
For Peer Review

1

An Efficient L2,1-Regularized and
Structure-Supervised Multi-Response Prediction

Model with Application to Tibial Soft Tissue
Insertion Predictions

Kin Ming Puk, Shouyi Wang, Member, IEEE, Jay Rosenberger, Cao Xiao, Member, IEEE, Liying Zheng,
Xudong Zhang, and Wanpracha Art Chaovalitwongse, Senior Member, IEEE

Abstract—The coexistence of high dimensionality in both
responses and feature space with limited sample size poses
unprecedented challenges in identifying important predictive
relationships by current multi-response prediction models. This
paper proposes an efficient high-dimensional multi-response
learning and prediction framework which integrates intrinsic
data-structure learning with an L2,1-norm regularized sparse
leaning method to construct multi-response prediction models
under the high-dimension-low-sample-size setting. In particular,
motivated by a challenging biomedical prediction problem, the
proposed learning framework has been successfully applied to
learn intrinsic knee structures and predict natural insertions of
cartilages and soft tissues in knee reconstruction surgery from
high dimensional 3D CT images. Such prediction problem is
challenging because of the large number of features (508) and
response variables (24), as opposed to the limited number of
samples (20). The proposed multi-step structure-learning and
prediction framework provides an efficient approach to precisely
identify cruciate ligament natural positions in a 3D spatial space
with a limited sample size of 20. The proposed method outper-
formed the state-of-the-art multi-response prediction models in
the experiment. As a general learning and prediction framework,
it can also be applied to other prediction problems that have both
high dimensional feature and response variable space and low
sample size.

Index Terms—cruciate ligament, meniscal insertions, knee
anatomic reconstruction, structured supervised learning, X-ray
imaging, computed tomogrpahy, multi-response prediction, sup-
port vector regression, L2,1 regularization

I. INTRODUCTION

THE knee is a complex joint that provides basic human
function and mobility, enabling ambulatory or sports

activities such as walking, running, and jumping [4]. The
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structural components of a knee joint include cartilage, liga-
ments (connecting one bone to another), tendons (connecting
muscle to bone) and bones (connected by ligaments, or by
tendons to muscles). As a union of bones, the knee is where
the thigh bone (femur) joins the shin bone (tibia) to form the
tibiofemoral joint, and the kneecap (patella) joins the femur
to form the patellofemoral joint. Articular cartilage covers the
knee joint, helps absorb shock, and improves joint movement.
Over-use and excessive stress or force can make the knee
prone to a variety of injuries. Typical knee injuries include
fractures, dislocations, anterior cruciate ligament (ACL) injuries,
posterior cruciate ligament (PCL) injuries, collateral ligament
injuries, meniscal tears and tendon tears [20], [42]. Injuries
to the cruciate ligaments (ACL and PCL) are particularly
devastating as they do not heal and would most often require
surgical reconstruction. Among the two, the ACL is more
commonly injured: an estimated 175,000 ACL reconstructions
are performed annually, with a financial impact exceeding 2
billion dollars in the United States alone. On the other hand,
PCL injuries occur less frequently and are thus believed to
be under diagnosed; yet they affect about 3% of the general
population and account for as many as 40% of patients with
knee trauma seen in emergency rooms.

The anatomic reconstruction procedure involves creating
bone tunnels and placing substituting grafts in the exact
positions as the native ligaments. An accurate replication of
the natural anatomy in anatomic reconstruction is crucial to
fully restore knee joint function and reduce impingement on
or iatrogenic injury to adjacent structures [18], [24], [32], [36],
[44]. However, current approaches to treating knee injuries may
be inconsistent and ineffective in restoring knee function and
preventing the development of osteoarthritis (OA). Analyses of
long-term outcomes after ACL reconstruction have revealed that
only 37% of patients were restored back to normal in terms of
knee structure and function [3], and 90% of ACL reconstructed
knees exhibited radiographic evidence of OA 3-10 years after
injury [15]. A growing body of clinical evidence suggests that
anatomic reconstruction can better restore joint function and
deter the development of OA. However, a number of challenges
are present in the practice of anatomic reconstruction of the
cruciate ligaments.

Intraoperative identification of native cruciate ligament
insertion sites, as a requisite for anatomical reconstruction,
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Fig. 1. Right knee, seen from an angle between anteriorly and laterally [11].
The three main parts of the knee are the thigh bone (femur), the shin bone
(tibia) and the kneecap (patella). The femur joins the tibia to form the main
joint, whereas the patella meets the femur to make another joint [4].

