greedy algorithm does not consider the future state. The details of the greedy algorithm

used can be found in Chen et al. (2017).

 After simulating these two ADP policies and the greedy policy, the mean costs of the 100 scenarios of

these three policies are shown in Table 2.

Table 2. Mean cost from simulating the 100 scenarios for the three policies.

Policy 35th aFVF 43rd aFVF Greedy policy

Mean cost ($) 294.98 295.52 331.54

From this table, it can be seen that the ADP policies achieve much lower mean costs than the greedy

policy. The mean cost of the 35th aFVF, which was selected by the ܮஶ norm rule, is only slightly higher

than the one for the 43rd aFVF, which was selected by the 45-degree line correspondence rule. In order to

distinguish the difference between these two ADP policies, we conduct a paired t-test on the simulation

results as conducted in Chen et al. (2017). Comparing the simulation outputs of the 100 scenarios from

35th aFVF and 43rd aFVF, the t-test p-value is 0.031. This indicates statistically that the 43rd aFVF is only

marginally better than the 35th aFVF. By contrast, a paired t-test between the 43rd aFVF and greedy policy

yields a p-value of 0.001, which indicates this ADP policy is statistically better than the greedy policy.

5.2. Extrapolation Investigation using SVR vs. MARS

Even though SVR has had remarkable success in machine learning, there has been little investigation of

the impact of extrapolating an SVR model outside the training data region. For ADP, Lee and Lee (2004)

suggested that the value function should be limited within the given state space region due to the

uncertainty with extrapolation. However, when simulating a stochastic system, sometimes the system

transitions to states that are beyond the given state space region. In this situation, decisions may be

inaccurate. Hence, concerning this issue, we inspect how aFVFs created by SVR perform with occasional

extrapolation.

Figure 6. 3D meshplot of SVR 43rd aFVF with different plot ranges: (a) plot with the original range; (b)

plot with double the original range; (c) plot with triple the original range; (d) plot with quadruple the

original range.

 First, to graphically illustrate the extrapolation issue, consider the 3D meshplots in Fig. 6. In this figure,

we use the same aFVF, but change the plot scale to generate four meshplots. In this figure, x1 indicates

inventory level of product 1 and x2 denotes the inventory level of product 2. From these four meshplots,

it is clear to observe that when increasing the original range to the quadrupled level, the proper convex

shape (Chen et al. 1999) of the FVF is lost, which indicates that incorrect decisions might be made when

the values of state variables fall far enough outside of the original range.

Figure 7. 3D meshplot of MARS high-quality aFVF with same ranges as Fig. 6

 In order to conduct a comparison with MARS, Fig. 7 generates the corresponding four meshplots

using the 11th aFVF identified by Chen et al. (2017). Compared to Fig. 6, the shape of the FVF is a proper

convex shape in all four meshplots, which indicates that MARS is less susceptible to extrapolation issues

than SVR. In Fig. 8, boxplots are shown of the simulation results for the 100 scenarios using the11th aFVF

by MARS and the 43rd aFVF by SVR. The boxplots are similar, with the MARS policy showing a slightly

lower median (the horizontal line inside the box), and the SVR policy showing a slightly smaller spread

(the length of the box). The mean costs of MARS policy and SVR policy in the simulation are 296.67 and

295.52, respectively. A paired t-test on these two policies yields a p-value of 0.489, which indicates no

statistical difference between these two policies. It is noted that when approximating the value function,

SVR and MARS both will result in approximation error, but from this result, it seems the extrapolation

error caused by SVR is not significant. However, in the next subsection, we will further explore the

extrapolation issue for SVR.

Figure 8. Boxplot of expected total cost between MARS policy and SVR policy

5.3. Closer Investigation of Extrapolation for SVR

For each state vector, there are nine variables. Since we conduct 100 scenarios and each evolves over 70

periods, there are a total of 63,000 opportunities for extrapolation in any state dimension. Table 3 shows

the number of extrapolation events for each state dimension. The total percentage of extrapolation events

is 1.2%. Furthermore, after observing the value of these extrapolated components, we find that most

components are within triple the original range. The exception is some cases for x2, for which there are

24 events that are less than -72, which is triple its lower limit. In order to investigate how significant the

extrapolation error is, a further study is conducted below.

