
Approximate Dynamic Programming for Control of a System of Electric Vehicle Charging Stations  

Ying Chen 

Department of Industrial, Manufacturing, and Systems Engineering, The University of Texas at Arlington, 

U.S.A., ying.chen@mavs.uta.edu 

Jay Rosenberger 

Department of Industrial, Manufacturing, and Systems Engineering, The University of Texas at Arlington, 

U.S.A., jrosenbe@uta.edu  

Victoria C. P. Chen 

Department of Industrial, Manufacturing, and Systems Engineering, The University of Texas at Arlington, 

U.S.A., vchen@uta.edu 

Wei-Jen Lee 

Department of Electrical Engineering, The University of Texas at Arlington, U.S.A., wlee@uta.edu  

Taking the Dallas Fort-Worth metropolitan area as the assumed sample system, control of an electric 

vehicle (EV) quick charging infrastructure with 5 EV charging stations is performed.  This system 

integrates renewable energy to supply electricity to charging stations as well as the main electrical grid. 

Batteries as electrical storage facilities are installed in each station. Through the usage of batteries, the 

control system is expected to be able to store the surplus electricity from renewable energy or buy 

electricity at a lower electricity market price (EMP) and sell the stored electricity back to the main grid 

when the EMP reaches to a higher level to decrease the operational cost or make profits for this system. In 

order to control this system, we formulate it as a Markov decision process problem. An infinite horizon 

approximate dynamic programming approach based on design and analysis of computer experiments is 

used to solve this high-dimensional, large-scale, EV charging station control problem over continuous 



spaces. A 45-degree line correspondence stopping criterion specified is used to stop the DP iterations and 

select the ADP policy. From the results, it is clear that control from the selected ADP policy has a better 

performance than the benchmark policy.  
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1. Introduction 

Environmental pollution is becoming more and more serious with the rapid development of our society 

(Chen et al. 2013). Traditional energy sources such as coal, gas, and oil are some of the main sources 

resulting in pollution such as greenhouse effects, and dust and ashes in the air. Consequently, research on 

renewable energy sources is becoming more prevalent. With developing technology, greenhouse gas 

emissions will be reduced to 17% of 2005 levels by 2020 as the U.S. government pledged 

(http://www.eia.doe.gov/emeu/aer/pdf/pages/sec12_4.pdf, 2010). After investigation and analysis, the 

transportation sector, causing up to 33.1% of all energy related emissions, has been identified as the 

largest producer of carbon dioxide emission in the U.S. (http://cta.ornl.gov/data/download29.shtml). 

Therefore, to abate such emissions, electric vehicles (EVs) have been given a lot of attention. This 

fundamental transformation from oil based vehicles to electric power ones will help decrease carbon 

dioxide emissions substantially. From Fell et al. (2010), there will be more than 1 million EVs in US by 

2017 with the target growth rate and in the Dallas-Fort Worth (DFW) metro area, the amount of EVs will 

be increased to around 10,000 by that time.  



     In order to increase the penetration and usage of EVs, drivers’ anxiety about the driving range needs 

be resolved. In the existing literature, the design of optimal EV charging profiles is a way to serve this 

purpose.  For example, the authors take advantage of charging behaviors from demographical statistical 

data to assess the EV charging scenarios (Steen et al. 2012), vehicle usage data to predict and analyze the 

EV charging profile (Ashtari et al. 2012) and a dynamic game theoretic optimization to formulate the 

optimal EV charging problem (Zhu et a. 2012). Additionally, in Clement-Nyns et al. (2010), coordinated 

charging profile with the objective of minimizing power losses and maximizing the main grid load factor 

in residential distribution, where the optimal EV charging stations are included, is presented. Yao et al. 

(2017), considering demand response, formulated the optimal power profile problem with the objective of 

maximizing the number of charging EVs and minimizing the total charging cost simultaneously. 

Furthermore, other models for coordinated EV charging systems have been developed to improve power 

utilization (Wang et al. 2015), smooth real-time power fluctuation in a regulation service (Shaaban et al. 

2014), avoid overload in the utility grid (Gan et al. 2013), and support the power system restoration as a 

black-start power source (Sun et al. 2016). In order to improve the penetration of sustainable energy in the 

charging systems, Badawy and Sozer (2017), Khodayar et al. (2012), Marano and Rizzoni (2008), and 

Guo et al. (2014)  have employed wind or solar generation as a type of energy resources to supply 

electricity to the charging stations.  