poses a tremendous challenge. Not all surgeons can maintain
an acute awareness of the anatomy: about 85% of ACL
reconstructions are done by surgeons who perform fewer than
ten cases per year [19], and PCL reconstructions are even less
frequently performed by most surgeons; for those who can,
factors including the arthroscopic distortion, and disappearance
of the ligament remnant (naturally or due to a notchplasty
procedure) can still cause misidentification of the natural
insertion or attachment sites. There is considerable variability
of knee anatomy in terms of bone and soft tissue insertion
morphology (position, size, and shape) [14]. Sample data from
our preliminary study of tibial insertion site morphometry
suggest that simplistic cross-referencing or generalization from
one patient to another is likely to lead to nonanatomical tunnel
drilling and iatrogenic injury to adjacent tissue structures such
as meniscus roots. Although it may be difficult to gauge the
incidence and impact of these iatrogenic injuries as complica-
tions of ACL or PCL surgeries, the importance of minimizing
the risk of such injuries is readily recognized [17], [28]. The
key to anatomic surgery of cruciate ligaments with minimized
risk of iatrogenic injury is accurate, quantitative knowledge
of the tissue morphology, documenting interperson variability
and specificity versus uncertainty associated with alternative
ways to predict morphometrics. Studies have investigated the
quantification of the insertion sites of cruciate ligaments and
other soft tissue components using statistical and quantitative
approaches [22], [27], [35]. However, such quantitative analysis
and measures cannot fully capture accurate spatial arrangement
of soft tissues. The location and morphological measures cannot
account for the interperson variability of cruciate ligaments
and meniscus insertions, which are mostly characterized by
qualitative measures [13], [41]. While in surgery, it is crucial
to identify the native location of the cruciate ligaments to
reconstruct the natural anatomy of the ligament structure.
Therefore, one needs inference on the appropriate insertion sites

of native cruciate ligaments. Due to the complex anatomy of
the knee, identification of insertion sites of cruciate ligaments
and meniscus roots in knee reconstruction surgery presents
a great challenge intra-operatively or pre-operatively during
surgical planning.

Predicting locations of multiple soft-tissue insertion sites
simultaneously requires multi-target prediction models, also
known as multi-response or multi-output learning. According to
[5], [45], there are mainly two types of multi-response learning
approaches:

• Problem transformation methods transform multi-target
regression into other well-established, single-target learn-
ing models. One drawback of this type of methods is that
the relationships among the targets are often ignored so
that the prediction performance might not be satisfactory.
Examples include multi-target regressor stacking [38],
which uses the prediction of the first response as part of
the input data in predicting the next response variable,
and multi-output support vector regression (SVR) [46],
which considers the correlations between the targets using
a vector virtualization method.

• Algorithm adaption methods learn by considering all
dependencies and internal relationships between response
variables. This type of methods is easier to interpret
and produces better learning performance when response
variables are correlated. Examples include statistical
methods [25], multi-output SVR [9], [33], kernel methods
[1], regression trees [12] and more. Interested readers can
refer to [5] for a list of the state-of-the-art algorithms in
this category.

This study presents a new multi-response regression frame-
work in order to achieve accurate prediction of the insertion
sites for the six cruciate ligaments and two cartilage surfaces
(collectively referred to as "cartilage and soft issues" in the
following). The challenge of this study lies in the large number
of features (508) and response variables (24) as opposed to
the limited number of training samples (20). In particular,
the proposed framework first digitalized outlines of the tibia
from three-dimensional computed tomography (CT) images and
aligned the outlines using generalized procrustes analysis (GPA)
techniques. It then extracted patient-specific morphological
features of the knee. Last but not least, the three-step structure-
learning model identifies the insertion locations of all cartilages
and soft tissues simultaneously.

In the first learning step, an L2,1 sparsity-inducing regular-
ization was incorporated into the multi-response support vector
regression (SVR) to cope with the challenge of having more
features and response variables than observations. Secondly,
sparse learning model was constructed to learn the intrinsic spa-
tial relationship between the cartilages and soft tissues. Finally,
a structure-supervised prediction model that considers both
the feature-response relationship from step 1 and the intrinsic
spatial relationship from step 2 was used to simultaneously
predict the optimal insertion centroids of the cartilages and
soft tissues.

In summary, the contribution of this study includes the
following: 1) a new method of feature extraction was developed
to capture morphological features of the knee from aligned
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Fig. 2. Digitized cartilage and insertion site outlines mapped onto the CT-based
3-D tibia model. The digitized points (asterisks) were spline-fitted, generating
100 equidistant points (circles on the close-up view of ACL insertion outline)
on the fitted outlines to facilitate the subsequent analyses [27], [47].

three-dimensional CT scan images; 2) a new L2,1-regularized,
L2,2-loss multi-response SVR model was developed and solved
via the Fast Iterative Shrinkage-Threshold Algorithm (FISTA);
and 3) a novel three-step structure-learning and structure-
supervised prediction framework was developed. The proposed
framework outperforms the state-of-the-art multi-response
regression models.