Table 3. Number of extrapolation of each component of the state

variables x1 x2 x3 x4 x5 x6 x7 x8 x9

Number of extrapolation 10 297 143 7 14 5 126 141 69

 Table 4. Enlarged range of each state variable for the inventory stochastic DP problem

of Variable 1 2 3 4 5 6 7 8 9

Min -40 -48 -30 0 0 0 0 0 0

Max 40 48 30 40 48 30 26 32 20

 As shown in Fig. 6, in the plot that doubles the original range, the convex shape of FVF is still

observed. This indicates that SVR with the Gaussian RBF kernel still can perform well with limited

extrapolation. Therefore, if we keep the initial range of state variable in the simulation unchanged, but

enlarge the state space range when building the aFVFs, we may overcome the extrapolation error when

simulating. On the basis of this idea, we enlarged the original state space range when building the aFVFs,

as shown in Table 4. Using the 45-degree line correspondence stopping rule as in Section 5.1, the 30th

aFVF is selected. The simulated mean cost for the 30th aFVF policy built using the enlarged range is

297.29, compared to 295.52 for the 43rd aFVF policy built using the original range. A paired t-test yields a

p-value of 0.501, which indicates no statistical difference. Hence, this comparison indicates that the

extrapolation error for SVR is not a significant issue. However, it should be noted that for the enlarged

state space, the statistical modeling problem is more challenging and could require more training data to

yield an accurate aFVF. Specifically, in this case, this 30th aFVF required 600 training data points, but the

43rd aFVF built using the original range, only required 150 training data points.

6. Concluding Remarks

In this paper, we employed SVR with the RBF kernel to implement the DACE based infinite horizon

ADP algorithm introduced by Chen et al. (2017). Comparisons with the version using MARS illustrate

improved behavior of the algorithm using SVR. Further, for the SVR version of the algorithm we

specified and tested a stopping rule using the 45-degree line correspondence criterion proposed by Chen

et al. (2017). ADP policies using this stopping rule and the ܮஶ norm stopping rule are compared and seem

to be statistically similar using a paired t-test. In a study of extrapolation of the aFVF, a potential

disadvantage of SVR vs. MARS is identified in which SVR exhibits visually undesirable (nonconvex)

behavior, while MARS seemingly maintains convex behavior. However, the impact of this potential

extrapolation error with SVR is demonstrated to be minimal, and good ADP policies trained with

different state ranges using SVR, are seen to be statistically similar through a paired t-test. Overall, while

both SVR and MARS can yield good ADP policies for high-dimensional continuous-state stochastic DP

problems, the SVR implementation demonstrates behavior over the DP loop iterations that is easier to

control with formal stopping rules. However, the recommended parameter settings are intuitive and are

anticipated to work well in general. Further testing can be conducted on parameters for stopping the

algorithm using the 45-degree line correspondence rule.

Acknowledge

This research is supported by National Science Foundation grant ECCS-1128871.

Reference

Anderson, R. N., Powell, W. B., Scott, W. (2011). Adaptive Stochastic Control for the Smart Grid.

Proceeding of IEEE 99(6): 1098-1115.

Bellman, R.E. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.

Bi, J., Bennett, K., Embrechts, M., Breneman, C. M., Song, M. (2003) Dimensionality reduction via

sparse support vector machines. Journal of Machine Learning Research, 3: 1229-1243.

Bertsekas, D. P. (2017). Dynamic Programming and Optimal Control. Vol. I, 4th Ed. Athena Scientific.

Bertsekas D. P., Tsitsiklis J. N. (1996) Neuro-dynamic programming, Athena Scientific.

Castelletti, A., de Rigo, D., Rizzoli, A. E., Soncini-Sessa, R.,Weber, E. (2007). Neuro-dynamic

programming for designing water reservoir network management policies. Control Engineering Practice

15, pp 1031-1038.

Castelletti, A., Galelli, S., Restelli, M., Soncini-Sessa, R. (2010). Tree-based reinforcement learning for

optimal water reservoir operation, Water Resources Research. Vol. 46, W09507.

Cervellera, C., Wen, A., Chen, V. C. P. (2007). “Neural Network and Regression Spline Value Function

Approximations for Stochastic Dynamic Programming.” Computers and Operations Research, 34(1), pp.

70–90.

Cervellera, C. and D. Macciò (2011). A comparison of global and semi-local approximation in T-stage

stochastic optimization. European Journal of Operational Research, 208, pp. 109-118.

Cervellera, C. and D. Macciò (2016). F-Discrepancy for Efficient Sampling in Approximate Dynamic

Programming. IEEE Transactions on Cybernetics, 46(7), pp. 1628-1639.

Chen K., Wang, C. (2007). A hybrid SARIMA and support vector machines in forecasting the production

values of the machinery industry in Taiwan. Expert Systems with Applications. 32(1): 254-264,

Chen, V. C. P., Ruppert, D., Shoemaker, C. A. (1999). Applying Experimental Design and Regression

Splines to High-Dimensional Continuous-State Stochastic Dynamic Programming. Operations Research,

47, pp. 38–53.

Chen, V. C. P., Tsui, K. L., Barton, R. R., Meckesheimer, M. (2006). A review on design, modeling and

applications of computer experiments. IIE Transactions. 38(4): 273-291.

Chen, Y., Liu, F., Kulvanitchaiyanunt, A., Chen, V. C. P., Rosenberger, J. (2017). Infinite Horizon

Approximate Dynamic Programming Using Computer Experiments. COSMOS 17-02, University of

Texas at Arlington.

Cortes, C., Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20, 273-297.