     Though these studies have proposed various different effective methods to develop EV charging 

infrastructure, they focus on level 1 or level 2 charging systems, which still cannot meet the desire of fast 

charging from the customers. Considering this issue, Sarikprueck et al. (2017) proposed a novel regional 

EV DC level 3 fast charging system equipped with renewable resources, such as wind and solar energy, to 

serve EV demand within minutes. However, the decision making procedure in Sarikprueck et al. (2017) is 

deterministic, and when making decisions, the system does not consider the future state but only the 

current state. Kulvanitchaiyanunt et al. (2016) utilized this system, which makes a decision for each stage 

through linear programming without considering the uncertainty. 



     Therefore, for a public charging station development, we also focus on this EV DC level 3 fast 

charging system, which was initially well designed in Sarikprueck et al. (2017). However, we formulate it 

as a Markov decision process (MDP) so that the future state needs to be considered when making a 

decision. In this system, wind and solar energy as well as the main power grid provide electricity. Besides, 

in each station, local battery storage systems are used as a buffer to minimize the operational cost. 

However, different from Kulvanitchaiyanunt et al. (2016) and Sarikprueck et al. (2017), we apply 

approximate dynamic programming (ADP) to solving this large-scale, high-dimensional, dynamic control 

system so that the decision making procedure considers the uncertainty and future states. 

      In the rest of this paper, background and contribution are introduced in section II. Then, the details of 

this dynamic EV charging station control problem are introduced in section III. Computational results 

using the ADP algorithm are shown in section IV. Moreover, simulation results are discussed in section V. 

Finally, conclusions about this research are presented.  

2. Background  

In the literature, ADP algorithms such as Q-learning and post-decision state approaches, have been used 

in smart grid related research as a control technique. Namely, Wei et al. (2015) proposed a novel iterative 

Q-learning method named “dual iterative Q-learning algorithm” to solve the optimal battery management 

control problem in smart residential environments. Based on this research, Wei et al. (2017) introduced a 

mixed iterative adaptive DP approach to control the battery energy in smart residential micro-grids. Boaro 

et al. (2013) presented an intelligent management scheme using dynamic programming for smart grids 

using renewable energy combined with battery storage. Shi et al. (2016) optimized electricity 

consumption in office buildings with online learning control systems, which are based on reinforcement 

learning (RL). In addition, reactive power control of grid-connected wind farm was solved by an adaptive 

DP in Tang et al. (2014). Moreover, a heuristic DP (HDP) architecture was established to schedule the 

quality of service in cognitive-ratio-based smart grid networks in Yu et al. (2016). Furthermore, a 



modified ADP based on an actor-critic network in Xie et al. (2016) was used to schedule fair energy to 

vehicle-to-grid networks. Jiang and Powell (2015) employed a convergent ADP algorithm that exploits 

monotonicity of the value function to find a revenue-generating bidding policy in a real-time electricity 

market with battery storage.  According to this latest research, it is clear that ADP algorithms are playing 

a critical role in the control of smart grid problems.  

     However, large-scale, high-dimensional DP problems over continuous spaces are still a challenge for 

the algorithms used in the above studies. For example, although, in Yu et al. (2016), there were 28 state 

variables and 8 decision variables in the space, these variables were discrete as in Shi et al. (2016) and 

Xie et al. (2016). For continuous spaces, the systems are not considered very large. For example, Ernst et 

al. (2009) considered only two state variables and one decision variable, and Wei et al. (2017) only used 

two state variables and two decisions variables over continuous spaces. Even though a deep learning 

based RL algorithm is developed in Peng et al. (2016) aiming to solve the high-dimensional infinite 

horizon DP problem over a continuous state space, this methodology requires a large amount of data, 

including 300,000 iterations of training and 10 million tuples, which suggests that the algorithm requires 

substantial computation. In addition, they optimized over a discrete action space using a derivative-free 

evolutionary algorithm. As Lee and Lee (2004) summarized, the common limitations of using RL and 

neuro-dynamic programming (NDP) are: a) in DP problems with continuous state and action spaces, the 

discretization and common “incremental” update rule are impractical, and the function approximation 

errors can grow rapidly; b) complex dynamics of most chemical processes still bound the state space that 

can be explored, which results in regions of sparse data. 

      To solve the large-scale, high-dimensional, infinite horizon DP problem over continuous spaces, Chen 

et al. (2017a) proposed a design and analysis of computer experiments (DACE) based infinite horizon 

ADP algorithm to sample the state space with design of experiments and approximate the value function 

via statistical modeling methods. This algorithm is based on the finite horizon version proposed by Chen 

et al. (1999). With the approach introduced in Chen et al. (1999), several large-scale, high-dimensional, 



finite horizon DP cases have been solved successfully, such as an ozone problem with more than 500 

dimensions (Yang et al. 2009) and a 38-dimensional waste water problem (Cervellera et al. 2006). Hence, 

considering the limitations in RL/NDP and success achieved by the DACE based finite horizon algorithm, 

we employ this DACE based infinite horizon ADP algorithm introduced in Chen et al. (2017a) to solve 

this large-scale, high-dimensional, infinite horizon, EV charging station control problem over continuous 

spaces. Therefore, the contribution of this paper is listed below: 

(1) This EV Level 3 DC charging station system is formulated as a MDP problem. 

