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Abstract

This research proposes a two-stage stochastic programming (2SP) method to optimize a

treatment procedure for interdisciplinary pain management. The 2SP model incorporates non-

convex nonlinear mixed integer constraints, which are constructed based on data from a real pain

management program. A piecewise linear approximation method is derived to approximate the

non-convex nonlinear constraints in the 2SP model. Consequently, an equivalent mixed integer

linear programming (MILP) model is formulated and then solved quickly using a commercial

branch-and-bound solver. A comparison of the policies generated by the MILP model with the

policies generated by the original nonlinear 2SP model shows that given limited CPU time, the

policies generated by MILP model outperform those of the original nonlinear 2SP model.

Keywords— Two-Stage Stochastic Programming, Pain Management, Regression, Linear Approx-

imation, MILP, MINLP

1 Introduction

Chronic pain is a major public health problem in the United States. It’s reported that about 100

million adult Americans were affected by chronic pain with an annual cost of $560 - $635 billion

dollars (Pizzo & Clark, 2011). Conventional anti-nociceptive interventions for chronic pain, such as

opioid medication and surgery, may lack long-term benefits, and many patients do not achieve sat-

isfactory relief with single-drug or even combination therapies (Bolay & Moskowitz, 2002; Gatchel,

McGeary, McGeary, & Lippe, 2014). As pain research and clinical practice has been developed
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significantly in the past several decades, it was realized that pain is a multidimensional problem

that involves sensory, emotional, and behavioral factors (Hardy, 1997; Serpell & Basler, 2008).

Consequently, pain management, which uses an interdisciplinary approach to deal specifically with

the management of chronic pain and help patients improve the quality of their life, is developing

substantially (Wikipedia.org, 2016; Spanswick & Main, 2000).

Figure 1 Two-stage Interdisciplinary Pain Management Program (Lin et al., 2014)

The Eugene McDermott Center for Pain Management at the University of Texas Southwestern

Medical Center (the Center) conducts a two-stage pain management program for patients who

are suffering from chronic pain. The procedure of the program is depicted in Figure 1. Prior to

treatment for a patient, a pre-treatment evaluation is conducted. During pre-treatment evaluation, a

patients information, such as age, gender, pain duration, medical history, and current pain outcome,

is recorded. Based upon this information, stage-one treatment is determined for the patient. At

the midpoint of the program, a mid-treatment evaluation is conducted to evaluate the patients

pain outcome after having stage-one treatment. Based upon the results of the mid-treatment

evaluation, stage-two treatment is prescribed. A final post-treatment evaluation, which is regarded

as the completion of the program, is conducted to measure the patients final pain outcome.

The contribution of this research is a method to find an optimal treatment strategy that si-

multaneously minimizes a penalty for the expected pain outcome and treatment cost for individual

patients. Two-stage stochastic programming is proposed to optimize the treatment procedure. The

pain outcome at mid-treatment evaluation and post-treatment evaluation are predicted by system

prediction functions, which are constructed based on the empirical data from the Center. These

prediction functions that behave as constraints in the 2SP model are non-convex mixed-integer
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nonlinear with continuous random variables, which result in a two-stage stochastic non-convex con-

strained problem. The traditional approach of solving the stochastic problem is approximating the

continuous random variables by a finite discrete set. Then the equivalent deterministic non-convex

mixed integer nonlinear program (MINLP) is given. This paper proposes an approach to solve

the two-stage stochastic programming problem as follows: approximate the non-convex nonlinear

constraints by high-fidelity piece-wise linear functions. Thus the non-convex MINLP is converted

into a mixed integer linear programming program (MILP), which can be globally optimized by a

commercial branch-and-bound solver.

The remainder of this paper is organized as follows: Section 2 provides the literature review

on adaptive treatment strategies for pain management and an overview of multi-stage stochastic

programming. Section 3 describes the two-stage stochastic model formulation and the linear ap-

proximation to the quadratic terms. The model description is given in section 3.1. Approximating

non-convex quadratic functions by piecewise linear functions, the objective function, treatment in-

teraction restrictions, and the extensive form of the linear approximation model are introduced in

section 3.2. Section 4.1 describes the system prediction models and also the significant predictors

in the model. Section 4.2 studies on the parameters of the 2SP model. Section 4.3 includes the

analysis of the treatment usage in the linear approximated 2SP model optimization results. Section

4.3.1 compares the post-treatment pain outcome of the MILP 2SP model with that of the observed

dataset. Section 4.4 compares the policies generated by the non-convex MINLP model with the

policies generated by the approximated MILP.

2 Review of Adaptive Treatment Strategies

2.1 Adaptive Treatment Strategies

An adaptive treatment strategy (ATS) is a sequential treatment that requires adaptive changes in

the duration, doses, or type of treatment over time depending on a patients ongoing response to

past treatments. As a result of individual response heterogeneity, reoccurrence of symptoms, and

more intensive or longer-term treatments may increase the possibility of intolerable side effects,

ATS is a promising alternative to fixed treatment strategies in the treatment of chronic disorders

(Pineau, Bellemare, Rush, Ghizaru, & Murphy, 2007; Murphy, Oslin, Rush, & Zhu, 2007) for three
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reasons: (1) Patients’ needs for treatments are heterogeneous; for example, some patients respond

well to medication alone, whereas other patients may require additional talk-therapy to respond

well. In this situation, the treatment type should vary across patients. (2) Patients’ responses to

certain treatements are heterogeneous; some patients respond better to a high dosage of treatment,

while others respond better to a low dosage of treatment. Some will respond better to long periods

of treatment rather than shorter periods. (3) Side effects can be avoided by identifying the not-

functional component for particular patient (Murphy & McKay, 2004). Based on the reasons

mentioned above, adaptive treatment strategies are emerging as a new approach for the treatment

and long-term management of chronic, re-occurring disorders such as alcoholism, smoking cessation,

cocaine abuse, depression, and hypertension (Murphy, 2005; Breslin et al., 1998; Brooner & Kidorf,

2002; Glasgow, Engel, & D’Lugoff, 1989; Kreuter & Strecher, 1996; Lavori, Dawson, & Rush, 2000;

Unützer et al., 2001).