II. METHODS

A. Data Collection

Twenty tibia specimens (ten left and ten right unpaired knees;
11 from men and 9 from women; mean age at death: 61 ± 5
years) were used to acquire the morphometric data [47]. All
epithelial, subcutaneous, and muscular tissues were removed
from the specimens. High-resolution CT scans of the tibias
were taken with slice spacing of 0.625 mm and 3-D bone
models of the tibias were created in Mimics (Materialise Inc.,
Belgium). A Polaris Spectra optical tracking system (Northern
Digital Inc., Ontario, Canada), with a manufacturer-reported
accuracy of ±0.25 mm, was used to digitize the outlines of the
ACL, PCL, the medial cartilage (MCART), the lateral cartilage
(LCART), the anterior and posterior medial meniscal roots
(AMMR and PMMR), and the anterior-lateral and posterior-
lateral meniscal roots (ALMR and PLMR). The digitization
was performed by the same experimenter with repeatability,
as assessed by intraclass correlation coefficients, ranging from
0.94 to 0.99. The digitized outlines were mapped onto the
CT-based 3-D tibia models with a fiducial registration error
smaller than 2% [27]. A closed spline was then fitted to each
outline, resulting in 100 equidistant discrete points to represent
the outline, as shown in figure 2.

A 3-D coordinate system was defined on each tibia based
on its digitized and mapped cartilage outlines (see figure 2).
First, the origin of the coordinate system was determined
as the midpoint of the medial and lateral cartilage centroids.
Principal component analysis (PCA) was then performed
on the equidistant discrete points representing the cartilage
outlines (200 points in total). The X-axis was the first principal

component axis passing through the origin and pointing
laterally. The Y-axis was orthogonal to the X-axis, passing
through the origin and pointing anteriorly. To make the Z-axis
point proximally, the coordinate system was designed as a right-
handed system for the right tibia and a left-handed system for
the left tibia.

B. Image Alignment and Normalization Using Generalized
Procrustes Analysis

Cartilage outlines for all 20 tibias were optimally aligned
using GPA, which is an iterative process of applying procrustes
superimposition to all possible pairs of configurations; a
configuration here refers to a set of cartilage outline land-
mark coordinates in a predefined order. For each cartilage
configuration pair, one configuration served as the base and
the other as the target. Procrustes superimposition matches
the target configuration onto the base, centering, rotating, and
uniformly scaling the target configuration to minimize the shape
difference. For multiple (20 in this study) configurations, GPA
identified the reference or overall base configuration as the
one with the smallest overall procrustes distance to all others
(i.e., the 19 remaining tibial cartilage configurations). The 19
remaining configurations were then procrustes-superimposed
onto this selected reference and their insertion sites transformed
accordingly by the same translation, rotation, and scaling rules,
without any shape distortion. Figure 3 shows the outlines of
tibial cartilage and six insertion sites from 20 subjects before
and after cartilage-based GPA.

C. Feature Engineering Using Spherical Coordinates
The outline of the tibia can be easily and reliably measured,

making it a feature candidate to predict the locations of
intangible soft tissues. Features are selected via a spherical
coordinate system, which consists of radial distance (r), polar
angle (✓) and azimuthal angle (�). See figure 4 for an
illustration.

A 3-D point with Cartesian coordinates (x, y, z) can be
transformed into polar coordinates (r, ✓,�) following the rules:
r =

p
x2 + y2 + z2, ✓ = arc cos(z/r), and � = arc tan(y/x).

Thus the direction of a tibia point from the origin can be
described by the two angles (✓,�). The entire range of each
angle ([�⇡,⇡]) is divided into N equal intervals, resulting in a
combination of N⇥N = N

2 directions from the origin. Points
along the outline tibia that are closest to these N

2 directions
will be selected as features in the form of Cartesian coordinates.
In this regard, N was chosen to be 13, and thus the number
of selected features of each subject is N

2 ⇥ 3 = 507.
In addition, raw CT image data consist of knees from left and

right legs. Another useful feature is whether it is a left or right
knee. Therefore the total number of features is 507 + 1 = 508.

D. Response Variable
There is high variability in ligament and meniscus insertions.

In a surgical procedure, the centroids of insertions are of
particular importance to tunnel locations. Thus, this work
focuses on the prediction of centroids of the ligament and
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Fig. 3. Outlines of tibial cartilage and six insertion sites from 20 subjects before (left plot) and after (right plot) cartilage-based GPA [27], [47].

Fig. 4. A visual illustration of feature selection. Points in the tibia feature space are converted to a spherical coordinate system. The entire range of each angle
in the spherical coordinate is divided into N = 13 equal intervals, rendering 169 combinations for ✓ and �. Outline points that are nearest to these directions
are chosen as features in the form of Cartesian coordinates. Together with the side of the knee (left or right), there are 169⇥ 3 + 1 = 508 features for each
observation.

meniscus insertions instead of the complete morphology of
insertions.

For each subject i 2 1, . . . , 20, the centroid of an insertion
site j, (aij , bij , cij), is defined as:

✓
max(xij) + min(xij)

2
,

max(yij) + min(yij)
2

,
max(zij) + min(zij)

2

◆
.