(2) State transition models are developed based on support vector regression (SVR) and martingale 

model of forecast evolution (MMFE) models.  

(3) A large-scale, high-dimensional, infinite horizon, DP problem over a continuous space is solved 

with an ADP algorithm  

3. ADP approach 

In this section, first, we will briefly describe the infinite horizon stochastic DP (SDP) formulation and 

then overview the DACE based infinite horizon ADP algorithm that will be used in this study. 

3.1.     Infinite horizon SDP model 

DP as a mathematical programming approach to optimize a system evolving over time was introduced by 

Bellman in 1957. There are two versions of DP: finite horizon and infinite horizon. Different from finite 

horizon DP, infinite horizon DP only has one true value function. A typical recursive SDP formulation for 

an infinite horizon problem can be written as 

(ݔ)ܸ = min௨∈Γ
,ݔ)൛ܿܧ ,ݑ (ߞ + ,ݔ)൫݂ܸߛ ,ݑ  ൯ൟ (1)(ߞ

     In Eq. (1), x is vector of state variables, u is a vector of decision variables, ߞ is a vector of stochastic 

variables, f is the transition function, Γ is a set of feasible decisions, ߛ is a discount factor, c is the cost 



function, and V is the future value function (FVF). As described in Section 1, finding an FVF exactly is 

intractable for medium-sized or large-sized problems. Consequently, ADP attempts to find an 

approximate FVF (aFVF) ( ෠ܸ) using the following formulation. 

෠ܸ (ݔ) ≈ ෨ܸ (ݔ) = min௨∈Γ
,ݔ)൛ܿܧ ,ݑ (ߞ + ߛ ෠ܸ൫݂(ݔ, ,ݑ  ൯ൟ (2)(ߞ

3.2.      Overview of DACE based infinite horizon ADP algorithm 

In order to solve large-scale infinite horizon DP problems over continuous spaces, Chen et al. (2017a) 

proposed an algorithm as shown below, on the basis of the DACE concept and adaptive value function 

approximation  (AVFA) approach (Fan et al. 2013). 

 

    In this algorithm, two loops are used to develop the aFVF: an inner data loop and an outer DP loop. 

The data loop follows the AVFA approach of Fan et al. (2013) to sample the state space sequentially in 

Step 0: Initialization: 

(a). Input a discount factor, ߛ, a state transition function, ݂, and a cost function, ܿ. 

(b). Choose the training data set XTrain and testing data XTest set generated by low-discrepancy sequences, 
respectively. 

(c). Set the iteration counter to ݇ ← 0, set the initial aFVF, ෠ܸ଴ = 0, and the set of evaluated state 
variables ܺ ← ∅. 

Step 1: Iteration of infinite horizon DP:  

(a). Set ݇ ← ݇ + 1. 
(b). For each state variable ݔ ∈ ܺTrain ∪ ܺTest − ܺ, solve 
෨ܸ௞(ݔ) = min௨∈୻ ,ݔ)൛ܿܧ ,ݑ (ߦ + ߛ ෠ܸ௞ିଵ൫݂(ݔ, ,ݑ ܺ ൯ൟ and set(ߦ ← ܺ ∪ ሼݔሽ; 

(c). Fit a regression model using the data ൛൫ݔ, ෨ܸ௞(ݔ)൯ൟ௫∈௑Train  to obtain ෠ܸ௞; 

(d). If ෠ܸ௞ fails the stopping criteria for the data loop on the data ൛൫ݔ, ෠ܸ௞(ݔ)൯ൟ௫∈௑Test,  a new set of state 
variables ܺ′ will be added to the training data set ܺTrain ← ܺTrain ∪ ܺ′ and go to the step 1 (b); 

(e). If ෠ܸ௞(ݔ) ≈ ෠ܸ௞ିଵ(ݔ), for each ݔ ∈ ܺTest, output ෠ܸ௞; otherwise, ܺ ← ∅ and go to Step 1(a).  



order to control the amount of sampling needed. The DP loop follows the value iteration concept to 

generate a sequence of aFVFs.  In the above description, Steps 1(a)-(e) are the DP loop and Steps 1(b)-(d) 

represent the data loop. As presented in Chen et al. (2017b), SVR has presented a more stable 

performance in the value function approximation than multivariate adaptive regression splines for the 

infinite horizon DP case. Therefore, in this study, SVR with a Gaussian radial basis function (RBF) kernel 

is used to approximate the FVF. Following Chen et al. (2017b), we also utilize least-square support vector 

machines toolbox downloaded from http://www.esat.kuleuven.be/sista/lssvmlab/ to create the aFVFs. 