The estimation of the effects of each type of treatment is affected by whether the data is from

randomized experimental studies or from observational studies. Data that is collected from the

randomized clinical trials is ideal and can be used to make valid inferences about the causal effects

of treatments on the outcome of interest. However, observational data in sequential treatment is

not ideal because of the complex relationship between the time-dependent treatments and related

variables, such as patient characteristics. In addition, the treatment variables at a previous stage

can influence patient variables at the current stage, which will in turn influence the treatments at

the following stage (Murphy, 2005). Such mutual interactions will lead to bias in estimating the

true effect of treatments on the outcomes. This problem is commonly referred to as endogeneity or

time-dependent confounding (Robins, 1999;Little & Rubin, 2000; MOODIE, PLATT, & KRAMER,

2009). In this paper, concerns about endogeneity are mitigated based upon methods described in

Leboulluec (2013).

2.2 Algorithms for Constructing Adaptive Treatment Strategies

ATS includes a set of decisions that recommend how the treatment level and type should change

depending on a patients ongoing responses to past treatments. Decisions occur at different points

in time so that constructing adaptive treatment strategies can be regarded as a problem with

multiple-stages of observations and actions. In addition, decisions at each stage should be taken
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without full information about how random events will occur, such as the patients heterogeneity in

response to treatments. As a result, this type of problem usually can be modeled using stochastic

dynamic programming or multi-stage stochastic programming, which are related approaches used

to model optimization problems under uncertainty for which a sequence of decisions can be taken

in successive stages

The most relevant related research to this research is Lin et al. (2014), who employed approxi-

mate dynamic programming (DP) for optimal treatment strategies for patients. The approximate

DP approach he used was based on the assumption of continuous state space; however, in this

practical problem, state variables are mixed with integer variables. However, DP problems can

usually be formulated as multi-stage stochastic programming problems, (Ahmed, 2010; Shapiro &

Philpott, 2007; Birge & Louveaux, 1997; Sherali & Zhu, 2009). Consequently this research uses

multi-stage stochastic programming.

The most widely applied and studied stochastic programming models are two-stage stochastic

linear programs, although solution algorithms used for two-stage stochastic programs can be and

have been extended to multi-stage stochastic programs. The uncertainty in the stochastic pro-

gramming problem is often represented by random variables that are assumed to have a known

distribution. A meaningful approximation of the distribution of continuous random variable by a

discrete distribution often requires many scenarios. With the scenarios increasing, the size of the

equivalent deterministic linear problems will increase rapidly, along with the computational time.

Thus, seeking a good scenario generation method, which is able to get near optimal solutions by

using a reasonable number of realizations, is significantly important. Frequently used scenario gen-

eration methods are sampling, statistical approaches, simulation, and other hybrid methods (Mitra

& Domenica, 2010; Mitra, n.d.).

3 Two-Stage Stochastic Programming Model

3.1 General Formulation

The objective of the ATS method developed here is to find an optimal strategy that could minimize

cost associated with treatments in stage 1 and 2, as well as a penalty on the expected final pain

outcome, which also should satisfy the following conditions: drug dosage limitations, treatment
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interaction restrictions, and outcome and state transition modeling constraints. Thus, the two-

stage stochastic programming (2SP) model can be formulated as equation (1). Different from

traditional two-stage stochastic programming problems, the model in this research has a second

random variable ε2

minP
(
E(Y2(ε1, ε2))

)
+ ρ
(
C(x1) + E(C(x2))

)
(1a)

subject to: Y1(ε1) = h1(s1, x1, ε1) (1b)

Y2(ε1, ε2) = h2(s2(ε1), x2(ε1), ε2) (1c)

xi1x
j
1 = 0, xi2(ε1)xj2(ε1) = 0 ∀(xi, xj) ∈ Λ (1d)

s2(ε1) =
[
s1, x1, Y1(ε1)

]
(1e)

x1 ∈ Γ1, x2(ε1) ∈ Γ2 (1f)

In the objective function (1a), P () is the penalty function on the expected final pain outcome, and

C() is the treatment cost function. The parameters ρ is a coefficient that balances treatment cost

and the penalty on expected final pain outcome. In addition, s1 is a constant vector of the patients

state variables at the beginning of stage 1, which could include the patients entire medical history, s2

is the vector of state variables at the beginning of stage 2, xt is the vector of treatment decisions, Γt

is the set of feasible treatment decisions, xit is the dose or usage of treatment i in stage t, Λ is a set of

treatment interaction restrictions, function ht updates the patients pain outcome at the end of each

stage, random vector εt represents the uncertainty in the system prediction models. Constraints

(1b) and (1c) are pain outcome prediction functions at the mid-treatment evaluation point and the

post-treatment evaluation point respectively. Constraint set (1d) includes the treatment interaction

restrictions, which hence forth will be modeled as special order set constraints of type I (SOSI) and

can be implemented directly in commercial branch-and-bound solvers like CPLEX. Constraint set

(1e) shows the elements included in s2. Constraint set (1f) includes the bounds and appropriate

integer restrictions on treatment decision variables. According to Lin et al. (2014), constraint (1c)

has quadratic terms as well as nonconvexity.

A linear approximation method is proposed in this research to approximate the non-convex

constraint with piecewise linear function. Then the stochastic programming model can be solved
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quickly by a mature branch-and-bound solver such as CPLEX. In addition, the solution of the

approximation model is compared with the solution from original nonconvex model found by the

non-convex nonlinear solver COUENNE. Results show that in limited time, the approximation

method can in fact find better treatment strategies.

3.2 Linear Approximation Method

Quadratic terms in constraint (1c) are classified into three types as follows, (1) a binary variable

interacts with a continuous variable, (2) a binary variable interacts with a binary variable, and (3) a

continuous variable interacts with a continuous variable. The linear formulation for the interactions

of types (1) and (2) are straightforward and given in constraint set (2) in which xij = xixj .

type 1: type 2:

ljxi ≤ xij ≤ ujxi, xij ≤ xk,∀k = i, j (2)

xj − uj(1− xi) ≤ xij ≤ xj − lj(1− xi), xij ≥ xi + xj − 1.