(1)

E. L2,1-Regularized, L2,2-Loss Support Vector Regression -
Version 1

The proposed regression model1 is an algorithm adaption
method, which considers all the response variables at the same
time during learning. Recall the formulation of L2-regularized,
L2-loss support vector regression (SVR) model, where N , M

1In the model, a scalar is represented by a non-bold lower-case letter, a
vector is represented by a bold lower-case letter and a matrix is represented
by a bold upper-case letter.

and P are the number of observations, features and response
variables respectively, as follows:

min
wp,⇠,⇠

⇤

PX

p=1

"
||wp||2 + C

NX

n=1

(⇠pn)
2 + (⇠⇤pn)

2

#

s.t. ypn �wT
p xn  ✏+ ⇠pn, 8p = 1, . . . , P, n = 1, . . . , N

wT
p xn � ypn  ✏+ ⇠

⇤
pn, 8p = 1, . . . , P, n = 1, . . . , N

⇠, ⇠⇤ � 0
(2)

fp(x) = wT
p x+ b, 8p = 1, . . . , P (3)

The bias term b is eliminated for simplifying the presentation.
It can be achieved by adding a column of one into the data
matrix (or design matrix). Furthermore, the above can be
generalized in matrix terms as follows, where X 2 RN⇥M ,
Y 2 RN⇥P , W 2 RM⇥P , ⇠, ⇠⇤, 1 2 RN⇥P and || · ||F is the
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Frobenius Norm:

min
W,⇠,⇠⇤

||W||F + C||⇠||F + C||⇠⇤||F

s.t. Y � XW  ✏1 + ⇠

XW � Y  ✏1 + ⇠⇤

⇠, ⇠⇤ � 0

(4)

f(X) = XW (5)

The unconstrained version of formulation (4) is:

min
W

J(W) = ||W||F + C||(Y � XW � ✏1)+||F

+ C||(XW � Y � ✏1)+||F
(6)

where the hinge loss operator is (·)+ = max (·, 0). To further
modify the formulation, consider the L2,1-norm, which is
defined as:

||W||2,1 =
MX

m=1

vuut
PX

p=1

w2
mp =

MX

m=1

||wm||2 (7)

where wm denotes the m-th row vector of matrix W. The
following formulation of L2,1-regularized, L2,2-loss multi-
response support vector regression (L21-MSVR) - Version
1, is proposed:

min
W

J1(W) = ||W||2,1 + C||(Y � XW � ✏1)+||F

+ C||(XW � Y � ✏1)+||F
(8)

1) Motivation: As opposed to ridge regression in [43],
support vector regression is chosen to be the base algorithm.
It generally performs better than ridge regression or lasso
regression with careful parameter tuning at the expense of one
more parameter (✏) to tune. Instead of training the projection
vector wm one-by-one in formulation (2), L21-MSVR trains
the projection matrix W considering all responses.

The L2,1-norm is used instead of the L2,2 norm in order to
encourage row sparsity, where the number of rows corresponds
to the number of features. As a result, the L2,1-norm encourages
parsimony of features, which is itself a method of feature
selection for features in the matrix representation [10], [29]. It
is especially sparse when the number of features is a lot larger
than that of the observations.

2) Subgradient of Formulation: Specifically, the derivative
of ||W||2,1 with respect to (w.r.t.) W equals the derivative
of the trace(WT DW) w.r.t. W [10], where D 2 RM⇥M is
a diagonal matrix in which each element on the diagonal is
defined as dmm = 1

2||wm||2 , 8m 2 1, . . . ,M . In view of this,

the subgradient of formulation (8) for each observation i can
be derived as follows [31], [34]:

@J1(W)

@W
=

@

@W
||W||2,1

+ C

NX

n=1

@

@W
||(yn � WT xn � ✏1)+||F

+ C

NX

n=1

@

@W
||(WT xn � yn � ✏1)+||F

=
@

@W
tr(WT DW)

+ C

NX

n=1

@

@W
||yn � WT xn � ✏1||F

� I1[yn � WT xn > ✏1]

+ C

NX

n=1

@

@W
||WT xn � yn � ✏1||F

� I1[WT xn � yn > ✏1]

(9)

where
@

@W
||yn � WT xn � ✏1||F

=2xTnxnW � 2xnyTn + 2✏xn1T
(10)

@

@W
||WT xn � yn � ✏1||F

=2xTnxnW � 2xnyTn � 2✏xn1T
(11)

I1[yn � WT xn > ✏1]
=[1[yn � WT xn > ✏1] . . . 1[yn � WT xn > ✏1]| {z }

replication of the column vector 1 for M times

]T (12)

I1[WT xn � yn > ✏1]
=[1[WT xn � yn > ✏1] . . . 1[WT xn � yn > ✏1]| {z }

replication of the column vector 1 for M times

]T (13)

In the above, � is the Hadamard product of matrices of
equal size, and 1 and I1 are indicator functions that take the
value of one if its argument is true and zero otherwise. The
size of 1 and I1 are RP and RM⇥P respectively. Therefore,
the size of W, J1(W)

@W and I1 are all the same.
The design of having the Hadamard product on the projection

matrix W in (9) is in accordance with [34] so that the subgra-
dient of an observation n will become zero if yn�WT xn� ✏1
(or WT xn� yn� ✏1) is less than zero. For details, please refer
to equations (10)-(13).