De Brabanter, K., Karsmakers, P., Ojeda, F., Alzate, C., De Brabanter, J., Pelckmans, K., De Moor, B.,

Vandewalle, J., Suykens, J. A. K. (2011). LS-SVMlab Toolbox User’s Guide version 1.8. ESAT-SISTA

Technical Report 10-146, August.

Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., Vapnik, V. N. (1997). Support Vector

Regression Machines, Advances in Neural Information Processing Systems 9, NIPS 1996, 155–161, MIT

Press.

Dong, B., Cao, C., Lee, S. E. (2005). Applying support vector machines to predict building energy

consumption in tropical region. Energy and Buildings, 37(5): 545-553.

Farquad, M. A. H., Ravi, V., Bapi Raju, S. (2012). Analytical CRM in banking and finance using SVM: a

modified active learning-based rule extraction approach. International Journal of Electronic Customer

Relationship Management. 6(1): 48-73.

Fan, H., Tarun, P. K., Chen V. C. P. (2013). Adaptive Value Function Approximation for Continuous-

State Stochastic Dynamic Programming. Computers and Operations Research, 40, pp. 1076–1084.

Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., Haussler, D. (2000). Support

vector machine classification and validation of cancer tissue samples using microarray expression data.

Bioinformatics. 16(10): 906-914.

Heath, D. C., Jackson, P. L. (1994). Modelling the evolution of demand forecasts with application to

safety stock analysis in production/distribution systems. IIE Transactions. 26(3): 17-30.

Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-

dimensional integrals. Numerische Mathematik, 2, pp. 84-90.

Lee, J., Lee., J. H. (2004). Approximate Dynamic Programming Strategies and Their Applicability for

Process Control: A Review and Future Directions. International Journal of Control, Automation, and

Systems, vol. 2, no. 3, pp. 263-278.

Li, T. Huang, C. (2009). Defect spatial pattern recognition using a hybrid SOM-SVM approach in

semiconductor manufacturing. Expert Systems with Applications, 36(1): 374-385.

Martinize-de-Pison, F. J., Barreto, C., Pernia, A., Alba, F. (2008). Modelling of an elastomer profile

extrusion process using support vector machines (SVM). Journal of Materials Processing Technology.

197(1-3): 161-169.

Mohandes, M. A., Halawani, T. O., Rehman, S., Hussain, A. A. (2004). Support vector machines for wind

speed prediction. Renewable Energy. 29(6): 939-947.

Powell, W. B. (2007). Approximate dynamic programming: solving the curses of dimensionality. Wiley,

New York.

Rick, C., Zhong, W., Blackmon, M., Stolz, R., Dowell, M. (2008). An efficient SVM-GA feature

selection model for large healthcare databases. Proceedings of the 10th annual conference on Genetic and

evolutionary, pp. 1373-1380, Atlanta, GA, USA.

Sarikprueck, P., Lee, W., Kulvanitchaiyanunt, A., Chen, V. C. P., Rosenberger, J. M., (2015). Novel

Hybrid Market Price Forecasting Method With Data Clustering Techniques for EV Charging Station

Application. IEEE Transactions on Industry Applications. 51(3):1987-1996.

Simao, H. P., Day, J., George, A. P., Gifford, T., Nienow, J., Powell, W. B. (2008). An Approximate

Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application.

Transportation Science. 43(2): 178-197.

Sobol, I. M. (1967). The distribution of points in a cube and the approximate evaluation of integrals.

USSR Computational Mathematics and Mathematical Physics, 7, pp. 784-802.

Suykens, J. A. K., Van Gestel, T., De Brahanter, J., De Moor, B., Vandewalle, J. (2002) Least squares

support vector machines. World Scientific Pub. Co. Singapore.

Sutton, R. S., Barto, A. (1998) Reinforcement learning: an introduction. The MIT Press, Cambridge,

Massachusetts.

Van Roy, B., Bertsekas, D., Lee, Y. (1997). A Neuro-Dynamic Programming Approach to Retailer

Inventory Management. Proceedings of the 36th IEEE Conference on Decision and Control, 12-12 Dec.

Wei, Q., Liu, D., Shi, G. (2015). A Novel Dual Iterative Q-Learning Method for Optimal Battery

Management in Smart Residential Environments. IEEE Transactions on Industrial Electronics. 64(4):

2509-2518.

Yang, Z., Chen, V. C. P., Chang, M. E., Sattler, M. L., Wen, A. (2009). A decision-making framework for

ozone pollution control. Operations Research, 57(2), pp. 484–498.

Yao, J., Lian, C. (2016). A New Ensemble Model based Support Vector Machine for Credit Assessing.

International Journal of Grid and Distributed Computing, 9(6): 159-168.

Zhang, L., Hu, H., Zhang, D. (2015). A credit risk assessment model based on SVM for small and

medium enterprises in supply chain finance. Financial Innovation, (2015) 1:14.

Zhou, W., Zhang, L., Jiao, L. (2002). Linear programming support vector machines. Pattern Recognition,

35: 2927-2936.