This research has proposed a refitting regression model method with piecewise linear terms in place

of type (3) quadratic term. If xi and xj are continuous variables with bounds [li, ui] and [lj , uj ],

respectively, then the first order Taylor series approximation can be written as equation (3):

xixj ≈ −x0
ix

0
j + x0

jxi + x0
ixj (3)

where (x0
i , x

0
j ) is a selected point around which the approximation lies. Let x̄i = li+ui

2 and x̄j =
lj+uj

2

be the midpoints of the feasible space, and consider dividing the dividing the original region,

[li, ui] × [lj , uj ], into 4 equal sub-regions [li, x̄i] × [lj , x̄j ], [li, x̄i] × [x̄j , uj ], [x̄i, ui] × [lj , x̄j ], and

[x̄i, ui] × [x̄j , uj ]. Consider two binary variables x̂i and x̂j , which indicate that the variables are

above their midpoints and defined by equation (4):

x̂k =


1, if xk > x̄1

0, otherwise,

∀k = i, j (4)
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The variables xk and x̂k can be linked by constraint set (5).

xk − x̄k
uk − lk

+ ε ≤ x̂k ≤ 2
xk − l
uk − lk

, ∀k = i, j. (5)

The midpoint of the sub-region to which x is in can be expressed by equation set (6).

x0
k = x̂k

uk + x̄k
2

+ (1− x̂k)
lk + x̄k

2
, ∀k = i, j. (6)

Substituting (6)into (3), equation (7) is derived.

xixj ≈−
li + x̄i

2

lj + x̄j
2

+
lj + x̄j

2
xi +

li + x̄i
2

xj −
ui − li

2

uj − lj
2

x̂ix̂j

− ui − li
2

lj + x̄j
2

x̂i −
uj − lj

2

li + x̄i
2

x̂j +
uj − lj

2
x̂jxi +

ui − li
2

x̂ixj

(7)

In equation (7), the 7 terms xi, xj , x̂ix̂j , x̂i, x̂j , x̂jxi, and x̂ixj are considered new features that

may replace the quadratic term xixj . Though the features x̂ix̂j , x̂jxi, are x̂ixj are quadratic, they

can be formulated as linear terms with additional linear constraints as described in constraints (2).

In other words, a type (3) quadratic term can be approximated by 7 linear terms. Based on this

approximation, a refit method is proposed for approximating type (3) quadratic terms in section

3.3.

3.3 Refitting Continuous Variable Interaction Terms

We only need to focus on the type (3) interaction terms since type (1) and type (2) quadratic

terms can be linearized. For convenience, they are denoted by a linear term, therefore the original

outcome and state transition model h, denoted as model 1 with m type (3) quadratic terms, can

be described as equation (8)

Y = β0 +
n∑

i=1

βixi +
n+m∑
i=n+1

βi(xuxv(v 6=u)) + ε1 (8)

The procedure of refitting the model 1 is shown as follows, and the refit model denoted as model 2.

• Step 1: Remove the quadratic term away from model 1 to get equation (9) and calculate the
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residual ε′ from (9)

Y = β0 +
n∑

i=1

βixi + ε′ (9)

• Step 2: Use ε′ as a response variable to fit a linear regression model on linear predictors

derived from (7) for the m type (3) quadratic terms using stepwise regression to get equation

(10):

ε′ = α0 +

n′∑
j=1

αjx
′
j + ε2 (10)

• Step 3: Combine constant and linear terms in equations (8) and (10) to obtain Model 2 as

shown in equation (11):

Y = β0 + α0 +
n∑

i=1

βixi +
n′∑
j=1

αjx
′
j + ε2 (11)

3.4 Revised Two-Stage Stochastic Programming Formulation

By using the aforementioned refit linear reformulation method, the nonconvex constraints are ap-

proximated by piecewise linear functions. Consequently, the 2SP model can be approximated by a

piecewise linear model. By discretizing the continuous random variables ε1 and ε2 in 2SP, the deter-

ministic equivalent is an MILP model, denoted as L2SP. Consider sampling each random variable

ε1 and ε2 to n times to obtain discrete sample sets Ξn
1 and Ξn

2 . The MILP model of L2SP is shown

as in equation (12). Constraint set (12a) is equivalent to (1b), representing the prediction model of

the pain outcome at the mid-treatment evaluation point Y1(ω1). Constraint set (12b) represents the

prediction model for the pain outcome measure at the post-treatment evaluation point, which is the

piecewise linear approximation of constraint (1c). In (12b), the variable vector xL(ω1) represents in

the linearized variables introduced to replace the quadratic interaction terms described in section

3.2. Constraint (12c) includes linear constraints that link the linearized variables xL(ω1) with the

second-stage state and treatment variables with coefficient matrices B2
x, B2

s , and B2
L, and vector d,

as in constraints (2) and (5). Constraints (12d—12f) are the discretization of constraints (1d—1f),

respectively. β1
i is the coefficient vector for predictors of the pain outcome at the mid-treatment

evaluation point, β2
i is the coefficient vector for predictors of the approximated pain outcome model

at the post-treatment evaluation point. Constraint set (12g) include appropriate restrictions on
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the linearized variables. The rest of the notations are same as in 2SP (1) .

minP
( ∑

ω1∈Ξn
1

∑
ω2∈Ξn

2

Y2(ω1, ω2))
)

+ ρ
(
C(x1) +

∑
ω1∈Ξn

1

E(C(x2(ω1)))
)

subject to: Y1(ω1) = β1
0 + β1

1x1+β1
2s1 + sT1 β

1
3x1 + ω1 ω1 ∈ Ξn

1 (12a)

Y2(ω1, ω2) = β2
0 + β2

1x2(ω1) + β2
2s2(ω1) + β2

3xL(ω1) + ω2 ω1 ∈ Ξn
1 , ω2 ∈ Ξn

2 (12b)

B2
xx2(ω1)+B2

ss2(ω1) +B2
LxL(ω1) ≤ d ω1 ∈ Ξn

1 (12c)

xi1x
j
1 = 0, xi2(ε1)xj2(ε2) = 0 ∀(i, j) ∈ Λ, ω1 ∈ Ξn

1 (12d)

s2(ω1) =
[
s1, x1, Y1(ω1)