3) Optimization Algorithm - FISTA: Formulation (8) can be
easily solved with a commercial convex programming package
such as CVX [21]. However, doing so may take more than
a week in order to tune the parameters and get an optimal
solution. In order to enhance computational efficiency, the
FISTA (Fast ISTA) algorithm [8], which combines Nesterov’s
accelerated gradient descent with ISTA (iterative shrinkage-
threshold algorithm), is chosen to efficiently solve formulation
(8) because i) the formulation is in the form of standard,
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unconstrained quadratic programming; ii) a subgradient can be
computed for the objective function consisting of L2,2-norm
and L2,1-norm; iii) FISTA is easy to implement [2]; and iv)
instead of having a sublinear convergence rate of O(1/j) as in
gradient descent, FISTA enjoys a favorable convergence rate
of O(1/j2), where j is the number of iterations.

4) Implementation Specifics of the Algorithm: When wm =
0, then dmm = 0 is a subgradient of ||W||2,1, w.r.t. wm [10].
However, if dmm is set to 0 when wm = 0, the derived
algorithm may not converge (i.e. dmm = 1

0 = inf). Therefore,
a small number ⇢ is used for regularization as in dmm =

1

2
p

(wm)T wm+⇢
.

There are a lot of choices for termination criteria such as
the difference of objective values between successive iterations.
For better computational efficiency, the ratio of the Frobenius
Norms

⇣
||W(j+1)�W(j)||F

||W(j)||F

⌘
is used at [10] in order to avoid the

expensive computation of the objective value.
Throughout the computation, terms in equations (10) and

(11) such as 2CxTnxn, 2CxnyTn and 2✏Cxn1T will remain
unchanged in different iterations. These terms can be precom-
puted (or cached in some literature) first and passed to the
appropriate function/procedure for direct reuse. As the number
of observations and features are relatively small, memory
occupied by these cache variables would be acceptable, but
surprisingly one-third of computational time can be reduced
in practice.

In practice, the starting step size � and the parameter � in
backtracking (� = ��) are set to 1 and 0.8 respectively [6].

Finally, a summary of FISTA can be found in Algorithm
(1). Its convergence is well analyzed and can be found in [2].

F. L2,1-Regularized, L2,2-Loss Support Vector Regression
- Version 2 (Relaxing Non-Negativity Constraints of Slack
Variables)

As a heuristics to further enhance computational efficiency,
the formulation (6) is reformulated with equality loss constraints
as follows [40]:

min
W,⇠,⇠⇤

||W||2,1 + C||⇠||F + C||⇠⇤||F

s.t. Y � XW = ✏1 + ⇠

XW � Y = ✏1 + ⇠⇤
(14)

min
W

J2(W) = ||W||2,1 + C||Y � XW � ✏1||F

+ C||XW � Y � ✏1||F
(15)

The reformulation of the slack variables ⇠ and ⇠⇤ removes
the hinge-loss operator so that the gradient of the Frobenius
loss term can be computed directly instead of computing its

subgradient. The derivative of formulation (15) is consequently
as follows [31]:

@J2(W)

@W
=

@

@W
||W||2,1

+ C
@

@W
||Y � XW � ✏1||F

+ C
@

@W
||XW � Y � ✏1||F

=
@

@W
tr(WT DW) + C(4XT XW � 4XT Y)

= 2DW + 4CXT XW � 4CXT Y

(16)

One may be tempted to develop analytical solution as in
[40]. From derivative (16), it is found that W = (2D +
4CXT X)�14CXT Y. However, as pointed out in [10], the
matrix D is dependent on W and is unknown. Therefore, an
iterative optimization algorithm will be more appropriate for
computation.

A summary of the revised optimization algorithm can be
found in Algorithm (1). The only difference is at line 6, which
has a different subgradient. The objective history for both
algorithms can be found in figure 5. Both of them converge in
under 300 iterations.

Algorithm 1 Solving multi-response support vector regression
with L2,1-norm regularization [2], [10]
Require: X 2 RN⇥M (data matrix), Y 2 RN⇥P (response

matrix), C, ✏,↵ 2 R (learning parameters), ⇢ 2 R (reg-
ularization parameter), � 2 R (backtracking parameter),
tol 2 R (termination parameter).

1: Initialize projection matrix W(0) = {wmp = 0}, 8m, p,
Z(0) = W(0), t(0) = 1.