Please refer to Brabanter et al. (2011) for details on the tuning process for the parameters of the RBF 

kernel.  

4. Dynamic control problem formulation  

In this EV charging station control problem, following the design in Sarikprueck et al. (2017), it is 

assumed that there are 11 stations located in the DFW metropolitan area. In this system, a remote wind 

farm provides wind power for the system through a long term contract and solar panels installed on the 

roof of each station supply the solar power for each station. The main grid also exchanges electricity with 

each station. A battery is installed in each station for electricity storage, and the priority of this control is 

to satisfy the demand from EVs and simultaneously, make optimal decisions at each time period for 

electricity trading with the main grid to minimize the operational cost for the system. The blueprint of this 

dynamic control system is shown blow. Ideally, the control strategy is that when the electricity market 

price (EMP) is low, the system will buy electricity and store the surplus in the battery, and sell electricity 

when the EMP is high. In this study, based on the technology of photovoltaic panels, we assume solar 

power only provides a very small amount of electricity to the system, and in addition, the maximum 

supply of wind power is no more than 30% of total demand from the EVs. Therefore, the EMP plays a 

critical role in this power trading system.  



 

Figure 1. Blueprint of this EV charging station control system (Sarikprueck et al. 2017) 

Historically, the EMP can spike, and the historical EMP range is from -150 $/MW⦁h to 3300 $/MW⦁h 

(Sarikprueck et al. 2015). However, the real EMP is distributed as a Cauchy distribution, and the 

occurrence of the negative or a spike EMP is rare as shown below. 

 

Figure 2. Real EMP distribution 
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In statistics, when building the model with such distribution, the accuracy of the model will be affected by 

the rare data with large values (Kutner et al. 2004). Hence, based on the control strategy mentioned above, 

it is straightforward to control the system to sell electricity back to the main grid when a positive spike 

EMP occurs and purchase electricity for making profits when a negative EMP occurs, which is defined as 

the first-type control strategy in this paper. The ADP policy is appropriate when EMPs are in the range [0, 

200), which is referred to as the second-type control strategy. In this paper, we mainly focus on 

developing the second-type control strategy. 

4.1.    EV charging station control problem formulation 

Kulvanitchaiyanunt et al. (2016) formulated the EV control problem as a deterministic linear 

programming problem. However, the uncertainty cannot be avoided in reality. Considering stochastic 

variables, when this EV charging station system evolves over time, we have the following process: 

At each period, the control center first needs to determine how to satisfy the demands from EVs, allocate 

wind power, and store and manage electricity in the batteries. After that, random realizations of wind 

power, solar power and EMP are determined, and the recourse decisions, which are to trade between 

power grid and batteries accounting for surpluses and shortages, are recalculated based on the previous 

determined information in order to optimize the objective. After this, the process transitons into the next 

period.  

With this process and the deterministic formulation in Kulvanitchaiyanunt et al. (2016), we formulate this 

EV charing station control problem as an MDP. In order to solve it, an ADP algorithm is conducted using 

the following formulation. It is noted that the ADP solution process has some small differences from the 

simulation process described above: in the ADP solution process, recourse decisions do not need to be 

recalculated since the solution process aims to achieve an convergent policy.  

 



Table 1. Major nomenclature used 

γ Discount factor                                                    I       Inventory of the battery 

D Total demand  D2 
 Demand satisfied by the battery of  a 

station 

e Battery storage efficiency  R 
Electricity sold back to the grid from the 

battery 

W  Wind energy generated for the system  ෩ܹ  
Allocation of the wind energy to each 

station 

n Total number of open stations  PV 
Photovoltaic (solar)  production for each 

station 

N Number of recourse scenarios  D1 
Demand satisfied by direct charge at each 

station 

Imin 
 Minimum battery storage level at each 

station 
 Imax 

Maximum battery storage level at each 

station 

݃ା  Electricity bought from the main grid  ݃ି 
Electricity sold to the grid from direct 

charge 

BC Amount of battery charged electricity   EMP Electricity market price  

cr Battery charge upper limit  dc Battery discharge rate 

 

∑ ௧(∞௧ୀଵߛ
ଵ
ே (∑ ∑ ܯܧ) ௧ܲ,௜

௝ ݃௧,௜
ା,௝ − ܯܧ ௧ܲ,௜

௝௡
௝ୀଵ (݃௧,௜

ି,௝ + ܴ௧
௝))))   ,ே

௜ୀଵ                 ∀݆ ∈ ݊, ∀݆ ∈ ݊, ∀݅ ∈ N  (3) 