]
ω1 ∈ Ξn

1 (12e)

x1 ∈ Γ1, x2(ω1) ∈ Γ2 ω1 ∈ Ξn
1 (12f)

xL(ω1) ∈ ΓL ω1 ∈ Ξn
1 (12g)

4 Case Study

The dataset from the Center has 294 patients. 235 of them are in a training dataset and the remain-

ing 59 patients are in a testing dataset. This research uses Oswestry Pain Disability Questionnaire

(OSW) pain outcome measure to model the problem. OSW score ranges from 0 to 50, and the

score is classified into five levels. For a total score of 0-10, no treatment is necessary; 11-20 indi-

cates mild disability and conservative treatment is recommended; 21-30 indicates severe disability

and detailed investigation is required; 31-40 indicates crippling disability and severe Intervention

is required; 41-50 indicates bed bound (Europeanmedicaltourist.com, 2016).

4.1 Outcome and State Transition Models

Stepwise variable selection criteria is used to predict pain outcome at the mid-treatment evaluation

point, which is denoted as mid OSW, and post-treatment evaluation point, which is denoted as

Post OSW. According to Lin et al. (2014) , the best subset of predicators at stage t are from

state variables st, decision variables xt, and two way interaction terms from all state variables with

all decision variables. Least squares regression is employed to predict Mid OSW, while weighted

least squares regression is employed for the Post OSW prediction model to mitigate endogeneity
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concerns. Specifically, weights to mitigate endogeneity issues were from Leboulluec (2013). The

Mid OSW model in this research is given in (13).

Mid OSW = 7.63651 + 0.57965× Pre OSW − 2.61561× StdProcGr11 1× Stdage

− 2.17391× StdRxGr3 1× Stdonset+ 1.03057× StdRxGr6 1

× Stdmarital 2− 2.83417× StdRxGr7 1× Stdduration− 1.14044

× StdRxGr7 1× StdProcGr10 0 + ε1.

(13)

The prefix Stdx stands for standardized variable x. All interaction terms are standardized and

centralized by Stdx = x−(u+l)/2
(u−l)/2 , where u and l denote the upper bound and lower bound of x

respectively.

The original selected Post OSW model consists of two continuous (or integer) variable interac-

tion terms. After linearly approximating quadratic terms by the refit method described in section

3.3, the linear refit Post OSW model is derived. The residual analysis results of both original

Post OSW and refit Post OSW model are given in Appendix B. Residual analysis results provided

in Appendix C show that the refit model are as accurate as the original model and do not violate

least squares modeling assumptions.

Equation (13) shows that muscle relaxants (RxGr4 1), other medicines (RxGr8 1), injections

(ProcGr1 1), and block procedures (ProcGr2 1) are not selected as predictors of Mid OSW. Tra-

madol (RxGr1 2), muscle relaxants (RxGr4 2), antidepressants (RxGr5 2), and tranquilizers (RxGr6 2)

are not selected as predictors in the Post OSW model. Muscle relaxants are the only treatment

that is not selected as a significant predictor in either stage.

4.1.1 Penalty Function for Pain Outcome and Treatment Cost Function

Objective function (1a) of 2SP (1) is based upon that in Lin et al. (2014) and is summarized in this

section. Objective function (1a) is comprised of two parts: a pain outcome penalty function and

a treatment cost function. The pain outcome penalty function penalizes the expected value of the

Oswestry Pain Disability Questionnaire (OSW) pain outcome measure. From a patients perspective,

each of subsequent level is significantly worse than lower levels, so this research uses a five-piece
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nondecreasing piecewise linear penalty function. OSW scores less than or equal to 10 are regarded

as normal, so no penalty is applied. Along with the increase in disability level, the penalty on the

expected pain outcome increases for each unit increase in final pain outcome score. In other words,

the slope (α) for each piece has the following relationship: α5 > α4 > α3 > α2 > α1 > α0 = 0. The

determination of the slope refers to the penalty function in Lin et al. (2014).

The purpose of treatment cost function is to place a higher cost on more treatment (either

medications or surgery) in order to control the medication usage. Nondecreasing piecewise linear

functions are also used to represent the treatment cost function. Two different types of treatments

have been used in this research. Procedural treatments are binary, while pharmaceutical treatments

are two-level and three-level discrete integer. Different piecewise linear function are used for each

type of treatment variable, and the slopes of these functions are similarly from Lin et al. (2014).

4.2 Study of Parameters of L2SP Model

The L2SP model in this research contains two continuous random variables that follow normal

distributions. This research employs the approach of approximating the continuous random vari-

able with a discrete set obtained by random Monte Carlo sampling from its distribution, and then

optimizes the equivalent deterministic problem. Whether or not the support set can closely ap-

proximate the normal distribution affects the quality of an optimal solution. The approximation

accuracy can be improved by increasing sample size. However, as sample size increases, the size of

the equivalent deterministic problem will increase quickly, which in turn increases computational

time to solve L2SP. As a result, determining an appropriate sample size is very important for the

L2SP problem. In addition, an appropriate treatment coefficient ρ is also very important to L2SP.

If the value of ρ is too large, L2SP will recommend no treatment to patients because of the large

cost of treatments. By contrast, with a value too small of ρ, the model would recommend too much

treatment for only a little decrease in pain outcome.

The determination of Monte Carlo sample size and treatment coefficient are described in detail

in this section. All procedures are coded in the C programming language, and the IBM ILOG

CPLEX Callable library is used to solve L2SP. Experiments in this research are all executed on a

desktop with eight processors at 2.67 GHz and 16 GB of memory. The program terminates at the

following conditions: (1) either the elapsed time of the optimization routine reaches to six minutes
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or (2) a relative tolerance on the gap between the best integer objective and the objective of the

best node remaining are within 0.01.

4.2.1 Treatment Coefficient ρ

Different from traditional 2SP problems, there are two random variables, one at each stage in this

research. Though the sample size for each random variable at each stage can be different, the same

sample size n in each stage. In order to find an appropriate treatment coefficient ρ, we fix the Monte

Carlo sample size at 50 for each stage with treatment interaction restriction constraints relaxed.