2: Set j = 0.
3: while termination criterion is not met (tol >

||W(j+1)�W(j)||F
||W(j)||F

) do
4: Initialize diagonal matrix D(j+1), where the m-th

diagonal element is d
(j+1)
mm = 1

2||w(j)
m ||2

(or d
(j+1)
mm =

1

2
p

(w(j)
m )T w(j)

m +⇢
if ||w(j)

m ||2 = 0).

5: t
(j+1) = 1

2 + 1
2

p
1 + 4(t(j))2.

6: Version 1: W(j+1) = Z(j) - �
@J1(Z(j))

@Z according to
(9)-(13).
Version 2: W(j+1) = Z(j) - �

@J2(Z(j))
@Z according to

(16).
7: Z(j+1) = W(j+1) + t(j)�1

t(j+1) (W(j+1) � W(j)).
8: Use backtracking to find the appropriate step size �

[2], [6].
9: Set j = j + 1.

10: end while

For runtime comparison, Version 1 needs around 121 seconds
to complete a leave-one-out cross validation, whereas Version
2 needs only 33 seconds.
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Fig. 5. Objective history for Versions 1 and 2. For Version 1, there are some
oscillations for the first few iterations. The objective value decreases steadily
afterwards. Both versions converge in under 300 iterations. This figure is
generated with Matlab.

G. Proposed Three-Step Spatial-Structure Supervised Learning
and Prediction Model (L21-SSSL)

Extended from the L2,1-Regularized, L2,2-Loss Support
Vector Regression Model, the following L21-SSSL model is
proposed, where A 2 RP⇥P is a matrix describing the linear
relationship between each component of Y:

Learning Step 1: Solve L2,1-Regularized, L2,2-Loss Support
Vector Regression Model with either formulation (8) (L21-
SSSL Version 1) or formulation (15) (L21-SSSL Version 2) to
obtain the projection matrix W.

Learning Step 2:

min
A

↵||YA||1 + ||A||1

s.t.
PX

p=1

ynpapk = 0, akk 6= 0,

n 2 {1, . . . , N}, k 2 {1, . . . , P}

(17)

Prediction Step:

min
Ŷ

||Ŷ � XW||1 + ↵||ŶA||1 (18)

As suggested in [43], the A matrix in (17) learns the spatial
arrangement of the centroid of the soft tissues, by formulating
each coordinate of the soft tissues as the linear representation
of the remaining response variables. By forcing one of the
elements along each column (or each row) of the A matrix to
be non-zero, a linear representation is enforced.

In other words, the objective function of formulation (18)
considers both the prediction error and the error of the
spatial arrangement in the three-dimensional feature space,
thus avoiding too much deviation of the centroid prediction
from the original centroid position. In [43], formulation (8) (or
formulation (15)) and formulation (17) are combined. However,
these two formulations can be separated.

For the prediction step (18), the L1-norm is used to minimize
the prediction error of the objective function.

Both formulations (17) and (18) can be solved efficiently by
any convex programming package such as CVX [21].

III. EVALUATIONS

Experiments were executed on a workstation with an Intel
i7-5960X CPU and 64 GB RAM with Ubuntu 16.04 operating
system. Programming code was developed in Matlab R2016b
and can be found at the author’s github2.

A. Performance Measures
As presented in [5], evaluation measures for multi-response

regression include average correlation coefficient, mean square
error, average relative error, average root mean squared error
(aRMSE) and average relative root mean squared error (aR-
RMSE). Among these measures, aRRMSE is considered as a
more robust measure over others for multi-response prediction
problems. It can be viewed as a normalized root mean squared
error (RMSE) for each response variable as follows:

aRRMSE =
1

P

PX

p=1

vuut
PNtest

n=1 (ypn � ŷpn)2PNtest

n=1 (ypn � ȳp)2
, (19)

where ȳp is the average of responses for the p-th response
variable, ypn and ŷpn are the actual and predicted responses
of the p-th response variable and n-th observation respectively.
During parameter tuning of the model, the performance using
aRRMSE is considered so that learning will not be skewed
towards variables of large error values and will not be affected
by different scaling of the response variables. Finally, a leave-
one-out cross validation was used for predicting the out-of-
sample error. For each fold, one of the 20 observations is used
as testing, and the remaining 19 observations are used for
training.

B. Comparison with Baseline Methods
To illustrate the advantages of the proposed methods, four

other multi-target prediction models are compared. All imple-
mentations are Matlab-based except for multi-target random
forest, which is implemented via the scikit-learn package in

2 https://github.com/pukkinming/IEEE_paper_l21_msvr
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Python. Parameters in each model, if any, are aRRMSE-tuned
via a two-level grid search to ensure the learning performance
is fair. The two-level grid search [23] consists of two parts -
a coarse grid is applied to find a good region first, and then
a finer grid search is applied on the identified area. Instead
of running a full grid search, which is time consuming and
computationally expensive, a two-level grid search is robust
and at the same time reduces computational time.