Eq. (3) is the objective function of this SDP problem, and the first constraint set (4) includes the battery 

level transition from period t-1 to period t for each open station j: 



௧ܫ      
௝ = ௧ିଵܫ

௝ + ௧ܥܤ
௝ − ோ೟

ೕ

௘ − ஽ଶ೟
ೕ

௘       ∀݆ ∈ ݊, ∀݅ ∈ ܰ  .           (4) 

The solar generation is the same for each station. Therefore, the amount of battery charged electricity is 

calculated with the following equation (5): 

௧ܥܤ
௝ = ෩ܹ௧

௝
௧ܹ,௜ + ܲ ௧ܸ,௜ + ݃௧,௜

ା,௝ − ݃௧,௜
ି,௝ − 1௧ܦ

௝              ∀݆ ∈ ݊, ∀݅ ∈ ܰ  .                  (5) 

The total demand consists of the demand satisfied by direct charge and demand satisfied by the battery as 

shown in the following constraint set (6): 

௧ܦ                                                  
௝=1ܦ௧

௝+ 2ܦ௧
௝               ∀݆ ∈ ݊   .                                    (6) 

The combination of electricity sold back to the grid from the battery and the demand satisfied by the 

battery together is less than or equal to the discharge rate (dc) multiplied by the storage efficiency, as 

shown below in (7): 

                                                 ܴ௧
௝ + 2௧ܦ 

௝ ≤ ݀ܿ × ݁                           ∀݆ ∈ ݊   .        (7) 

The battery charge must not be greater than its charge upper limit, and the battery level must be 

constrainted in between the minimum battery level and the battery capacity for each station, as shown 

below in (8) and (9): 

௧ܥܤ                                                                     
௝ ≤ ݆∀      ݎܿ ∈ ݊        ,                           (8) 

௠௜௡ܫ                                                         ≤ ௧ܫ
௝ ≤ ݆∀               ௠௔௫ܫ ∈ ݊                      . (9) 

The sum of the fraction of  the wind allocation should be equal to 1 as in (10): 

                                                   ∑ ෩ܹ௧
௝௡

௝ୀଵ =1            ∀݆ ∈ ݊     , (10) 



௧ܫ                                         
௝, ෩ܹ௧

௝, ݃௧,௜
ା,௝, ݃௧,௜

ି,௝, ,௧௝ܥܤ ܴ௧
௝, 1௧ܦ

௝, 2௧ܦ
௝ ≥ 0      ∀݆ ∈ ݊, ∀݅ ∈ ܰ  . (11) 

     As assumed, there are two types of decision variables: one is pre-realization decision variables, and the 

other includes post-realization decision variables, which are shown in Table 2. To solve this, stochastic 

programming is used, and multiple scenarios for wind power, solar power and EMP are implemented. It is 

noted that all of these decision variables are in the continuous space.  

                                         Table 2. Decision variables 

Pre-Realization Decision Variables ܴ௧
௝, ෩ܹ௧

௝, 1ܦ௧
௝, 2ܦ௧

௝, ܫ௧
௝, ܥܤ௧

௝    ∀݆ ∈ ݊ 

Post-Realization Decision Variables ݃௧,௜
ି ,௝, ݃௧,௜

ା,௝  ∀݆ ∈ ݊, ∀݅ ∈ ܰ 

4.2.    State transition model 

Using the features selected in Sarikprueck (2015) for wind power, solar power and non-spike EMP, 

through SVR with its parameter tuning process for RBF kernel, we build the forecasting models for wind 

power, solar power and non-spike positive EMP.  In addition, a Martingale model of forecast evolution 

(MMFE) (Heath and Jackson 1994) is implemented to explore the stochastic nature of these forecasting 

models. Therefore, combining SVR forecasting models and MMFE, we have the following state 

transition process. In details, at the time period t, we have the historical states ݀௧ିଶ, ݀௧ିଵ and forecasting 

state ݀௧,௧; when evolving to time period t + 1 and keeping the same structure, the state vector becomes 

݀௧ିଵ, ݀௧ and ݀௧ାଵ,௧ାଵ. From time period t to t + 1, ݀௧ିଶ changes to ݀௧ିଵ, which is defined as an identity 

transition in Yang et al. (2009). For the other state variables: 

                                                                         ݀௧  = ݀௧,௧ ×  ௧,௧             ,                                                            (12)ߝ

                                                ݀௧ାଵ,௧ାଵ = ,௧ିଵ݀)ܨ ݀௧) ×  ௧,௧ାଵ                   ,                                             (13)ߝ



where ε is generated using MMFE methods (please refer to Health and Jackson for details), and F is the 

forecasting model generated by SVR mentioned above. Note that only wind power, solar power and EMP 

will use this transition process. The state space also includes the battery inventory level and demand level. 