Experiments are done with ρ equal to 0.1, 0.3, 0.5, and 0.7 separately. The average results for the

235 patients in training dataset is in Table 1. The table shows how the treatment cost decreases

alongside an increase in treatment coefficient. Decreases in treatment cost means less treatment for

patients. Meanwhile, the final pain outcome increases alongside an increase in treatment coefficient

ρ. An OSW measure below or equal to 10 is considered a satisfactory pain outcome by the Center.

As a result, 0.1 is selected for the treatment coefficient in this research; all experiments in the

following sections are based on ρ equal to 0.1.

Table 1 Average Treatment Cost and Final Pain Outcome at Different ρ Value

Treatment coefficient ρ ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7

Average Treatment Cost for Training Dataset 29.98 23.88 17.23 6.85
Average Final Pain Outcome for Training Dataset 10.12 10.81 12.43 15.88

4.2.2 Sample Size and Evaluation Procedure

In this section, a treatment evaluation procedure is developed in section 4.2.2.1, and the determi-

nation of sample size n is given in section 4.2.2.1 and section 4.2.2.2

4.2.2.1 Evaluation Procedure A much larger number of scenarios are used to evaluate the

first-stage treatment policy generated by L2SP. Let x∗1(n) be the characteristic vector of a first-stage

treatment policy generated from L2SP with n scenarios in each stage. In the evaluation procedure,

L2SP is solved with more scenarios m in each stage and the vector of first stage decision variables

are set to equal to the policy under evaluation. The mathematical model of L2SP evaluator is shown

in equation (14). The objective in evaluator is regarded as the “real/true” objective achieved by
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the policy.

minP
( ∑

ω1∈Ξm
1

∑
ω2∈Ξm

2

Y2(ω1, ω2))
)

+ ρ
(
C(x1) +

∑
ω1∈Ξm

1

E(C(x2(ω1)))
)

subject to: (12a)—(12g), ∀ω1 ∈ Ξm
1 ,∀ω2 ∈ Ξm

2

x1 = x∗1(n) (14a)

In this research, experiments are done using L2SP with m = 100 and m = 150.

4.2.2.2 Determination of Sample Size An appropriate sample size n is important. If n is

too small, then L2SP cannot represent the 2SP model very well. If n is too large, the size of the

problem will increase so that L2SP becomes intractable.

Given policy x∗1(n), the objective value of the L2SP evaluator with sample size of m is denoted

as f(x∗m(n)). An appropriate n is the number where f(x∗m(n)) begins to level off along with the

increase in n. We conduct experiments for training and testing datasets by generating first-stage

(a) Training Dataset (b) Testing Dataset

Figure 2 Average Optimal Objectives in Different Scenarios across Different Evaluators for Patients

treatment policies using L2SP with sample sizes of n at 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70

and 75, and evaluate the generated policies with evaluation sample size of m = 100 and m = 150

separately. The averaged optimal objectives for both training and testing datasets are shown in

Figures 2a and 2b. The dotted line with square markers represent the objective of L2SP with the

different sample sizes n, while the diamond and triangle markers represent the evaluations of the

corresponding first-stage treatment policies with m = 100 and m = 150. These two figures clearly

demonstrate two points. One, the L2SP evaluator with 10,000 (m2 = 1002) scenarios is as good as

the evaluator with 22,500 (m2 = 1502) scenarios, since the objective values in different evaluators
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are very close to each other for different scenarios. Two, the objectives of two evaluators are both

stabilized at sample size n = 65 (652 scenarios). As a result, the sample size for a good policy

generator is n = 65.

4.3 Treatment Usage Analysis

In this section, we analyze the use of types of treatments from L2SP. The usage frequency for a

first-stage treatment i is calculated by counting the number of times xi∗1(n) is positive for all 294

patients. Second-stage treatments are recourse actions based upon patient outcomes. Consequently,

the usage frequency of second-stage treatment i is calculated by the number of times xi2(ω1) is

positive in the L2SP evaluation of xi∗1(n) averaged over m = 100 scenarios and summed over all 294

patients. The usage frequencies of treatment in the first and second stages among different sample

sizes of n of L2SP are shown in Table 2. First-stage treatments end with 1, while second-stage

treatments are denoted with 2. According to the L2SP results, the most frequently used type of

treatment in the first stage is NSAIDS (RxGr2 1). It is estimated that this medicine has been

applied to 82% of patients. The usage of procedure treatment cognitive behavioral therapy (CBT)

(ProcGr9 1) varies a lot in different scenarios. Note that tramadol (RxGr1 1) is selected as a

significant predictor in the prediction model, but it is never recommended for any patient by L2SP.

This is likely because tramadol (RxGr1) has treatment interaction constraints with a lot of other

types of treatments such as RxGr3, RxGr4, RxGr6, RxGr7, RxGr8, and ProcGr1 (see appendix A

treatment interaction table 5). Consequently, if tramadol (RxGr1) is selected, none of these other

treatments can be selected in the same stage.

In the observed dataset from the Center, the most frequently used treatment in the first stage

is CBT (ProcGr9 1) as shown in the right column in Table 2, and the second most frequently used

is physical therapy (ProcGr10 1). It is estimated that they are used by 75% and 71% patients,

respectively. Many more types of treatment have been used by patients in the observed data than

in the L2SP solutions.

From Table 2, the three most frequently used types of treatments from the L2SP solutions are

NSAIDS (RxGr2 2), sleeping pills (RxGr7 2) and block procedures (ProcGr2 2) in second stage.