The following methods in the literature were used to compare
with the proposed method. Notations in the following models
have been changed for better consistency with the above.

• Spatial Structure Supervised Learning (SSSL): SSSL was
the first of its kind to learn an optimal insertion position of
tibia soft tissue of knees in a two-dimensional setting and
is the basis of this work [43]. The A matrix, which stores
the spatial structure, is learnt during the first step and is
carried over to the prediction step. SSSL is an algorithm
adaption method. Without the structural learning term,
such method is reduced to the regular lasso model.
Learning step:

min
A,W

NX

n=1

||yn � WT xn||2 + ↵1

NX

n=1

||Ayn||2

+ ↵2

PX

i,j=1

|Aij |+ ↵3

MX

j=1

PX

p=1

|Wmp|

s.t. [y1, . . . , yP ] ap = 0, app 6= 0, p = 1, . . . , P
(20)

Prediction step:

min
y

||y � WT x||1 + ↵1||Ay||1 (21)

• Generalized linear model via penalized maximum likeli-
hood (GLMNET, [16], [37]): GLMNET is an extension
of the single-target case where it is designed to model
correlated responses with a multi-response Gaussian dis-
tribution. The absolute penalty on each single coefficient
is replaced with a group-lasso penalty.

min
(W0,W)2R(M+1)⇥P

1

2N

NX

n=1

||yn � WT
0 � WT xn||2F

+ �

"
1

2
(1� ↵)||W||2F + ↵

MX

m=1

||wm||2

# (22)

• Multi-target regressor stacking using decision tree (MTRS-
DT, [39]): MTRS-DT is inspired from "stacked general-
ization" which was designed for multi-label classification.
There are two stages in the learning process. Firstly,
P single-target models are learned as usual. MTRS-DT
then predicts the target one-by-one with stacking: after
predicting the first response variable, its output will be
attached to the original testing dataset to build a new meta
model, which is in turned used to predict the second target
variable. The process continues until all response variables
are predicted in this manner [5], [39]. The stacking idea is
powerful and can be applied to any single-target regression
model. However, the sequence of stacking affects the
regression performance. In this experiment, the prediction

TABLE I
THE FOLLOWING TABLE SHOWS THE PREDICTION PERFORMANCE IN

AVERAGE RELATIVE ROOT MEAN SQUARED ERROR (ARRMSE) OF THE
CENTROIDS OF EIGHT INSERTION SITES USING LEFT-SIDE, RIGHT-SIDED

AND BOTH KNEES USING LEAVE-ONE-OUT CROSS VALIDATION. A LOWER
ARRMSE INDICATES A BETTER PREDICTION PERFORMANCE. BOLD

ENTRIES CORRESPOND TO THE BEST PREDICTION FOR THE INSERTION
AREA. GENERALLY, LEARNING PERFORMANCE IS ENHANCED IF THE KNEE

DATA OF BOTH SIDES IS USED AND IF MULTIPLE INSERTION SITES ARE
LEARNED SIMULTANEOUSLY.

Left

SSSL GLMNET MTRS
-DT MTRF

L21-
SSSL

(Ver. 1)

L21-
SSSL

(Ver. 2)
ACL 1.0057 1.0206 1.1018 1.3590 0.8977 0.8977

ALMR 1.0687 1.0655 1.1018 1.4793 0.8973 0.8905
AMMR 0.8764 1.1000 1.0914 1.4421 0.8694 0.8638
LCART 1.0336 1.0247 1.1203 1.7627 0.8353 0.8391
MCART 1.2163 1.2023 1.0839 1.4627 1.0253 1.0215

PCL 1.4237 1.3492 1.0921 1.6554 1.2321 1.2344
PLMR 1.1319 1.0168 1.0947 1.5869 1.0324 1.0350
PMMR 1.6138 1.3762 1.1382 1.5326 1.3790 1.3821

All 1.1713 1.1444 1.1212 1.5351 1.0211 1.0205

Right

SSSL GLMNET MTRS
-DT MTRF

L21-
SSSL

(Ver. 1)

L21-
SSSL

(Ver. 2)
ACL 1.3455 1.3259 1.1067 1.3336 1.1736 1.1679

ALMR 1.2636 1.2609 1.0909 1.1339 1.0748 1.0676
AMMR 1.0767 1.0926 1.1340 1.3009 0.9991 0.9975
LCART 1.1871 1.0845 1.1063 1.1748 0.9703 0.9617
MCART 0.9374 0.7977 1.1026 1.1124 0.7364 0.7434

PCL 1.3829 1.0841 1.0734 1.4416 1.1354 1.1303
PLMR 1.2519 1.1376 1.0955 1.1747 1.0515 1.0474
PMMR 1.2564 1.1213 1.0992 1.2166 1.0283 1.0343

All 1.2127 1.1131 1.0891 1.2361 1.0212 1.0188

Both

SSSL GLMNET MTRS
-DT MTRF

L21-
SSSL

(Ver. 1)