Battery inventory level will transition using Eq. (4).  In this study, we use the DFW EV daily demand 

profile shown in Fig. 4, designed by Khosrojerdi et al. (2013), which shows demand over 96 15-minute 

time periods for the random selected 5 open stations. In this demand profile, the demand usually remains 

the same from period to period but includes a few periods with either a sharp increase or decrease in 

demand. Hence, when transitioning from time period t to t + 1, we assume that the demand levels of 

stations are kept unchanged to approximate the FVFs. However, when simulating this whole system to 

investigate the performance of the selected ADP policy, we take advantage of Fig. 4 for the evolving 

demand level.  

 

Figure 3. State Transition Process for wind, solar and EMP state variables   



 

Figure 4. Demand profile of 5 charging stations located in DFW metro area (Khosrojerdi et al. 2013) 

     In wind power forecasting, wind speed is used as an important state variable, and in the non-spike 

EMP forecast, load profile and temperature are also included. As to these three state variables, we take 

advantage of historical data to represent them at time period t and shift them to the next period based on 

the data. Therefore, when implementing a DACE based infinite horizon ADP algorithm, these three state 

variables are not included in the state space. Regarding this, if there are 5 stations open in the state space, 

we have the following state variables: 3 for state variables wind, 3 for solar, 15 for EMPs in five stations, 

5 for battery inventory levels of the five stations and 5 for the demand levels for each station. In total, the 

state space has 31 dimensions. 

5. Computational Results 

In this section, first, we will overview the 45-degree line stopping criterion proposed in Chen et al. (2017a) 

and specified in (2017b), and then quantify the stopping settings in advance. After that, we will use an 

ADP solution algorithm to build aFVFs iteratively until the stopping rule is satisfied. Moreover, the 
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selected aFVF will be applied in the simulation in order to explore its performance. Both the ADP policy 

and a greedy benchmark policy are simulated for comparison.  

5.1.   45-degree line correspondence stopping criterion 

45-degree line correspondence stopping criterion proposed in Chen et al. (2017a) is used to identify the 

shape of value function by observing the linear relationship between consecutive outputs of DP iterations. 

The fitted regression line is represented: 

                                            ෠ܻ௞ = ܾ଴ + ܾଵܺ௞ିଵ   , (14) 

where ܾ଴ is the intercept, ܾଵ is the slope, X is the ෨ܸ  at iteration k-1, ௞ܻ is the ෨ܸ  at iteration k, ෠ܻ௞ is the 

estimated ௞ܻ.  

     To improve upon the 45-degree line correspondence stopping criterion, Chen et al. (2017b) presented 

an algorithm to specify a stopping rule. In this algorithm, ܾଵ′ , named as b1 with 1 lag, is the relationship 

between the consecutive outputs of ෨ܸ  at iteration k and k - 1. ܾଵ′′ , named as b1 with 2 lags, is the 

relationship between the outputs of ෨ܸ  at iteration k and k - 2. This algorithm mainly takes advantage of the 

difference between ܾଵ′  and ܾଵ′′  to identify the ADP policy and stop the DP iterations. 

௞ߜ                                                         = ܾଵ,௞
′′ − ܾଵ,௞

′
   ,   ݇ = 3, 4, …  (15) 

where ߜ௞ is the difference between b1 with 2 lags and b1 with 1 lag at kth DP iteration. 

     According to this algorithm, if ߜ௞ is less than or equal to ߳, which is a specified error tolerance value, 

ܾଵ,௞
′′

 and ܾଵ,௞
′ will be close enough. At this time, a potential “good” ADP policy might have been generated 

and we need to check the |ߜ| values from iteration k +1 to k +m to see if all |ߜ| values are also less than 

or equal to ߦ. If so, output the aFVF ( ෠ܸ௞) at iteration k; otherwise, DP iterations should be continued. As 

to the detail of this algorithm, please refer Chen et al. (2017b).  