The frequency in using block procedure has a wide variation in different scenarios. Worth men-

tioning is that stimulation procedure (ProcGr4 2) and physical therapy (ProcGr10 2) are seldom

15



Table 2 Usage Frequency of Treatment in Observations and Different Scenarios

Treatment
frequency for different scenarios in evaluator with m = 100 observed

sample size (n) treatment
20 25 30 35 40 45 50 55 60 65 70 75 frequency

RxGr1 1 0 0 0 0 0 0 0 0 0 0 0 0 44
RxGr2 1 249 248 252 249 248 248 248 248 245 242 243 237 97
RxGr3 1 13 15 16 14 15 14 15 16 11 10 12 12 88
RxGr4 1 0 0 0 0 0 0 0 0 0 0 0 0 86
RxGr5 1 23 23 25 24 22 24 24 23 22 21 21 18 96
RxGr6 1 3 3 4 3 2 2 2 2 3 3 3 3 41
RxGr7 1 11 11 17 10 11 12 10 12 9 6 6 7 34
RxGr8 1 0 0 0 0 0 0 0 0 0 0 0 0 12

ProcGr1 1 0 0 0 0 0 0 0 0 0 0 0 0 67
ProcGr2 1 0 0 0 0 0 0 0 0 0 0 0 0 4
ProcGr4 1 11 10 15 11 9 10 10 10 8 7 5 5 19
ProcGr9 1 85 77 105 82 65 74 72 69 41 31 31 19 222
ProcGr10 1 11 11 14 11 10 11 11 11 7 5 7 6 209
ProcGr11 1 23 21 27 23 17 21 20 19 16 13 11 9 27

RxGr1 2 0 0 0 0 0 0 0 0 0 0 0 0 45
RxGr2 2 32 32 30 32 33 33 33 34 35 35 34 34 83
RxGr3 2 6 6 5 6 7 7 7 7 8 9 9 12 48
RxGr4 2 0 0 0 0 0 0 0 0 0 0 0 0 78
RxGr5 2 0 0 0 0 0 0 0 0 0 0 0 0 84
RxGr6 2 0 0 0 0 0 0 0 0 0 0 0 0 38
RxGr7 2 46 46 43 46 47 46 46 46 49 50 51 54 33
RxGr8 2 0 0 0 0 0 0 0 0 0 0 0 1 9

ProcGr1 2 26 27 25 26 27 26 27 26 27 27 27 27 64
ProcGr2 2 38 44 27 40 56 46 48 50 71 80 80 94 6
ProcGr4 2 0 0 0 0 0 0 0 0 0 0 0 0 26
ProcGr9 2 1 1 1 1 1 1 1 1 1 1 2 2 173
ProcGr10 2 0 0 0 0 0 0 0 0 0 0 0 0 157

used though they are selected as predictors in the transition and outcome model. Compared to the

first stage, the usage frequency of CBT (RxGr9 2) is reduced in second stage. Since L2SP with

n = 75 is regarded as an appropriate sample size, the treatment solution is compared with observed

dataset. In the observed dataset, the most frequently used treatment is CBT (ProcGr9 2), and

then physical therapy (ProcGr10 2), which is similar to the treatment usage in the first stage. The

block procedure treatment (RxGr2 2) is the least frequently used treatment in the observed data.

However, it is recommended much more frequently by L2SP. Many more types of treatment have

been used by patients in the observed data than those recommended by L2SP in the second stage,

which may be due to treatment interaction restrictions.
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From Table 2, we can draw the conclusions that: (1) In both stages, many more types of

treatment have been used in the observed data than in the L2SP results. (2) In the observed

data, frequently used types of treatment in the first stage are similar as those in the second stage.

However, there is a difference in the types of treatments used between the stages in the L2SP

results. (3) CBT (ProcGr9 2) and physical therapy (ProcGr10 2) are more frequently used at the

Center than suggested by L2SP. By contrast, NSAIDs (RxGr2 1) should be used more often than

it used in the observed dataset.

4.3.1 Final Pain Outcome Comparison between MILP Model and Observed Data

To compare the final pain outcomes in the L2SP results with those in the observed data, an

odds ratio analysis is employed. Patients that have a pre-treatment evaluation outcome within the

normal/low range do not require treatment, and as a result, these normal patients are excluded from

the comparison. Consequently, the effects of the L2SP treatments are compared only for patients

that require treatment. As mentioned in section 4.2.2.2, optimal objective values evaluated by both

evaluators are stabilized when the sample size for each stage increased to 65. Thus, a sample size

65 for each stage with 4225 scenarios is used as a first-stage treatment policy generator. Given

the policy, the optimal final pain outcome is evaluated in the L2SP evaluator with m = 100. The

results are compared with the observed final pain outcome in the original dataset.

According to the observed dataset, the odds of patients who require treatment (initial level of

pain above normal) become normal after treatment is estimated by the proportion of the number

of normal patients to the number of above normal patients, which referred to as the observed

odds. Similarly the odds that patients become normal after treated by the L2SP policy are referred

to as the optimization odds and is estimated by the following steps: (1) for each patient s, the

probability that his/her final pain outcome is normal is denoted as ps, which can be estimated

by counting the fraction of scenarios resulting in Post OSW ≤ 10. (2) The count of normal

patients in optimization model is N(opt normal) =
∑

s∈S ps, where S is the set of patients with an

above normal initial level of pain. (3) The optimization odds can be estimated by the proportion

N(opt normal)/(|S| −N(opt normal)).

The number of patients with a normal initial pain level is 24, so 270 patients require treatment.

The expected number of normal patients from L2SP and the number of normal patients from the
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observed dataset are given in a 2 × 2 contingency table shown in Table 3. The observed odds is

estimated by the proportion of normal patients to above normal patients in the final evaluation,

which are 51/219, and the optimization odds are 154.15/115.85. The estimated odds ratio of the

optimization odds to the observed odds is 5.7. We can interpret this to mean that the treatment

policy generated by L2SP is 5.7 times more likely to achieve the normal level.