L21-
SSSL

(Ver. 2)
ACL 1.0380 1.0055 1.0320 1.4772 0.9534 0.9458

ALMR 0.9673 0.8844 1.2293 1.4026 0.8707 0.8574
AMMR 0.7801 0.7255 1.2682 1.3257 0.7203 0.7157
LCART 0.7200 0.7087 1.1775 1.2702 0.7086 0.7090
MCART 0.6961 0.6839 1.2931 1.2407 0.6823 0.6783

PCL 1.1923 1.2238 1.4040 1.3068 1.0862 1.0918
PLMR 0.9900 0.9115 1.2621 1.4934 0.8961 0.8868
PMMR 0.9073 0.9038 1.3180 1.3834 0.9210 0.9341

All 0.9114 0.8809 1.2480 1.3625 0.8548 0.8524

of the first response variable will be used in the prediction
of the next.

• Multi-target random forest (MTRF, [7], [26], [30]): A
random forest is a meta-learner that trains a number of
decision trees, each of which uses a subset of the original
dataset and outputs the final prediction by averaging the
prediction from each decision tree. Generally speaking,
MTRF differs from its single-target counterpart in that
during the splitting of a tree node, the performance
measure considers all the output variables instead of
considering a single output variable at a time.

C. Discussion of Computational Result
Table I summarizes the performance of predicting each of

eight insertion centroids as well as predicting all eight locations
at the same time with the proposed models and baseline models
using data of the left knee only, the right knee only and both
knees. For each soft tissue centroid, the average relative root
mean squared error (aRRMSE) over the 20 subjects is reported.
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Fig. 6. Outline of tibia and the centroids of soft tissues of a subject viewed at (✓,�) = (0, 90). Original centroid position of a soft issue is highlighted
as black. The predicted centroids are as follows: red triangle for L21-SSSL Version 2, blue cross for MTRS-DT, cyan triangle for SSSL, pink diamond for
GLMNET and green square for MTRF. The L21-SSSL Version 2 predicted centroids are closer to the original centroids. Predictions from L21-SSSL Version 1
are not shown because their result is very similar to those of Version 2 as in Table I. Plots at other angles can be found at the author’s github. This figure is
generated with Matlab.

In general, the proposed L21-SSSL Version 2 performs better
than other baseline models in terms of aRRMSE in five insertion
areas (see ACL, ALMR, AMMR, MCART, and PLMR using
data of both knees at Table I). The proposed model is also the
best method for predicting all centroids simultaneously (0.8524
for L21-SSSL Version 2).

The advantage of the proposed model, as well as GLMNET
and SSSL, is that the more responses available in the dataset,
the better the learning performance, provided that responses
are related to each other, such as having spatial relationship
in this case. Because of the limited number of observations, a
non-linear regression model, such as kernelized learning, may
not be applicable because of possible over-fitting.

MTRS-DT and MTRF perform worse than the other three
methods in this application. This is likely due to a lack of
available observations. Decision trees and random forests are
particularly suitable for datasets with many observations and
high non-linearity in the decision boundary. Computational
speed is also their strength.

Figure 6 shows the insertion centroids of the cartilages and
soft tissues (in black) as well as the predicted positions using
different algorithms - red triangle for L21-MSVR Version
2, blue cross for MTRS-DT, cyan triangle for SSSL, pink
diamond for GLMNET and green square for MTRF. L21-
MSVR is noticeably closer to the original position, followed
by GLMNET and SSSL. Such experimental results confirm
that the proposed supervised learning can improve prediction
of the eight soft tissues simultaneously.

IV. CONCLUDING REMARKS

The motivation of this study is to develop a quantitative,
automated framework in order to localize the optimal position
of soft tissue insertion using patient-specific features from
knee imaging data. An extensive quantitative analysis of the

location and the interrelationship of soft tissue insertions on
the tibial plateau has been performed, including digitalization
of tibia outlines from 3-D CT images, imaging alignment using
GPA, patient-specific morphological feature extraction from
tibia outlines and multi-response support vector regression. The
proposed methodology yielded the best prediction performance
as compared with other baseline models for eight soft tissue
structure locations.

A few directions are recommended for future exploration.
A non-linear learning model might be considered, in addition
to increasing the number of observations and other innovative
ideas of feature extraction. Predicting the shape and size of
the insertion sites, and predicting the performing angle of the
surgical tools can be a promising direction to continue this
work. This quantitative analysis framework could be the basis
of a clinical application to assist surgeons to better identify
soft tissue insertion sites. Such an application, preferably
on a computer-aided surgery platform, would render a close
replication of the native anatomy so that the risk of non-
anatomic tunnel placement or iatrogenic injury to adjacent
tissue structures can be minimized.

V. DISCLAIMER

The findings and conclusions in this report are those of
the authors and do not necessarily represent the views of the
National Institute for Occupational Safety and Health.
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