5.2.    FVF approximation 

In this research, we randomly assume there are five stations open, and the number of charging slots in 

these stations is given in below: 

Table 3. Operation condition of 5 open charging stations in DFW metro area 

Order of stations Terrel Dallas Fort Worth Garland Greenville 

# of slots 2 9 6 4 8 

The number of slots plays the key role in determining the size of battery in each station. Table 4 shows 

the battery size for each open station: 

Table 1 Battery size of open stations 

Order of stations Terrel Dallas Fort Worth Garland Greenville 

Min level (MW) 1.44 6.48 4.32 2.88 5.76 

Max level (MW) 7.2 32.4 21.6 14.4 28.8 

     Since there are five stations open, the state space has 31 dimensions, which is much more than the 

related work in the literature. Following the algorithm proposed in Chen et al. (2017a), the size of training 

data set and testing data set is 250 and 250, respectively, and the increment size of the training data in the 

data loop is 50. Sobol sequence (Sobol 1967) is used to generate the training data, and Halton sequence 

(Halton 1960) is used to initialize the testing data. The storage efficiency is assumed to be 79.8% as in 

Kulvanitchaiyanunt et al. (2016) and Sarikprueck et al. (2017). The discount factor is set to be 0.995 since 

the time period is 15 minutes. Experiments on the DACE based infinite horizon ADP algorithm are 

conducted in MATLAB 2016b on a Lenovo computer with a Xeon, 16-core, 2.8 GHz CPU. For the 

optimization step 1(b), “fmincon” from MATLAB is used. In order to compute ෨ܸ  of each sampled point 

in the state space, eight recourse scenarios are generated from realizations of the stochastic variables. The 



data loop stopping criterion is when the difference between consecutive data loop R2 values from the 

testing data set is less than 0.01. We set the ߳ equal to 0, ߦ equal to 0.005 and m equal to 5 as described in 

Section 5.1 for the DP loop stopping criterion. Consequently, the selected ADP policy occurs when the ܾଵ′′  

and ܾଵ′  curves cross and then start to stabilize.  

 

Figure 5. ᆄ value evolving pattern 

     Figure 5 shows the 61st to the142nd iterations of the DP loop, during which several potentially good 

ADP policies are saved. However, with aforementioned DP loop stopping criteria, the ADP algorithm 

stops at the 137th iteration, which requires almost 69 hours. The 137th aFVF is selected, and we simulate 

the MDP using it as well as other aFVF policies to evaluate performance.  

5.3.    Simulation Results 

In this section, we compare aFVF policies in a simulated environment. Moreover, a myopic greedy 

algorithm, as described in Chen et al. (2017a, 2017b), is utilized as a benchmark in this study. At the 

-0.01

-0.005

0

0.005

0.01

0.015

0.02

61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

ᆄv
al

ue

DP iteration Loop #



initial stage, we set the battery inventory of each station at the minimum level. As mentioned above, the 

demand profile in Fig. 4 is used in the simulation.  

     Following the simulation process proposed in Chen et al. (2017a), 15 scenarios are conducted with 200 

stages for each scenario. Since we set the battery inventory of each station at the minimum level at time 

period 1, for the MDP simulation, the final results may be skewed by initial transient states (Taha, 2003). 

Therefore, in this study, we only consider the recurrent states in the simulation. After observing the 

dynamics of battery charging and discharging within the 200 stages, the states from 25th stage to 200th 

stage are regarded as recurrent states. Table 5 displays the simulation results of these 15 scenarios using 

the greedy policy and the 137th aFVF. The values in Table 5 are calculated with Eq. (16). The values in 

Table 5 are estimated total costs from 25th stage to 200th stage using the greedy myopic policy and the 

ADP policy. All estimated costs of the 15 scenarios are much smaller than those of greedy policy, which 

indicates the ADP policy is much better than the greedy policy. Fig. 6 shows an example of the dynamics 

of the battery in scenario 1 using the greedy and ADP policies. 
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Table 5. Estimated total costs of 15 scenarios using the greedy policy and the 137th aFVF  

Order of Scenarios Greedy policy 137th aFVF 

1 913.14 -1036.46 

2 627.32 -1097.76 

3 990.12 -1527.15 

4 1087.69 -835.44 

5 1161.63 -1008.51 

6 936.19 -1032.07 

7 1424.36 -391.89 

8 995.70 -1333.42 

9 1564.57 57.35 

10 905.70 -580.08 

11 1456.60 -240.29 

12 1200.74 -679.61 

13 1474.57 670.79 

14 1338.57 -536.73 

15 1230.17 -12.25 

(Unit is $) 

 



 

(a) 

 

(b) 

Figure 6. Dynamics of battery using greedy policy in (a) and using ADP policy in (b).  
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      The difference between Fig. 6(a) and 6(b) is significant. The greedy policy never charges the batteries, 

because it does not consider future states in which the stored electricity could be used either to satisfy 

demand or sell back to the main grid during a period with higher EMP. By contrast, the ADP policy 

charges and discharges the batteries in four of five stations. In order to present the dynamic control more 

clearly, the simulated EMP from the Dallas station and the corresponding dynamics of battery using the 

ADP policy are shown in Fig. 7. 