Table 3 2× 2 Contingency Table

Final pain outcome Number of Normal Patients Number of above Normal Patients

Optimization Model 154.15 115.85
Observed Dataset 51 219

4.4 Comparison of Linear Approximation 2SP Model and Nonconvex 2SP Model

An alternative approach to solve model (12) is to solve its deterministic model by a non-convex

nonlinear solver such as COUENNE and BARON directly. The deterministic MINLP model,

denoted as NL2SP, is be described in (15).

minP
( ∑

ω1∈Ξm
1

∑
ω2∈Ξm

2

Y2(ω1, ω2))
)

+ ρ
(
C(x1) +

∑
ω1∈Ξm

1

E(C(x2(ω1)))
)

subject to: (12a),(12d)– (12f)

Y2(ω1, ω2) = β2
0 + β2

1x2(ω1) + β2
2s2(ω1) + sT2 (ω1)β2

3x2(ω1) + ω2 ω1 ∈ Ξn
1 , ω2 ∈ Ξn

2 (15a)

In this research, we use the AMPL modeling language to model NL2SP, and then, use COUENNE

as a non-convex MINLP solver. The previous section shows that the L2SP model with n = 65 is

a good policy generator and could represent the 2SP model. However, AMPL/COUENNE cannot

find a first stage in 90 minutes for NL2SP with sample sizes of n at 65, 50 and 40 for each stage.

Thus, a smaller sample size of n = 20 is used to obtain a policy from NL2SP. Even with n reduced

to 20, we set the maximum elapsed real time of 15 minutes for COUENNE, because it cannot find

a solution within 6 minutes.

In order to compare the quality of treatment policies generated by L2SP (equation(12)) with

NL2SP (equation(15)), the policy generated by L2SP with sample size of 20 (denoted as policy 1)

and NL2SP with sample size of n = 20 (denoted as policy 2) are cross evaluated by two different
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evaluators separately. The two evaluators are called as evaluator 1 and 2 separately, which are

described in detail as follows.

Evaluator 1 is defined as similar to the L2SP evaluator described in section 4.2.2.1, except that

the objective is to minimize the expected penalty on the pain outcome as well as the treatment

cost instead of minimizing the penalty on the expected pain outcome with the treatment cost.

The mathematical model of evaluator 1 is described in equation (16), in which the objective is

multiplied the number of scenarios of pain outcome at post-treatment evaluation point to improve

the computational precision and time. Evaluator 1 is solved by CPLEX.

min
( ∑

ω1∈Ξm
1

∑
ω2∈Ξm

2

P (Y2(ω1, ω2))) + ρ
(
C(x1) +

∑
ω1∈Ξm

1

E(C(x2(ω1)))
))
m2

subject to: (12a)—(12g), (14a), ∀ω1 ∈ Ξm
1 ,∀ω2 ∈ Ξm

2 (16)

Evaluator 2 is very similar to evaluator 1 except the pain outcome at the post-treatment

evaluation point is the original non-convex quadratic models instead of the piecewise linear ap-

proximation model. The mathematical model of evaluator 2 is described in equation (17), which is

solved by COUENNE.

min
( ∑

ω1∈Ξm
1

∑
ω2∈Ξm

2

P (Y2(ω1, ω2))) + ρ
(
C(x1) +

∑
ω1∈Ξm

1

E(C(x2(ω1)))
))
m2

subject to: (12a),(12d)– (12f), (14a), (15a) (17)

Both evaluators 1 and 2 are used with sample size of m = 100. The cross evaluation result

for policy 1 and policy 2 in evaluator 1 and 2 is summarized in Table 4. A student’s t-test is

employed to compare the objective values of the two solutions across different evaluators. The t-

test is only done for patients that has an initial pain outcome above 10. The null hypothesis for this

test is that there is no difference between the objective values achieved by these two policies; the

alternative hypothesis is that the objective value achieved by policy 2 is greater than the objective

value achieved by policy 1 for both evaluators. From the t-test summary shown in Table 4, we see

that the null hypothesis is rejected at a significance level of 0.01 in both cases.
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Table 4 Paired T-test (α = 0.01) for Objective Values of MILP and MINLP Model

Paired Objectives achieved by policy 2 − Objectives achieved by policy 2 −
Value Objectives achieved by policy 1 Objectives achieved by policy 1

Evaluator Evaluator 1 Evaluator 2
Mean 2036.2 683.0

Std Error 4311.7 2830.4
DF 269 269

tvalue (pvalue) 7.76 (< .0001) 3.97 (<0.0001)

In Table 4, both evaluators show that L2SP is better than NL2SP with respect to the quality of

solutions and the computational time for two reasons: (1) policy 1 is found by L2SP in 6 minutes

while policy 2 is found by NL2SP in 15 minutes; (2) the paired t-test shows that the objective value

achieved by policy 1 is better (smaller) than the objective value achieved by policy 2.

4.4.1 Treatment Usage Comparison

The comparison of treatment usage in the first stage between L2SP and NL2SP is shown in Figure

3, which indicates that the most frequently used types of treatment in the first stage for both L2SP

and NL2SP are NSAIDs and CBT. CBT is used relatively more frequently in NL2SP solutions

than in L2SP solutions. However, the overall treatment selections including types of treatment and

frequency of usage found by L2SP and NL2SP are quite similar.

Figure 3 First-stage treatment Usage Comparison between MILP and MINLP
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The treatment usage in second stage is shown in Figure 4. The dotted line with triangle markers

(MINLPEVLCPLEX) and square markers (MINLPEVLCOUENNE) show the types of treatment

used in second stage found by L2SP and NL2SP evaluators, respectively, given first-stage treatment

policies generated by NL2SP. The diamond markers line (MILPEVLCPLEX) and asterisk markers

line (MILPEVLCOUENNE) show the types of treatment used in second stage found by L2SP and

NL2SP evaluators, given first-stage treatment policies generated by L2SP. The types of treatment

as the recourse for a given policy are the same according to the same evaluator. However, the

frequency of the usage in each type of treatment is different using the L2SP evaluator. By contrast,

the frequency of the usage in each type of treatment is the same using the NL2SP evaluator. One

of the reasons might be that the NL2SP evaluator only provides a best known solution instead of

an optimal for many patients within elapsed time limit of 15 minutes.