      Fig. 7 shows that when the EMP is low, the battery is charged, and when the EMP is high, the battery 

is discharged, which indicates the ADP policy is able to control the system as expected. Based on the 

results from the 137th aFVF and greedy policy, we can conclude the ADP policy performs much better 

than the greedy policy. It is noted that in the example shown in Figs. 6 and 7, the first-type control 

strategy is not used since all EMPs are positive and no more than 200. However, the first-type control 

strategy may be used in other scenarios. 

 

 

 



 

(a) 

 

(b) 

Figure 7. Simulated EMP in station 5 in (a) and its corresponding dynamics of battery in (b) 
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Before concluding the results, we further conduct another experiment to the 137th aFVF policy to an 

aFVF found running additional DP iterations. The L-infinity norm stopping rule, proposed by Powell 

(2007), stops based upon the criterion shown below: 

‖ ௞ܸ − ௞ܸିଵ‖∞ < ఏ(ଵିγ)
ଶγ

 .                        (17) 

The stopping criterion is reached when the maximum change in the value of any state is lower than the 

setting of the right-hand side in Eq. (17), where γ is the discount factor, and ߠ  is a specified error 

tolerance. Fig. 8 shows the  L-infinity norm over the first 200 iterations, which requires more than 4 days 

to compute. 

 

Figure 8. L-infinity norm value evolving pattern within 200 DP iterations 

     In Fig. 8, observe that the L-infinity norm is still decreasing slowly, which indicates that the aFVF is 

on the way to convergence. According to Fig. 8, all the norm values are more than 50, which suggests that 

more DP iterations should be executed in order to converge, even though the 45-degree correspondence 
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the 137th and the 200th aFVF policies. Using a paired t-test to compare the these policies, the p-value is 

0.201, which suggests that there are no statistical differences between 137th aFVF and 200th aFVF when α 

is 0.05.  Based on this result, we can conclude that the quantified 45-degree line correspondence stopping 

criteria in Chen et al. (2017b) is able to stop the DP loop reasonably and early, and select an ADP policy 

that has the same performance statistically as a policy found after additional iterations, which saves a lot 

of computational time.  

Table 6. Estimated total costs of 15 scenarios using 137th aFVF and 200th aFVF in simulation  

Order of Scenarios 137th aFVF 200th aFVF 

1 -1036.46 -1058.14 

2 -1097.76 -1011.96 

3 -1527.15 -1505.09 

4 -835.439 -1064.68 

5 -1008.51 -848.721 

6 -1032.07 -1120 

7 -391.889 -167.266 

8 -1333.42 -1113.03 

9 57.34632 157.2903 

10 -580.075 -474.113 

11 -240.294 -315.418 

12 -679.609 -594.316 

13 670.7892 647.2279 

14 -536.73 -558.852 

15 -12.2482 80.00674 

(Unit is $) 



7. Conclusion 

In this research, we apply the DACE based infinite horizon ADP algorithm proposed in Chen et al (2017a) 

to solve a large-scale, high-dimensional, infinite horizon, EV charging station control problem over a 

continuous state and decision space. In this system, renewable energy as resources provide electricity as 

well as the main power grid. In order to solve this control problem, first, we formulate it as a MDP 

problem, and then use MMFE and SVR forecasting models to formulate the transition model for the state 

variables such as wind power, solar power and EMP. For the wind speed, temperature and load profile, 

we use fixed trajectory from historical data to execute the transition. Therefore, with five stations, there 

are 31 state variables in the state space, which indicates this is a much higher dimensional DP problem 

than previous research. For such large-scale DP problems, computational time is a significant challenge. 

Following the research in Chen et al. (2017a and 2017b), we take advantage of the 45-degree line 

correspondence stopping criterion to stop the DP iterations after quantifying its parameters. The selected 

137th ADP policy presents a significantly better performance than a greedy myopic policy as shown in 

Table 5. In addition, from Fig 6, and Fig. 7, the ADP policy performs the way as we expected: when the 

EMP is low, the stations start to charge their batteries, and when the EMP is high, stored electricity in the 

batteries will be sold back to the main grid.  Furthermore, we show that policies from the 137th and the 

200th iterations have the same performance statistically, which indicates the quantified 45-degree line 

correspondence stopping rule is able to stop the DP iteration reasonably and select a good solution. In the 

future, multicollinearity among the state variables should be resolved, since this issue may result in 

transition models unstable. In this research, we make use of fixed trajectories from the historical data to 

represent temperature, wind speed and load profile when building the aFVF. In the future, a related 

transitioned model should be developed. 
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