Figure 4 Second-stage treatment Usage Found by CPLEX Evaluator

In section 4.4, the solutions of L2SP and NL2SP are compared, and results show that the types

of treatment recommended in the first stage by both L2SP and NL2SP are very similar. However,

L2SP solved by CPLEX found in significantly less computational time than those of NL2SP solved

by COUENNE.
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5 Conclusions and Future Work

This research has developed a two-stage stochastic model to find optimal adaptive treatment strate-

gies for a pain management program in UT Southwestern Medical Center, which incorporates pain

outcome prediction models as constraints. However, the prediction model of the pain outcome at

the post-treatment evaluation point is non-convex and nonlinear, which results in a non-linear non-

convex deterministic model. A refit method is proposed to approximate the non-convex function by

a piecewise linear function. As a result, a piecewise linear approximation MILP model is derived to

approximate the original non-convex MINLP model. The policy generated by the piecewise linear

approximation model is compared with the policy generated by solving the original non-convex

model directly. Results show that the policy generated by the linear approximation MILP model

is better than that of the MINLP model, because the policy generated by the MILP model within

6 minutes could achieve a lower objective value than the policy generated by MINLP model within

15 minutes.
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Appendices

Appendix A

Table 5 Treatment Interaction Table

Interaction
Level

Two Interaction Treatments

Mild interac-
tion

(RxGr1, RxGr3), (RxGr4, RxGr6), (RxGr4, RxGr7),
(RxGr5, RxGr7), (RxGr5, ProcGr1), (RxGr5, ProcGr2),
and (RxGr6, RxGr7)

Moderate
Interaction

(RxGr1, RxGr4), (RxGr1, RxGr5), (RxGr1, RxGr6),
(RxGr1, RxGr7), (RxGr1, RxGr8), (RxGr1, ProcGr1),
(RxGr2, RxGr6), (RxGr2, RxGr8), (RxGr2, ProcGr1),
(RxGr2, ProcGr2), (RxGr3, RxGr4), (RxGr3, RxGr5),
(RxGr3, RxGr6), (RxGr4, RxGr8), (RxGr5, RxGr8),
(RxGr7, RxGr8), (RxGr8, ProcGr1), and (RxGr8, ProcGr2)

Severe Interac-
tion

(RxGr3, RxGr8), and (RxGr5, RxGr6)

Appendix B

Original Post OSW model with two continuous interaction terms

Post OSW = 6.81751 + 0.52798×mid OSW0.62507× StdProcGr4 1× Stdphydx20+

0.41484× StdProcGr4 1Stdmarital 1 + 1.14851× StdProcGr9 1× Stdmarital 1+

1.75686× StdProcGr10 1Stdpre PDA− 1.01393× StdProcGr10 1× StdProcGr10 0+

0.92568× StdRxGr1 1× StdRxGr2 0− 0.62882× StdRxGr3 1× StdProcGr1 0−

1.34039× StdRxGr5 1× Stdmarital 1− 1.58767× StdRxGr6 1× Stdphydx3−

0.30342× StdRxGr7 1× Stdphydx11 + 2.83819× StdProcGr1 2 ∗ StdRxGr2 1+

2.41501× StdProcGr1 2× Stdrace 1 + 1.33629× StdProcGr1 2× StdProcGr4 0+

2.50013× StdProcGr2 2× Stdrace 2− 1.67265× StdProcGr4 2× StdRxGr1 1−

0.6863× StdProcGr9 2× StdRxGr6 1− 0.15207× StdProcGr10 2× Stdmarital 2

−0.96831× StdRxGr2 2× StdProcGr4 1 + 0.19288× StdRxGr2 2× Stdpastdx4

−2.09052× StdRxGr2 2× Stdpastdx7 + 2.62666× StdRxGr2 2× StdRxGr4 0−

1.12054× StdRxGr3 2× Stdmarital 4− 2.69533× StdRxGr7 2× Stdmid OSW+

0.28598× StdRxGr7 2× StdRxGr7 0 + 0.87232× StdRxGr8 2× Stdmarital 4 + ε2

(18)

Refitting the quadratic terms, the linear approximation model of Post OSW with standardized
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interaction form is shown as follows:

Post OSW = 6.30693 + 0.52798×mid OSW0.62507× StdProcGr4 1 Stdphydx20+

0.41484× StdProcGr4 1 Stdmarital 1 + 1.14851× StdProcGr9 1 Stdmarital 1+

1.75686× StdProcGr10 1 Stdpre PDA− 1.01393× StdProcGr10 1 StdProcGr10 0+

0.92568× StdRxGr1 1 StdRxGr2 0− 0.62882× StdRxGr3 1 StdProcGr1 0−

1.34039× StdRxGr5 1 Stdmarital 1− 1.58767× StdRxGr6 1 Stdphydx3−

0.30342× StdRxGr7 1 Stdphydx11 + 2.83819× StdProcGr1 2 StdRxGr2 1+

2.41501× StdProcGr1 2 Stdrace 1 + 1.33629× StdProcGr1 2 StdProcGr4 0+

2.50013× StdProcGr2 2 Stdrace 2− 1.67265× StdProcGr4 2 StdRxGr1 1−

0.6863× StdProcGr9 2 StdRxGr6 1− 0.15207× StdProcGr10 2 Stdmarital 2−

0.96831× StdRxGr2 2 StdProcGr4 1 + 0.19288× StdRxGr2 2 Stdpastdx4−

2.09052× StdRxGr2 2 Stdpastdx7 + 2.62666× StdRxGr2 2 StdRxGr4 0−

1.12054× StdRxGr3 2 Stdmarital 4 + 0.28598× StdRxGr7 2 StdRxGr7 0+

0.87232× StdRxGr8 2 Stdmarital 4 + 2.61529× Stdmid OSW

−1.87207× StdRxGr7 2 IStdmid OSW + ε2;

(19)

Appendix C

The residual plots and normality plots of Post OSW and refit Post OSW models for the training

and testing datasets are included in Appendix B. From the residual plots for both training and

testing datasets, we can see that residuals in refit model are distributed very similar to those of

the original model. Moreover, the normality plots show that residuals in the original and the refit

models both follow normal distributions.

(a) Post OSW model (b) Refit Post OSW model

Figure 5 Normality Plots for Testing Dataset
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(a) Post OSW model (b) Refit Post OSW model

Figure 6 Resiual Plots for Training Dataset

(a) Post OSW model (b) Refit Post OSW model

Figure 7 Normality Plots for Training Dataset

(a) Post OSW model (b) Refit Post OSW model

Figure 8 Residual Plots for Testing Dataset
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